Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (16): 3178-3189.doi: 10.3864/j.issn.0578-1752.2025.16.003

• SPECIAL FOCUS: NUTRIENT MANAGEMENT FOR ANNUAL RICE-RAPESEED ROTATION • Previous Articles     Next Articles

Organic-Inorganic Fertilization Application and Deep Tillage Enhance Productivity and Nutrient Use Efficiency in Rice-Rapeseed Rotations

BU RongYan1(), CHENG WenLong1, WU Ji1, TANG Shan1, LI Min1, LU JianWei2, JI GenXue3, WANG Hui1, ZHU Rui1, JIANG FaHui1, TANG MengMeng1, HAN Shang1,*()   

  1. 1 Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences(National Agricultural Experimental Station for Soil Quality)/Key Laboratory of Nutrient Cycling and Arable Land Conservation of Anhui Province, Hefei 230031
    2 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070
    3 Chizhou Agricultural Science Research Institute, Chizhou 247000, Anhui
  • Received:2025-04-29 Accepted:2025-06-25 Online:2025-08-11 Published:2025-08-11
  • Contact: HAN Shang

Abstract:

【Objective】The aim of this study is to elucidate the long-term effects of tillage practices and fertilization measures on annual crop yield and nutrient utilization in a rapeseed- rice rotation system in the Yangtze River Basin, for providing a scientific basis for sustainable nutrient management to achieve synergistic grain and oilseed production in the region.【Method】Based on a site-specific field experiment (2016-2023) with a rice-rapeseed rotation system, a split-plot design was adopted. The main treatments were different tillage methods: rotary tillage (RT, 12 cm depth) and deep tillage (DT, 20 cm depth). The sub-treatments included three fertilization regimes: no fertilization (CK), chemical fertilizer alone (F), and combined organic-inorganic fertilization (FM, where chemical fertilizer in the rice season matched the F treatment, while the rapeseed season received organic-chemical fertilization). This study analyzed the rapeseed and rice yields, nutrient uptake, and nutrient use efficiency, with a comprehensive evaluation incorporating yield stability index (YSI) and sustainability index (SYI).【Result】Compared with CK, fertilization application significantly increased rice and rapeseed yields by 47.6% and 288.1%, respectively, while improving yield stability (YSI increased by 6.1% and 10.6%) and sustainability (SYI increased by 14.7% and 16.7%). Fertilization was the primary factor influencing crop yield, with FM outperforming F. DT further enhanced rice (9.2%) and rapeseed (7.0%) yields compared with RT, while significantly improving rice and rapeseed yield stability (YSI decreased by 17.9% and 4.7%, respectively) and sustainability (SYI increased by 5.7% and 7.7%, respectively). Among all treatments, FM-DT achieved the highest yields, stability, and sustainability for both crops. Further analysis revealed that FM-DT most effectively promoted nutrient translocation to grains, increasing N and phosphorus (P) harvest indices. The N and P harvest indices reached 76.9% and 76.0% in rice and 68.5% and 69.5% in rapeseed, respectively. Organic fertilizer substitution reduced chemical fertilizer input but enhanced N and P use efficiency, increasing them by 23.1% and 24.5% in rice and 63.7% and 22.8% in rapeseed, respectively. DT combined with organic substitution further improved N and P apparent recovery efficiency. 【Conclusion】The integration of FM with DT significantly enhanced productivity, stability, and sustainability in the rice-rapeseed rotation system while improving nutrient use efficiency. This approach represented an effective nutrient management strategy for achieving sustainable development in rice-rapeseed rotation in the Yangtze River Basin.

Key words: rice-rapeseed rotation, organic fertilizer, tillage practice, yield, yield stability, yield sustainability, nutrient use efficiency

Fig. 1

Monthly mean temperature and precipitation during 2016-2023 at the experimental site"

Fig. 2

The crop yield of rice-rapeseed rotation under different treatments from 2017 to 2023 CK, F, and FM represent no chemical fertilizer, chemical fertilizer alone, and combined organic-inorganic fertilization, respectively; RT and DT represent rotary tillage and deep tillage, respectively. The same as below. (A) represents rapeseed yield during 2017 to 2023; (B) represents rice yield during 2017 to 2023; (C) represents annual energy yield of rice-rapeseed rotation during 2017 to 2023; (D) represents average rapeseed yield during 2017 to 2023; (E) represents average rice yield during 2017 to 2023; (F) represents average annual energy yield of rice-rapeseed rotation during 2017 to 2023. The different lowercase letters indicate the difference of 0.05 significant levels between tillage treatments, while different uppercase letters indicate the difference of 0.05 significant levels between fertilization treatments"

Table 1

The crop yield index in rice-rapeseed rotation under different treatments from 2017 to 2023"

项目
Item
处理
Treatment
油菜
Rapeseed
水稻
Rice
周年能值产量
Energy yield of rice-rapeseed
RT DT RT DT RT DT
产量稳定性指数
Yield stability index, YSI (%)
CK 50.4a 45.7a 16.6a 12.9a 21.9a 17.7a
F 23.0b 22.1b 11.8b 10.5b 8.9b 7.3b
FM 19.3c 19.4c 9.9c 8.8c 7.3c 6.8b
产量可持续性指数
Sustainable yield index, SYI
CK 0.278c 0.324c 0.645b 0.695c 0.565b 0.618b
F 0.518b 0.537b 0.738a 0.780b 0.819a 0.838a
FM 0.576a 0.591a 0.791a 0.820a 0.851a 0.860a

Fig. 3

The nutrition uptake in rice-rapeseed rotation under different treatments in 2023 Different lowercase letters indicate the difference of 0.05 significant levels between fertilization treatments"

Table 2

The nutrient harvest index in rice-rapeseed rotation under different treatments (%)"

作物
Crop
处理
Treatment
氮素 NHI 磷素 PHI 钾素 KHI
RT DT RT DT RT DT
油菜
Rapeseed
CK 45.8c 52.6b 56.1b 62.1b 19.6a 17.5b
F 62.1b 68.5a 65.8a 68.3a 19.6a 19.3ab
FM 68.5a 70.7a 69.4a 70.5a 18.3a 20.0a
水稻
Rice
CK 61.1c 70.2c 65.0c 67.6c 12.9a 12.0a
F 69.8b 73.9b 71.7b 71.2b 13.7a 13.4a
FM 73.8a 76.9a 74.2a 76.0a 12.9a 13.9a
轮作周年
Annual rotation
CK 58.2c 67.0b 63.5b 66.7b 15.6a 14.3a
F 67.1b 72.0a 69.2a 70.0a 16.2a 15.8a
FM 71.9a 74.7a 72.1a 73.6a 15.1a 16.4a

Table 3

The Nutrient apparent recovery efficiency in rice-rapeseed rotation under different treatments (%)"

作物
Crop
处理
Treatment
氮素 NREU 磷素 PREU 钾素 KREU
RT DT RT DT RT DT
油菜
Rapeseed
F 29.4b 32.3b 24.7b 26.0b 70.0a 74.7a
FM 36.9a 38.4a 30.1a 33.1a 73.0a 77.4a
水稻
Rice
F 31.5b 34.7b 32.5b 34.6b 50.2b 52.8b
FM 50.6a 57.8a 38.8a 43.7a 53.5a 55.4a
轮作周年
Annual rotation
F 30.4b 33.4b 28.6b 30.3b 68.7a 72.9a
FM 36.2a 39.3a 34.4a 38.4a 72.3a 75.9a

Table 4

Nutrient apparent balance in rice-rapeseed rotation under different treatments"

作物
Crop
处理
Treatment
氮 Nitrogen (kg N·hm-2) 磷 Phosphorus (kg P2Ohm-2) 钾 Potassium (kg K2O·hm-2)
投入Input 支出Output 平衡Balance 投入Input 支出Output 平衡Balance 投入Input 支出Output 平衡Balance
RT/DT DT RT DT RT RT/DT DT RT DT RT RT/DT DT RT DT RT
化肥
Chemical fertilizer
有机肥
Organic fertilizer
化肥
Chemical fertilizer
有机肥
Organic fertilizer
化肥
Chemical fertilizer
有机肥
Organic fertilizer
油菜
Rapeseed
CK 0 0 18.3 16.4 -18.3 -16.4 0 0 4.6 4.2 -4.6 -4.2 0 0 95.9 87.3 -95.9 -87.3
F 180.0 0 80.8 73.1 99.2 106.9 75 0 30.6 28.6 44.4 46.4 90 0 159.3 147.6 -69.3 -57.6
FM 144.0 36 91.1 80.2 88.9 99.8 29.9 45.1 37.4 33.3 37.6 41.7 73.4 16.6 162.3 151.5 -72.3 -61.5
水稻
Rice
CK 0.0 0 81.4 70.6 -81.4 -70.6 0 0 23.9 20.7 -23.9 -20.7 0 0 139.9 126.9 -139.9 -126.9
F 210 0 149.3 132.4 60.7 77.6 75 0 43.4 39.2 31.6 35.8 120 0 229.5 210.9 -109.5 -90.9
FM 210 0 162.0 148.0 48.0 62.0 75 0 48.7 43.3 26.3 31.7 120 0 232.8 214.5 -112.8 -94.5
周年
Annual rotation
CK 0 0 99.7 87.0 -99.7 -87.0 0 0 28.5 24.9 -28.5 -24.9 0 0 235.8 214.2 -235.8 -214.2
F 390 0 230.1 205.4 159.9 184.6 150 0 74.0 67.8 76.0 82.2 210 0 388.8 358.4 -178.8 -148.4
FM 354 36 253.1 228.2 136.9 161.8 104.9 45.1 86.1 76.6 63.9 73.4 193.4 16.6 395.1 366.0 -185.1 -156.0
[1]
HUANG J D, CAO X Y, KUAI J, CHENG H, ZUO Q S, DU H, PENG S B, HUANG J L, DENG N Y. Evaluation of production capacity for rice-rapeseed cropping system in China. Field Crops Research, 2023, 293: 108842.
[2]
周卫, 丁文成. 新阶段化肥减量增效战略研究. 植物营养与肥料学报, 2023, 29(1): 1-7.
ZHOU W, DING W C. Strategic research of reducing fertilizer use and increasing use efficiency in China in the new era. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 1-7. (in Chinese)
[3]
CAI S M, WANG J J, LV W G, XU S X, ZHU H T. Nitrogen fertilization alters the effects of earthworms on soil physicochemical properties and bacterial community structure. Applied Soil Ecology, 2020, 150: 103478.
[4]
PIAZZA G, PELLEGRINO E, MOSCATELLI M C, ERCOLI L. Long-term conservation tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in bulk soil and occluded microaggregates. Soil and Tillage Research, 2020, 196: 104482.
[5]
ZHOU W, LV T F, CHEN Y, WESTBY A P, REN W J. Soil physicochemical and biological properties of paddy-upland rotation: A review. The Scientific World Journal, 2014, 2014: 856352.
[6]
PALM C, BLANCO-CANQUI H, DECLERCK F, GATERE L, GRACE P. Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment, 2014, 187: 87-105.
[7]
LIU X, PENG C, ZHANG W J, LI S Y, AN T T, XU Y D, GE Z, XIE N H, WANG J K. Subsoiling tillage with straw incorporation improves soil microbial community characteristics in the whole cultivated layers: A one-year study. Soil and Tillage Research, 2022, 215: 105188.
[8]
韩上, 武际, 李敏, 陈峰, 王允青, 程文龙, 唐杉, 王慧, 郭熙盛, 卢昌艾. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质. 植物营养与肥料学报, 2020, 26(2): 276-284.
HAN S, WU J, LI M, CHEN F, WANG Y Q, CHENG W L, TANG S, WANG H, GUO X S, LU C A. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese)
[9]
MOTAVALLI P P, STEVENS W E, HARTWIG G. Remediation of subsoil compaction and compaction effects on corn N availability by deep tillage and application of poultry manure in a sandy-textured soil. Soil and Tillage Research, 2003, 71(2): 121-131.
[10]
BU R Y, LI M, CHENG W L, HAN S, WANG H, TANG S, LU C G, WU J. Subsoil tillage and organic fertilization benefit rice root growth and yield by ameliorating soil compaction and fertility. Journal of Soil Science and Plant Nutrition, 2023, 23(4): 6114-6124.
[11]
韩天富, 马常宝, 黄晶, 柳开楼, 薛彦东, 李冬初, 刘立生, 张璐, 刘淑军, 张会民. 基于Meta分析中国水稻产量对施肥的响应特征. 中国农业科学, 2019, 52(11): 1918-1929. doi: 10.3864/j.issn.0578-1752.2019.11.007.
HAN T F, MA C B, HUANG J, LIU K L, XUE Y D, LI D C, LIU L S, ZHANG L, LIU S J, ZHANG H M. Variation in rice yield response to fertilization in China: meta-analysis. Scientia Agricultura Sinica, 2019, 52(11): 1918-1929. doi: 10.3864/j.issn.0578-1752.2019.11.007. (in Chinese)
[12]
UDDIN M K, SAHA B K, WONG V N L, PATTI A F. Organo- mineral fertilizer to sustain soil health and crop yield for reducing environmental impact: A comprehensive review. European Journal of Agronomy, 2025, 162: 127433.
[13]
杨长明, 杨林章, 颜廷梅, 欧阳竹. 不同肥料结构对水稻群体干物质生产及养分吸收分配的影响. 土壤通报, 2004, 35(2): 199-202.
YANG C M, YANG L Z, YAN T M, OUYANG Z. Effects of nutrient regimes on dry matter production and nutrient uptake and distribution by rice plant. Chinese Journal of Soil Science, 2004, 35(2): 199-202. (in Chinese)
[14]
周卫军, 王凯荣, 张光远. 有机无机结合施肥对红壤稻田土壤氮素供应和水稻生产的影响. 生态学报, 2003, 23(5): 914-921.
ZHOU W J, WANG K R, ZHANG G Y. Some effects of inorganic fertilizer and recycled crop nutrients on soil nitrogen supply and paddy rice production in the red earth region of China. Acta Ecologica Sinica, 2003, 23(5): 914-921. (in Chinese)
[15]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2007.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2007. (in Chinese)
[16]
MACHOLDT J, PIEPHO H P, HONERMEIER B. Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment. European Journal of Agronomy, 2019, 102: 14-22.
[17]
朱芸, 廖世鹏, 刘煜, 李小坤, 任涛, 丛日环, 鲁剑巍. 长江流域油-稻与麦-稻轮作体系周年养分收支差异. 植物营养与肥料学报, 2019, 25(1): 64-73.
ZHU Y, LIAO S P, LIU Y, LI X K, REN T, CONG R H, LU J W. Differences of annual nutrient budgets between rapeseed-rice and wheat-rice rotations in the Yangtze River Basin. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 64-73. (in Chinese)
[18]
蒋倩红, 陆志峰, 赵海燕, 郭俊杰, 刘文波, 凌宁, 郭世伟. 长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析. 中国农业科学, 2020, 53(14): 2907-2918. doi: 10.3864/j.issn.0578-1752.2020.14.014.
JIANG Q H, LU Z F, ZHAO H Y, GUO J J, LIU W B, LING N, GUO S W. Potential analysis of reducing chemical nitrogen inputs while increasing efficiency by organic-inorganic fertilization in winter rapeseed producing areas of the middle and lower reaches of the Yangtze River. Scientia Agricultura Sinica, 2020, 53(14): 2907-2918. doi: 10.3864/j.issn.0578-1752.2020.14.014. (in Chinese)
[19]
DANNEHL T, LEITHOLD G, BROCK C. The effect of C: N ratios on the fate of carbon from straw and green manure in soil. European Journal of Soil Science, 2017, 68(6): 988-998.
[20]
郭伟, 李丹丹, 徐基胜, 周云鹏, 王青霞, 周谈坛, 赵炳梓. 秸秆与有机无机肥配施对不同质地潮土土壤质量和小麦产量的影响. 土壤学报, 2024, 61(5): 1360-1373.
GUO W, LI D D, XU J S, ZHOU Y P, WANG Q X, ZHOU T T, ZHAO B Z. Effects of application of straw and organic-inorganic fertilizers on soil quality and wheat yield in different texture fluvo- aquic soil. Acta Pedologica Sinica, 2024, 61(5): 1360-1373. (in Chinese)
[21]
邹文秀, 韩晓增, 陆欣春, 陈旭, 严君, 宋宝辉, 杨宁, 林青华, 贺宇. 肥沃耕层构建对东北黑土区旱地土壤肥力和玉米产量的影响. 应用生态学报, 2020, 31(12): 4134-4146.

doi: 10.13287/j.1001-9332.202012.030
ZOU W X, HAN X Z, LU X C, CHEN X, YAN J, SONG B H, YANG N, LIN Q H, HE Y. Effects of the construction of fertile and cultivated upland soil layer on soil fertility and maize yield in black soil region in Northeast China. Chinese Journal of Applied Ecology, 2020, 31(12): 4134-4146. (in Chinese)
[22]
HUANG G B, CHAI Q, FENG F X, YU A Z. Effects of different tillage systems on soil properties, root growth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L.) in arid northwest China. Journal of Integrative Agriculture, 2012, 11(8): 1286-1296.
[23]
程文龙, 李敏, 王慧, 卜容燕, 韩上, 唐杉, 卢昌艾, 葛自兵, 武际. 深耕配合施用有机肥提高15—30 cm土层小麦根长密度. 植物营养与肥料学报, 2023, 29(7): 1280-1289.
CHENG W L, LI M, WANG H, BU R Y, HAN S, TANG S, LU C A, GE Z B, WU J. Deep tillage combined with organic fertilizer improves the root length density of wheat in 15-30 cm soil layer. Journal of Plant Nutrition and Fertilizers, 2023, 29(7): 1280-1289. (in Chinese)
[24]
石孝均. 水旱轮作体系中的养分循环特征[D]. 北京: 中国农业大学, 2003.
SHI X J. Characteristics of nutrient cycling in the rice-wheat rotation system[D]. Beijing: China Agricultural University, 2003. (in Chinese)
[25]
YUE Q, SHENG J, CHENG K, ZHANG Y F, GUO Z, SUN G F, WANG S C. Sustainability assessment on paddy-upland crop rotations by carbon, nitrogen and water footprint integrated analysis: A field scale investigation. Journal of Environmental Management, 2023, 339: 117879.
[26]
胡丹丹, 宋惠洁, 段英华, 吴艳, 胡志华, 徐小林, 张文菊, 何小林, 柳开楼, 苏鹏, 黄群招. 长期施肥对红壤双季稻系统氮素盈亏和土壤碱解氮的影响. 中国农业科学, 2024, 57(24): 4907-4918. doi: 10.3864/j.issn.0578-1752.2024.24.007.
HU D D, SONG H J, DUAN Y H, WU Y, HU Z H, XU X L, ZHANG W J, HE X L, LIU K L, SU P, HUANG Q Z. Effects of long-term fertilization on nitrogen surplus and deficit and soil alkali-hydrolyzed nitrogen in red soil double-cropping rice system. Scientia Agricultura Sinica, 2024, 57(24): 4907-4918. doi: 10.3864/j.issn.0578-1752.2024.24.007. (in Chinese)
[27]
LI R, TAO R, LING N, CHU G X. Chemical, organic and bio- fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil and Tillage Research, 2017, 167: 30-38.
[28]
EDMEADES D C. The long-term effects of manures and fertilizers on soil productivity and quality: A review. Nutrient Cycling in Agroecosystems, 2003, 66(2): 165-180.
[29]
徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008, 41(10): 3133-3139. doi: 10.3864/j.issn.0578-1752.2008.10.029.
XU M G, LI D C, LI J M, QIN D Z, KAZUYUKI YAGI, YASUKAZU HOSEN. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Scientia Agricultura Sinica, 2008, 41(10): 3133-3139. doi: 10.3864/j.issn.0578-1752.2008.10.029. (in Chinese)
[30]
高洪军, 彭畅, 张秀芝, 李强, 朱平. 长期不同施肥对东北黑土区玉米产量稳定性的影响. 中国农业科学, 2015, 48(23): 4790-4799. doi: 10.3864/j.issn.0578-1752.2015.23.020.
GAO H J, PENG C, ZHANG X Z, LI Q, ZHU P. Effect of long-term different fertilization on maize yield stability in the northeast black soil region. Scientia Agricultura Sinica, 2015, 48(23): 4790-4799. doi: 10.3864/j.issn.0578-1752.2015.23.020. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!