Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (16): 3164-3177.doi: 10.3864/j.issn.0578-1752.2025.16.002

• SPECIAL FOCUS: NUTRIENT MANAGEMENT FOR ANNUAL RICE-RAPESEED ROTATION • Previous Articles     Next Articles

Effects of Long-Term Chemical Fertilizer and Organic Material Application on Crop Yield and Nutrient Utilization in Rice-Rapeseed Rotation System

FANG YaTing1(), ZHAO Jian1, SHENG QianNan1, LI KaiXu2, WANG XiangHua3, ZHANG YangYang1, ZHU Jun1, CONG RiHuan1, LU ZhiFeng1, LI XiaoKun1, REN Tao1,*(), LU JianWei1   

  1. 1 College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070
    2 Shayang County Agricultural Technology Extension Center, Jingmen 448000, Hubei
    3 Zengji Town Agricultural Technology Service Center, Jingmen 448000, Hubei
  • Received:2025-04-14 Accepted:2025-06-25 Online:2025-08-11 Published:2025-08-11
  • Contact: REN Tao

Abstract:

【Objective】The application of chemical fertilizers and organic materials is a crucial measure for increasing agricultural production. Rice-rapeseed rotation system is a primary paddy-upland crop rotation pattern in the Yangtze River basin of China. Clarifying the impact of chemical fertilizers and organic material inputs on the annual crop yield and nutrient utilization in rice-rapeseed rotation could provide a scientific basis for ensuring food and oil security and achieving green and sustainable agricultural development. 【Method】From 2017 to 2022, a continuous field experiment was conducted at the Huazhong Agricultural University's Shayang Experimental Station in Shayang County, Hubei Province. Four treatments were established: no fertilizer (CK), chemical fertilizer only (NPK), chemical fertilizer with straw return (NPK+S), and chemical fertilizer with straw return plus organic fertilizer (NPK+S+M). The crop yields, nitrogen (N), phosphorus (P) and potassium (K) nutrient absorption of rapeseed and rice were analyzed. The nutrient use efficiency, apparent nutrient balances, and their relationships with yield were also assessed.【Result】The average results over 6 years showed that compared with no fertilization, the application of chemical fertilizers and organic materials significantly increased the yield of rapeseed (493.5%-758.8%) and rice (94.3%-106.4%), and enhanced crop yield stability (24.6%-72.1%) and sustainability (17.2%-85.0%). Compared with the NPK treatment, the NPK+S treatment increased the yield of rapeseed by 6.3%, but decreased yield stability and sustainability; it decreased the yield of rice by 0.8%, but increased yield stability and sustainability. The NPK+S+M treatment increased the yield of rapeseed and rice by 44.7% and 5.4%, respectively, and improved the sustainability of yield. Throughout the rotation cycle, nutrient uptake by rapeseed was consistently lower than that by rice across all treatments. The addition of organic materials significantly enhanced nutrient uptake in both rapeseed and rice. Relative to the NPK treatment, the NPK+S+M treatment resulted in increases of 5.1%-91.2% in average nutrient uptake and 12.2%-100.4% in trend nutrient uptake. The NPK+S treatment did not significantly differ from the NPK treatment in average nutrient uptake but exhibited a 7.7%-25.4% higher trend nutrient uptake. The input of organic materials decreased the physiological nutrient use efficiency of rapeseed and rice. Compared with the NPK treatment, the physiological N use efficiency of rapeseed and rice in the NPK+S+M treatment decreased by 3.0 and 3.7 percentage points, respectively, and the physiological P use efficiency decreased by 19.3 and 25.5 percentage points, respectively. Further analysis revealed that the application of organic materials led to higher apparent nutrient surpluses, which caused the annual increase in the cumulative yield of crops in the rice-rapeseed rotation. The cumulative apparent nutrient surplus was significantly positively correlated with the cumulative crop yield. 【Conclusion】The application of chemical fertilizers and organic materials significantly increased crop yields and nutrient use efficiency, and its effects were jointly influenced by crop and nutrient type. Increasing organic fertilization along with chemical fertilizers and straw application could further enhance soil fertility and increase crop yield; however, efforts should focus on improving the physiological nutrient use efficiency to fully realize the potential of organic amendments for sustainable grain and oil production.

Key words: rice-rapeseed rotation, chemical fertilizer, straw, organic fertilizer, yield, nutrient physiological utilization efficiency

Fig. 1

Average monthly temperature and precipitation in the experimental field from 2016 to 2022"

Fig. 2

Crop yield of long-term rice-rapeseed rotation under different fertilizer and organic material inputs The different lowercase letters indicate the difference of 0.05 significant levels between fertilization treatments. The same as below"

Table 1

Analysis of crop yield index in rice-rapeseed rotation under different fertilizer and organic material inputs"

作物
Crop
处理
Treatment
产量稳定性指数
Yield stability index (%)
产量可持续性指数
Sustainable yield index
产量预测模型
Yield prediction model
油菜
Rapeseed
CK 59.4a 0.221b Y=346.4t-36.4, R2=0.9675
NPK 37.6b 0.396a Y=2165.7t-1056.9, R2=0.9778
NPK+S 44.8b 0.315ab Y=2232.3t-860.3, R2=9705
NPK+S+M 38.7b 0.410a Y=3108.3t-912.7, R2=0.9884
水稻
Rice
CK 16.8a 0.709b Y=4590.6t+642.6, R2=0.9961
NPK 7.7b 0.831a Y=8977.3t-259.6, R2=0.9997
NPK+S 6.9b 0.857a Y=8820.6t+100.3, R2=0.9997
NPK+S+M 4.7b 0.890a Y=9419.8t-234.5, R2=0.9998

Fig. 3

Annual crop nutrient uptake and proportion in rice-rapeseed rotation under different fertilizer and organic material inputs"

Table 2

Crop nutrient utilization efficiency in rice-rapeseed rotation under different fertilizer and organic material inputs"

作物
Crop
处理
Treatment
养分收获指数
Nutrient harvest index (%)
养分生理利用率
Nutrient physiological utilization efficiency (kg·kg-1)
氮素NHI 磷素 PHI 钾素 KHI 氮素 NPUE 磷素 PPUE 钾素 KPUE
油菜
Rapeseed
CK 73.0c 85.1a 19.5a 24.6a 94.2a 29.4a
NPK 77.7ab 88.1a 12.0c 24.9a 80.8b 16.2b
NPK+S 79.8a 88.2a 11.6c 26.3a 74.3b 16.8b
NPK+S+M 75.0bc 80.2b 14.2b 21.9b 61.5c 15.5b
水稻
Rice
CK 60.6c 75.5a 11.3a 77.1a 198.7a 37.4a
NPK 66.6a 76.4a 11.6a 67.2b 168.2b 31.7b
NPK+S 63.3ab 74.9a 10.8a 66.0b 164.7bc 31.9b
NPK+S+M 63.3ab 74.1a 11.9a 63.5b 142.7c 31.7b
轮作周年
Annual
rotation
CK 63.2bc 76.9b 12.1ab 66.8a 183.9a 36.7a
NPK 70.9a 80.3a 11.7ab 50.6b 139.2b 26.8b
NPK+S 69.7a 79.6ab 11.0b 50.4b 131.7b 27.0b
NPK+S+M 69.0a 76.7b 12.8a 43.3c 107.4c 25.2c

Fig. 4

Analysis of nutrient uptake trends in rice-rapeseed rotation under different fertilizer and organic material inputs k represents the slope of the linear regression model, which indicates the trend of nutrient uptake over rotation years, with the unit of kg·hm-2·a-1, R2 indicates the precision of the linear fit"

Table 3

Nutrient apparent balance in rice-rapeseed rotation under different fertilizer and organic material inputs"

作物
Crop
处理
Treatment
Nitrogen (kg N·hm-2) Phosphorus (kg P2O5·hm-2) Potassium (kg K2O·hm-2)
投入Input 支出
Output
平衡
Balance
投入Input 支出
Output
平衡
Balance
投入Input 支出
Output
平衡
Balance
化肥
CF
秸秆
Straw
有机肥
OF
化肥
CF
秸秆
Straw
有机肥
OF
化肥
CF
秸秆
Straw
有机肥
OF
油菜
Rapeseed
CK 0.0 0.0 0.0 14.6 -14.6 0.0 0.0 0.0 3.8 -3.8 0.0 0.0 0.0 12.1 -12.1
NPK 180.0 0.0 0.0 85.4 94.6 60.0 0.0 0.0 26.3 33.7 75.0 0.0 0.0 131.1 -56.1
NPK+S 180.0 33.0 0.0 86.1 126.9 60.0 6.0 0.0 30.4 35.6 75.0 172.0 0.0 134.3 112.7
NPK+S+M 180.0 33.0 180.0 140.3 252.7 60.0 6.0 255.0 50.3 270.7 75.0 172.0 171.0 198.5 219.5
水稻
Rice
CK 0.0 0.0 0.0 59.2 -59.2 0.0 0.0 0.0 23.0 -23.0 0.0 0.0 0.0 122.0 -122.0
NPK 180.0 0.0 0.0 133.3 46.7 60.0 0.0 0.0 53.2 6.8 75.0 0.0 0.0 282.4 -207.4
NPK+S 180.0 19.0 0.0 134.6 64.4 60.0 2.0 0.0 54.8 7.2 75.0 109.0 0.0 277.8 -93.8
NPK+S+M 180.0 19.0 180.0 148.4 230.6 60.0 2.0 255.0 66.1 250.9 75.0 109.0 171.0 296.9 58.1
轮作周年
Annual
rotation
CK 0.0 0.0 0.0 73.8 -73.8 0.0 0.0 0.0 26.8 -26.8 0.0 0.0 0.0 134.1 -134.1
NPK 360.0 0.0 0.0 218.6 141.4 120.0 0.0 0.0 79.5 40.5 150.0 0.0 0.0 413.5 -263.5
NPK+S 360.0 52.0 0.0 220.7 191.3 120.0 7.0 0.0 85.2 41.8 150.0 281.0 0.0 412.1 18.9
NPK+S+M 360.0 52.0 360.0 288.7 483.3 120.0 7.0 510.0 116.4 520.6 150.0 281.0 342.0 495.4 277.6

Fig. 5

Correlation analysis between annual nutrient surplus and yield accumulation in rice-rapeseed rotation k represents the slope of the linear regression model, which indicates the rate of increase in cumulative yield per unit nutrient surplus, R2 indicates the precision of the linear fit"

[1]
冯海棠, 王汉中. 新形势下的我国食用植物油供给安全对策. 中国油料作物学报, 2024, 46(2): 221-227.

doi: 10.19802/j.issn.1007-9084.2024021
FENG H T, WANG H Z. Security strategy for the nation’s edible vegetable oil supplies under the new circumstances. Chinese Journal of Oil Crop Sciences, 2024, 46(2): 221-227. (in Chinese)
[2]
HUANG J D, CAO X Y, KUAI J, CHENG H, ZUO Q S, DU H, PENG S B, HUANG J L, DENG N Y. Evaluation of production capacity for rice-rapeseed cropping system in China. Field Crops Research, 2023, 293: 108842.
[3]
周卫, 丁文成. 新阶段化肥减量增效战略研究. 植物营养与肥料学报, 2023, 29(1): 1-7.
ZHOU W, DING W C. Strategic research of reducing fertilizer use and increasing use efficiency in China in the new era. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 1-7. (in Chinese)
[4]
FU X, MA Y Y, WANG D Z, ZHAN L C, GUO Z B, FAN K K, YANG T, CHU H Y. Long-term chemical fertilization results in a loss of temporal dynamics of diazotrophic communities in the wheat rhizosphere. Science of the Total Environment, 2023, 875: 162663.
[5]
ZOU T, ZHANG X, DAVIDSON E A. Global trends of cropland phosphorus use and sustainability challenges. Nature, 2022, 611(7934): 81-87.
[6]
CAI S M, WANG J J, LV W G, XU S X, ZHU H T. Nitrogen fertilization alters the effects of earthworms on soil physicochemical properties and bacterial community structure. Applied Soil Ecology, 2020, 150: 103478.
[7]
UDDIN M K, SAHA B K, WONG V N L, PATTI A F. Organo-mineral fertilizer to sustain soil health and crop yield for reducing environmental impact: A comprehensive review. European Journal of Agronomy, 2025, 162: 127433.
[8]
牛新胜, 巨晓棠. 我国有机肥料资源及利用. 植物营养与肥料学报, 2017, 23(6): 1462-1479.
NIU X S, JU X T. Organic fertilizer resources and utilization in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1462-1479. (in Chinese)
[9]
张瑞福, 陈玉, 孙新丽, 徐志辉, 缪有志, 张楠, 刘东阳, 沈其荣. 中国生物肥料与有机肥料研究三十年: 回顾与展望. 植物营养与肥料学报, 2024, 30(7): 1262-1273.
ZHANG R F, CHEN Y, SUN X L, XU Z H, MIAO Y Z, ZHANG N, LIU D Y, SHEN Q R. Biofertilizer and organic fertilizer research over thirty years in China: Retrospect and prospect. Journal of Plant Nutrition and Fertilizers, 2024, 30(7): 1262-1273. (in Chinese)
[10]
魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响. 植物营养与肥料学报, 2020, 26(8): 1384-1394.
WEI W L, LIU L, QIU H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1384-1394. (in Chinese)
[11]
MACHOLDT J, STYCZEN M E, MACDONALD A, PIEPHO H P, HONERMEIER B. Long-term analysis from a cropping system perspective: Yield stability, environmental adaptability, and production risk of winter barley. European Journal of Agronomy, 2020, 117: 126056.
[12]
杨文辉, 罗灏程, 董二伟, 王劲松, 王媛, 刘秋霞, 黄晓磊, 焦晓燕. 长期不同施肥和深翻对玉米高粱轮作体系作物钾利用及土壤钾形态的影响. 中国农业科学, 2024, 57(12): 2390-2403. doi: 10.3864/j.issn.0578-1752.2024.12.010.
YANG W H, LUO H C, DONG E W, WANG J S, WANG Y, LIU Q X, HUANG X L, JIAO X Y. Effects of long-term fertilization and deep plough on crop potassium utilization and soil potassium forms in maize-sorghum rotation system. Scientia Agricultura Sinica, 2024, 57(12): 2390-2403. doi: 10.3864/j.issn.0578-1752.2024.12.010. (in Chinese)
[13]
ZHOU W, LV T F, CHEN Y, WESTBY A P, REN W J. Soil physicochemical and biological properties of paddy-upland rotation: A review. The Scientific World Journal, 2014, 2014: 856352.
[14]
车品高, 陈国徽, 曹国军, 高冰可, 陈艳芳, 熊文, 应治宏, 周庆友. 稻油轮作下秸秆还田对土壤养分和作物产量的影响. 作物学报, 2024, 50(12): 3118-3128.

doi: 10.3724/SP.J.1006.2024.32045
CHE P G, CHEN G H, CAO G J, GAO B K, CHEN Y F, XIONG W, YING Z H, ZHOU Q Y. Effects of straw return on soil nutrients and crop yield in rice-rapeseed rotation. Acta Agronomica Sinica, 2024, 50(12): 3118-3128. (in Chinese)
[15]
靳玉婷, 刘运峰, 胡宏祥, 穆静, 高梦瑶, 李先藩, 薛中俊, 龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响. 中国农业科学, 2021, 54(9): 1937-1951. doi: 10.3864/j.issn.0578-1752.2021.09.011.
JIN Y T, LIU Y F, HU H X, MU J, GAO M Y, LI X F, XUE Z J, GONG J J. Effects of continuous straw returning with chemical fertilizer on annual runoff loss of nitrogen and phosphorus in rice-rape rotation. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951. doi: 10.3864/j.issn.0578-1752.2021.09.011. (in Chinese)
[16]
韦叶娜, 王学春, 赵祥, 蒋芬, 胡瑶, 胡运高. 油菜秸秆还田对水稻根系及分蘖生长的影响. 云南大学学报(自然科学版), 2018, 40(3): 609-618.
WEI Y N, WANG X C, ZHAO X, JIANG F, HU Y, HU Y G. Effects of oilseed rape straw returning on the growth of rice root and tillers. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(3): 609-618. (in Chinese)
[17]
蒋倩红, 陆志峰, 赵海燕, 郭俊杰, 刘文波, 凌宁, 郭世伟. 长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析. 中国农业科学, 2020, 53(14): 2907-2918. doi: 10.3864/j.issn.0578-1752.2020.14.014.
JIANG Q H, LU Z F, ZHAO H Y, GUO J J, LIU W B, LING N, GUO S W. Potential analysis of reducing chemical nitrogen inputs while increasing efficiency by organic-inorganic fertilization in winter rapeseed producing areas of the middle and lower reaches of the Yangtze River. Scientia Agricultura Sinica, 2020, 53(14): 2907-2918. doi: 10.3864/j.issn.0578-1752.2020.14.014. (in Chinese)
[18]
WANG K K, REN T, YAN J Y, ZHU D D, LIAO S P, ZHANG Y Y, LU Z F, CONG R H, LI X K, LU J W. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agriculture, Ecosystems & Environment, 2022, 335: 107991.
[19]
WANG S P, ZHAI L M, GUO S F, ZHANG F L, HUA L L, LIU H B. Returned straw reduces nitrogen runoff loss by influencing nitrification process through modulating soil C: N of different paddy systems. Agriculture, Ecosystems & Environment, 2023, 354: 108438.
[20]
张福锁, 陈新平, 陈清. 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009.
ZHANG F S, CHEN X P, CHEN Q. Guide to Fertilization of Main Crops in China. Beijing: China Agricultural University Press, 2009. (in Chinese)
[21]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2007.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2007. (in Chinese)
[22]
MACHOLDT J, PIEPHO H P, HONERMEIER B. Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment. European Journal of Agronomy, 2019, 102: 14-22.
[23]
曹馨元, 杜明利, 王宇诚, 陈欣华, 陈佳欣, 凌霄霞, 黄见良, 彭少兵, 邓南燕. 稻油系统周年产量差及形成因素探究: 以湖北省武穴市为例. 作物学报, 2024, 50(5): 1287-1299.

doi: 10.3724/SP.J.1006.2024.32030
CAO X Y, DU M L, WANG Y C, CHEN X H, CHEN J X, LING X X, HUANG J L, PENG S B, DENG N Y. Evaluation of annual yield gap and yield limiting factors in rice-rapeseed cropping system: An example from Wuxue city, Hubei province, China. Acta Agronomica Sinica, 2024, 50(5): 1287-1299. (in Chinese)
[24]
李娟, 张立成, 章明清, 王煌平, 张辉, 张永春. 长期不同施肥模式下赤红壤旱地花生-甘薯轮作体系产量稳定性研究. 植物营养与肥料学报, 2021, 27(2): 179-190.
LI J, ZHANG L C, ZHANG M Q, WANG H P, ZHANG H, ZHANG Y C. Yield stability in peanut-sweet potato rotation system under long-term combined application of chemical and organic fertilizers in latosolic red soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 179-190. (in Chinese)
[25]
HAN X M, HU C, CHEN Y F, QIAO Y, LIU D H, FAN J, LI S L, ZHANG Z. Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. European Journal of Agronomy, 2020, 113: 125965.
[26]
LILLEY J M, FLOHR B M, WHISH J P M, FARRE I, KIRKEGAARD J A. Defining optimal sowing and flowering periods for canola in Australia. Field Crops Research, 2019, 235: 118-128.

doi: 10.1016/j.fcr.2019.03.002
[27]
ZHANG Y J, ZOU J L, OSBORNE B, DANG W, XU Y X, REN Y Y, DANG S N, WANG L J, CHEN X, YU Y. Effect of straw return on soil respiration in dryland agroecosystem of China: A meta-analysis. Ecological Engineering, 2023, 196: 107099.
[28]
WANG C Y, WANG Z K, EL-BADRI A M, BATOOL M, ANWAR S, WANG X L, BAI M Q, YOU Y H, WANG B, WANG J, XU Z H, KUAI J, ZHOU G S. Moderately deep tillage enhances rapeseed yield by improving frost resistance of seedling during overwintering. Field Crops Research, 2023, 304: 109173.
[29]
WEI L, GE T D, ZHU Z K, LUO Y, YANG Y H, XIAO M L, YAN Z F, LI Y H, WU J S, KUZYAKOV Y. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 2021, 398: 115121.
[30]
SHI Y L, LI T T, ZHENG L, JING X K, HUSSAIN H A, ZHANG Q W. Enhancing soil multifunctionality through restoring erosion environment and microbial functions combined with organic manure and straw mulching. Agriculture, Ecosystems & Environment, 2025, 383: 109515.
[31]
徐明岗, 卢昌艾, 张文菊, 李玲, 段英华. 我国耕地质量状况与提升对策. 中国农业资源与区划, 2016, 37(7): 8-14.
XU M G, LU C A, ZHANG W J, LI L, DUAN Y H. Situation of the quality of arable land in China and improvement strategy. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(7): 8-14. (in Chinese)
[32]
XIAO Y, HUANG R, XIONG W L, LIU B B, ZHOU Q H, JIANG T, WONG V N L, LIU J, WU Y J, LUO Y L, LI Q Q, XU Q, LAN T, WANG C Q, LI B. Organic fertilizer intensifies the vertical heterogeneity of DOM in paddy fields through interactions with soil minerals. Soil and Tillage Research, 2025, 248: 106454.
[33]
白雪源, 张杰, 崔振岭, 王广进, 吕玉娇, 张福锁. 中低产田评价指标与主要方法研究进展. 土壤学报, 2023, 60(4): 913-924.
BAI X Y, ZHANG J, CUI Z L, WANG G J, Y J, ZHANG F S. Advances in the indicator and assessment approaches of medium- low yield fields. Acta Pedologica Sinica, 2023, 60(4): 913-924. (in Chinese)
[34]
代文才, 高明, 兰木羚, 黄容, 王金柱, 王子芳, 韩晓飞. 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律. 中国生态农业学报, 2017, 25(2): 188-199.
DAI W C, GAO M, LAN M L, HUANG R, WANG J Z, WANG Z F, HAN X F. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188-199. (in Chinese)
[35]
张磊, 张维乐, 鲁剑巍, 戴志刚, 易妍睿, 丛日环. 秸秆还田条件下不同供钾能力土壤水稻、油菜、小麦钾肥减量研究. 中国农业科学, 2017, 50(19): 3745-3756. doi: 10.3864/j.issn.0578-1752.2017.19.011.
ZHANG L, ZHANG W L, LU J W, DAI Z G, YI Y R, CONG R H. Study of optimum potassium reducing rate of rice, wheat and oilseed rape under different soil K supply levels with straw incorporation. Scientia Agricultura Sinica, 2017, 50(19): 3745-3756. doi: 10.3864/j.issn.0578-1752.2017.19.011. (in Chinese)
[36]
RÖMHELD V, KIRKBY E A. Research on potassium in agriculture: Needs and prospects. Plant and Soil, 2010, 335(1): 155-180.
[37]
HAN H W, CHEN T T, SU Y C, ZHANG S, ZHAO Q, SUN Y D, BAI Y K, CHI D C. Zeolite mitigates alternate wetting and drying-induced potassium depletion and enhances potassium balance in rice paddies: A 6-year field study. Field Crops Research, 2025, 321: 109690.
[38]
邓红艳. 氮磷钾肥施用对油菜-水稻轮作体系土壤肥力的影响[D]. 武汉: 华中农业大学, 2022.
DENG H Y. Effects of nitrogen, phosphorus and potassium fertilizers on soil fertility under oilseed rape-rice rotation[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
[39]
VIJAYAKUMAR S, GOBINATH R, KANNAN P, MURUGAIYAN V. Optimizing potassium mining in rice-wheat system: Strategies for promoting sustainable soil health - A review. Farming System, 2024, 2(3): 100099.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] ZHANG HaoXin, YU ShengYue, LEI QiuLiang, DU XinZhong, ZHANG Jizong, AN MiaoYing, FAN BingQian, LUO JiaFa, LIU HongBin. Simulating Soil Organic Carbon Dynamic Changes in Dryland and Paddy Field of Northeast China Using RothC Model [J]. Scientia Agricultura Sinica, 2025, 58(8): 1564-1578.
[7] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[8] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[9] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[10] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[11] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[12] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[13] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[14] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[15] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!