Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (15): 3051-3063.doi: 10.3864/j.issn.0578-1752.2025.15.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Conservation Tillage and Nitrogen Application Promote Soil Carbon and Nitrogen Mineralization and Improve Maize Photosynthetic Characteristics and Yield

LU YiNing(), GU XiaoBo*(), DU YaDan, LI XiaoYan, YAN TingLin, ZHAO TongTong   

  1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education/College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2024-09-30 Accepted:2024-12-30 Online:2025-08-01 Published:2025-07-30
  • Contact: GU XiaoBo

Abstract:

【Objective】 Exploring the effects of conservation tillage and nitrogen application on soil carbon and nitrogen mineralization characteristics, as well as their impact mechanisms on maize photosynthetic characteristics and yield, in order to provide a basis for improving soil fertility and promoting maize production in arid areas of Northwest China.【Method】 This study conducted a two-year (2019-2020) maize field location experiment, with traditional tillage (CT) as the control, and set up three protective tillage measures (no tillage: NT; no tillage in wheat season and rotary tillage in maize season: OT; ridge cultivation with no tillage: RNT) and two nitrogen application levels (N0: 0; N2: 170 kg N·hm-2), for a total of 6 treatments. The effects of conservation tillage and nitrogen application on soil nutrient content, carbon and nitrogen mineralization characteristics, maize photosynthetic physiological characteristics, and yield were investigated systematically. 【Result】 Conservation tillage and nitrogen application significantly increased soil nutrient content (P<0.05). Under N2 level, compared with CT treatment, NT, OT, and RNT treatments increased soil organic carbon (SOC), microbial biomass carbon (MBC), total nitrogen (TN), and microbial biomass nitrogen (MBN) content by 8.6%-24.7%, 18.9%-27.0%, 8.9%-20.2%, and 0.3%-24.9%, respectively. The application of nitrogen significantly increased the accumulation of soil carbon mineralization (Cmin), nitrogen mineralization accumulation (Nmin), and their mineralization rates. Conservation tillage further improved the soil carbon and nitrogen mineralization characteristics. Cmin and Nmin reached their maximum values under RNTN2 and OTN2 treatments, respectively, which increased by 4.0%-30.2% and 8.0%-52.4% compared with other treatments. Conservation tillage and nitrogen application significantly increased the net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) of maize leaves (P<0.05). The Pn, Tr, and Gs of maize reached their maximum values in the OTN2 treatment for two years. The yield of maize in two years showed the order of OTN2>RNTN2>NTN2>CTN2>NTN0>CTN0, with the highest yields of 10.52 and 10.91 t·hm-2, respectively, which increased by an average of 24.5% and 27.5% compared with other treatments. Based on structural equation modeling analysis, it was found that conservation tillage mainly increased soil nutrient content, promoted soil organic carbon and nitrogen mineralization, enhanced soil available nitrogen supply capacity, and thus promoted the enhancement of maize photosynthetic capacity, achieving maize yield increase. 【Conclusion】 In the arid northwest region, conservation tillage and nitrogen application were of great significance in promoting soil carbon and nitrogen mineralization, increasing maize yield, and maintaining soil productivity. It was recommended that no tillage in wheat season and rotary tillage in maize season combined with nitrogen application was the optimal management measures for increasing maize yield and efficiency.

Key words: conservation tillage, nitrogen application, organic carbon mineralization, organic nitrogen mineralization, maize, yield

Fig. 1

Daily variation chart of temperature and precipitation during the growth period of summer maize in 2019-2020"

Table 1

The influence of tillage methods and nitrogen application on soil nutrient content"

处理 Treatment 土壤有机碳 SOC (g·kg-1) 微生物量碳 MBC (mg·kg-1) 全氮 TN (g·kg-1) 微生物量氮 MBN (mg·kg-1)
CTN0 160.77b 229.77c 4.73d 44.25d
CTN2 162.83b 248.00bc 4.78d 55.29c
NTN0 169.50b 262.82b 5.08c 59.02bc
NTN2 202.98a 314.87a 5.75a 55.44c
OTN2 178.82ab 294.93a 5.20b 69.08a
RNTN2 176.82ab 312.59a 5.66a 65.62ab

Fig. 2

Soil organic carbon mineralization amount (a) and mineralization rate (b)"

Fig. 3

Soil organic nitrogen mineralization amount (a) and mineralization rate (b)"

Table 2

The influence of tillage method and nitrogen application on soil mineralization dynamics parameters"

处理 Treatment C0 (mg·kg-1) kC (d-1) T1/2 (d) R2 N0 (mg·kg-1) kN (d-1) T1/2 (d) R2
CTN0 1964.79 0.0268 25.86 0.99 36.47 0.0344 20.15 0.99
CTN2 2180.85 0.0260 26.65 0.99 39.83 0.0386 17.96 0.99
NTN0 2377.07 0.0241 28.76 0.99 38.49 0.0333 20.82 0.99
NTN2 2911.58 0.0196 35.36 0.99 47.67 0.0300 23.10 0.98
OTN2 2840.50 0.0186 37.26 0.99 57.23 0.0304 22.80 0.98
RNTN2 3538.17 0.0160 43.31 0.99 51.99 0.0325 21.33 0.99

Fig. 4

Gas exchange parameters and water use efficiency of maize leaves in 2019-2020"

Table 3

The effects of tillage methods and nitrogen application on the yield and composition of summer maize"

处理
Treatment
2019 2020
穗行数
Ear row number
行粒数
Kernels
per row
百粒重
100-grain
weigh (g)
产量
Yield
( t·hm-2)
穗行数
Ear row number
行粒数
Kernels
per row
百粒重
100-grain
weigh (g)
产量
Yield
(t·hm-2)
CTN0 8.33b 23.67c 22.69c 6.91d 14.00ab 28.56d 28.34c 6.88d
CTN2 13.33a 35.33ab 32.37b 9.64c 14.33a 35.67bc 32.12b 9.34c
NTN0 9.33b 24.78c 23.43c 6.96d 12.67b 34.67c 23.59d 6.92d
NTN2 13.33a 36.00a 33.34ab 9.81c 14.33a 37.78a 34.75a 10.60b
OTN2 14.33a 35.56a 34.29a 10.52a 14.67a 37.33a 34.90a 10.91a
RNTN2 13.67a 33.22b 32.29b 10.21b 15.33a 36.78ab 34.13a 10.70ab
T ns ** * *** ns * * ***
N *** *** *** *** * ** *** ***
T×N ns ns ns ns ns ns *** ***

Fig. 5

Structural equation model of the impact of conservation tillage on maize yield The number next to the arrow represents the normalized path coefficient (correlation coefficient). The black solid arrows represent significant positive and negative correlations (P<0.05), while dashed arrows indicate significant relationships at the edges (P<0.1). The width of the arrow represents the strength of the relationship, and the number adjacent to the arrow is the standardized path coefficient. The variance given near the variable represents the variance explained by the model (R2)"

[1]
GAO W J, MA T, SHI B W, YANG Z Y, LI Y F, ZHU J X, HE J S. Effects of nitrogen and phosphorus addition on the mineralization potential of soil organic carbon and the corresponding regulations in the Tibetan alpine grassland. Applied Soil Ecology, 2024, 196: 105314.
[2]
ZHAO S C, LI K J, ZHOU W, QIU S J, HUANG S W, HE P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agriculture, Ecosystems & Environment, 2016, 216: 82-88.
[3]
SUN L, WANG S L, ZHANG Y J, LI J, WANG X L, WANG R, LYU W, CHEN N N, WANG Q. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau, China: Effects on crop yield and soil water use. Agriculture, Ecosystems & Environment, 2018, 251: 67-77.
[4]
WANG Z T, LIU L, CHEN Q, WEN X X, LIU Y, HAN J, LIAO Y C. Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agronomy for Sustainable Development, 2017, 37(5): 44.
[5]
MO F, ZHANG Y Y, LI T, WANG Z T, YU K L, WEN X X, XIONG Y C, JIA Z K, LIAO Y C. Fate of photosynthesized carbon as regulated by long-term tillage management in a dryland wheat cropping system. Soil Biology and Biochemistry, 2019, 138: 107581.
[6]
段晨骁, 李佳蓓, 吴淑芳, 冯浩. 有机无机肥配施对西北地区不同土壤类型氮素矿化影响. 农业机械学报, 2024, 55(5): 344-355.
DUAN C X, LI J B, WU S F, FENG H. Effects of combined application of organic and inorganic fertilizers on nitrogen mineralization in different soil types in Northwest China. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(5): 344-355. (in Chinese)
[7]
聂浩亮, 杨军芳, 杨云马, 黄少辉, 张静, 王敬霞, 杨慧敏, 杨文方, 邢素丽, 贾良良. 长期秸秆深翻还田及养分管理对潮土有机碳矿化影响. 农业工程学报, 2024, 40(18): 70-80.
NIE H L, YANG J F, YANG Y M, HUANG S H, ZHANG J, WANG J X, YANG W F, XING S L, JIA L L. Effects of long-term deep tillage, straw returning and nutrient management on organic carbon mineralization of fluvo-aquic soil. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(18): 70-80. (in Chinese)
[8]
王慧, 刘金山, 惠晓丽, 戴健, 王朝辉. 旱地土壤有机碳氮和供氮能力对长期不同氮肥用量的响应. 中国农业科学, 2016, 49(15): 2988-2998.doi: 10.3864/j.issn.0578-1752.2016.15.013.
WANG H, LIU J S, HUI X L, DAI J, WANG Z H. Responses of soil organic carbon, organic nitrogen and nitrogen supply capacity to long-term nitrogen fertilization practices in dryland soil. Scientia Agricultura Sinica, 2016, 49(15): 2988-2998. doi: 10.3864/j.issn.0578-1752.2016.15.013. (in Chinese)
[9]
YUAN X B, NIU D C, GUO D, FU H. Responses of soil carbon and nitrogen mineralization to nitrogen addition in a semiarid grassland: The role of season. Catena, 2023, 220: 106719.
[10]
HENDRICKS S, ZECHMEISTER-BOLTENSTERN S, KANDELER E, SANDÉN T, DIAZ-PINES E, SCHNECKER J, ALBER O, MILOCZKI J, SPIEGEL H. Agricultural management affects active carbon and nitrogen mineralisation potential in soils. Journal of Plant Nutrition and Soil Science, 2022, 185(4): 513-528.
[11]
范如芹, 梁爱珍, 杨学明, 张晓平, 申艳, 时秀焕. 耕作方式对黑土团聚体含量及特征的影响. 中国农业科学, 2010, 43(18): 3767-3775. doi: 10.3864/j.issn.0578-1752.2010.18.010.
FAN R Q, LIANG A Z, YANG X M, ZHANG X P, SHEN Y, SHI X H. Effects of tillage on soil aggregates in black soils in Northeast China. Scientia Agricultura Sinica, 2010, 43(18): 3767-3775. doi: 10.3864/j.issn.0578-1752.2010.18.010. (in Chinese)
[12]
张鑫磊, 杨镇, 李旸, 谢晓金, 张耀鸿. 夜间增温条件下免耕对土壤碳矿化的影响. 江苏农业学报, 2018, 34(3): 540-545.
ZHANG X L, YANG Z, LI Y, XIE X J, ZHANG Y H. Effects of no-tillage on soil carbon mineralization under nighttime warming. Jiangsu Journal of Agricultural Sciences, 2018, 34(3): 540-545. (in Chinese)
[13]
BENBI D K, CHAND M. Quantifying the effect of soil organic matter on indigenous soil N supply and wheat productivity in semiarid sub-tropical India. Nutrient Cycling in Agroecosystems, 2007, 79(2): 103-112.
[14]
TIAN Q X, WANG X G, WANG D Y, WANG M, LIAO C, YANG X L, LIU F. Decoupled linkage between soil carbon and nitrogen mineralization among soil depths in a subtropical mixed forest. Soil Biology and Biochemistry, 2017, 109: 135-144.
[15]
王真, 孙军, 杜娅丹, 孙丹, 甘海成, 牛文全. 覆盖措施对土壤碳氮及夏玉米产量和水氮利用的影响. 中国生态农业学报(中英文), 2022, 30(6): 913-923.
WANG Z, SUN J, DU Y D, SUN D, GAN H C, NIU W Q. Effects of mulching practices on soil carbon, nitrogen contents, and grain yield, water and nitrogen use efficiencies of summer maize. Chinese Journal of Eco-Agriculture, 2022, 30(6): 913-923. (in Chinese)
[16]
PITTELKOW C M, LIANG X Q, LINQUIST B A, VAN GROENIGEN K J, LEE J, LUNDY M E, VAN GESTEL N, SIX J, VENTEREA R T, VAN KESSEL C. Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015, 517: 365-368.
[17]
李平, 郎漫, 魏玮. 不同施氮量对林地和农田黑土净氮转化速率的影响. 土壤通报, 2020, 51(3): 694-701.
LI P, LANG M, WEI W. Effects of nitrogen application amounts on net nitrogen transformation rates in forest and agricultural black soils. Chinese Journal of Soil Science, 2020, 51(3): 694-701. (in Chinese)
[18]
AHMED W, ASHRAF M N, SANAULLAH M, MAQSOOD M A, WAQAS M A, RAHMAN S U, HUSSAIN S, AHMAD H R, MUSTAFA A, XU M G. Soil organic carbon and nitrogen mineralization potential of manures regulated by soil microbial activities in contrasting soil textures. Journal of Soil Science and Plant Nutrition, 2024, 24(2): 3056-3067.
[19]
ANLAR O, KISLI M, TOMBUL T, OZBERK H. Chronic nitrogen additions at the Harvard Forest (USA): The first 15 years of a nitrogen saturation experiment. International Journal of Neuroscience, 2003, 113(4): 483-489.
[20]
熊伟仡, 徐开未, 刘明鹏, 肖华, 裴丽珍, 彭丹丹, 陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响. 中国农业科学, 2022, 55(9): 1735-1748. doi: 10.3864/j.issn.0578-1752.2022.09.004.
XIONG W Y, XU K W, LIU M P, XIAO H, PEI L Z, PENG D D, CHEN Y X. Effects of different nitrogen application levels on photosynthetic characteristics, nitrogen use efficiency and yield of spring maize in Sichuan Province. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748. doi: 10.3864/j.issn.0578-1752.2022.09.004. (in Chinese)
[21]
张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响. 中国农业科学, 2022, 55(3): 479-490. doi:10.3864/j.issn.0578-1752.2022.03.005.
ZHANG J J, PARTY Y, ZHAO G, WANG L, FAN T L, LI S Z. Influences of mulching periods and nitrogen application rates on maize yield as well as water and nitrogen use efficiencies in loess plateau of Eastern Gansu Province. Scientia Agricultura Sinica, 2022, 55(3): 479-490. doi:10.3864/j.issn.0578-1752.2022.03.005. (in Chinese)
[22]
赵政鑫, 王晓云, 田雅洁, 王锐, 彭青, 蔡焕杰. 基于DNDC的夏玉米农田控氨稳产氮肥和秸秆措施优化. 农业机械学报, 2023, 54(2): 341-350.
ZHAO Z X, WANG X Y, TIAN Y J, WANG R, PENG Q, CAI H J. Optimization of nitrogen fertilizer and straw measures to control ammonia and stabilize nitrogen yield in summer maize farmland based on DNDC model. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 341-350. (in Chinese)
[23]
赵政鑫, 王晓云, 李府阳, 王锐, 田雅洁, 蔡焕杰. 秸秆还田配施稳定性氮肥对麦玉轮作水氮利用的影响. 农业机械学报, 2023, 54(6): 350-360.
ZHAO Z X, WANG X Y, LI F Y, WANG R, TIAN Y J, CAI H J. Effects of straw returning and application of stable nitrogen fertilizer on water and nitrogen use efficiencies of wheat maize rotation. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 350-360. (in Chinese)
[24]
YANG X L, LU Y L, DING Y, YIN X F, RAZA S, TONG Y A. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014). Field Crops Research, 2017, 206: 1-10.
[25]
STANFORD G, SMITH S J. Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 1972, 36(3): 465-472.
[26]
曹寒冰, 谢钧宇, 刘菲, 高健永, 王楚涵, 王仁杰, 谢英荷, 李廷亮. 地膜覆盖麦田土壤有机碳矿化特征及其温度敏感性. 中国农业科学, 2021, 54(21): 4611-4622. doi: 10.3864/j.issn.0578-1752.2021.21.011.
CAO H B, XIE J Y, LIU F, GAO J Y, WANG C H, WANG R J, XIE Y H, LI T L. Mineralization characteristics of soil organic carbon and its temperature sensitivity in wheat field under film mulching. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622. doi: 10.3864/j.issn.0578-1752.2021.21.011. (in Chinese)
[27]
LIU M H, LIN H Y, LI J M. Are there links between nutrient inputs and the response of microbial carbon use efficiency or soil organic carbon A meta-analysis. Soil Biology and Biochemistry, 2025, 201: 109656.
[28]
董秀, 张燕, MUNYAMPIRWA Tito, 陶海宁, 沈禹颖. 长期保护性耕作对黄土高原旱作农田土壤碳含量及转化酶活性的影响. 中国农业科学, 2023, 56(5): 907-919. doi: 10.3864/j.issn.0578-1752.2023.05.008.
DONG X, ZHANG Y, MUNYAMPIRWA T, TAO H N, SHEN Y Y. Effects of long-term conservation tillage on soil carbon content and invertase activity in dry farmland on the Loess Plateau. Scientia Agricultura Sinica, 2023, 56(5): 907-919. doi: 10.3864/j.issn.0578-1752.2023.05.008. (in Chinese)
[29]
LI Y, LI Z, CUI S, LIANG G P, ZHANG Q P. Microbial-derived carbon components are critical for enhancing soil organic carbon in no-tillage croplands: A global perspective. Soil and Tillage Research, 2021, 205: 104758.
[30]
陈晓芬, 刘明, 江春玉, 吴萌, 李忠佩. 不同施肥处理红壤性水稻土团聚体有机碳矿化特征. 中国农业科学, 2018, 51(17): 3325-3334. doi: 10.3864/j.issn.0578-1752.2018.17.008.
CHEN X F, LIU M, JIANG C Y, WU M, LI Z P. Organic carbon mineralization in aggregate fractions of red paddy soil under different fertilization treatments. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334. doi: 10.3864/j.issn.0578-1752.2018.17.008. (in Chinese)
[31]
熊又升, 徐祥玉, 张志毅, 王娟, 袁家富, 刘光荣, 徐昌旭, 毛创业. 垄作免耕影响冷浸田水稻产量及土壤温度和团聚体分布. 农业工程学报, 2014, 30(15): 157-164.
XIONG Y S, XU X Y, ZHANG Z Y, WANG J, YUAN J F, LIU G R, XU C X, MAO C Y. Influences of combing ridge and no-tillage on rice yield and soil temperature and distribution of aggregate in cold waterlogged field. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(15): 157-164. (in Chinese)
[32]
JACOBS A A, EVANS R S, ALLISON J K, GARNER E R, KINGERY W L, MCCULLEY R L. Cover crops and no-tillage reduce crop production costs and soil loss, compensating for lack of short-term soil quality improvement in a maize and soybean production system. Soil and Tillage Research, 2022, 218: 105310.
[33]
李文军, 杨奇勇, 杨基峰, 肖烨, 黄志刚, 彭保发. 长期施肥下洞庭湖水稻土氮素矿化及其温度敏感性研究. 农业机械学报, 2017, 48(11): 261-270.
LI W J, YANG Q Y, YANG J F, XIAO Y, HUANG Z G, PENG B F. Nitrogen mineralization and associated temperature sensitivity in paddy soils in Dongting Lake region of China under long-term fertilization. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 261-270. (in Chinese)
[34]
CHENG Y, WANG J, CHANG S X, CAI Z C, MÜLLER C, ZHANG J B. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review. Environmental Pollution, 2019, 244: 608-616.

doi: S0269-7491(18)30982-5 pmid: 30384066
[35]
KAN Z R, MA S T, LIU Q Y, LIU B Y, VIRK A L, QI J Y, ZHAO X, LAL R, ZHANG H L. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain. CATENA, 2020, 188: 104428.
[36]
王威雁, 沈鹏飞, 张侯平, 莫非, 温晓霞, 廖允成. 长期保护性耕作下土壤团聚体全氮与氮功能微生物关系研究. 土壤学报, 2024, 61(6): 1653-1667.
WANG W Y, SHEN P F, ZHANG H P, MO F, WEN X X, LIAO Y C. Study on the relationship between total nitrogen and nitrogen functional microorganisms in soil aggregates under long-term conservation tillage. Acta Pedologica Sinica, 2024, 61(6): 1653-1667. (in Chinese)
[37]
MIKHA M M, RICE C W, BENJAMIN J G. Estimating soil mineralizable nitrogen under different management practices. Soil Science Society of America Journal, 2006, 70(5): 1522-1531.
[38]
王彬, 王玉波, 佟桐, 刘笑鸣, 赵猛, 李彩凤. 不同施氮模式对玉米光合特性和氮代谢关键酶的影响. 玉米科学, 2020, 28(2): 135-142.
WANG B, WANG Y B, TONG T, LIU X M, ZHAO M, LI C F. Effects of different nitrogen application patterns on photosynthetic characteristics and key enzymes of nitrogen metabolism in maize. Journal of Maize Sciences, 2020, 28(2): 135-142. (in Chinese)
[39]
MOMEN A L, KOOCHEKI A, MAHALLATI M N. Analysis of the variations in dry matter yield and resource use efficiency of maize under different rates of nitrogen, phosphorous and water supply. Journal of Plant Nutrition, 2020, 43(9): 1306-1319.
[40]
王嘉男, 李玲玲, 谢军红, 王林林, 郭喜军, 康彩睿, 刘畅, ZECHARIAH Effah, 王进斌. 半干旱区保护性耕作对旱作春小麦光合特性和产量形成的影响. 麦类作物学报, 2020, 40(12): 1493-1500.
WANG J N, LI L L, XIE J H, WANG L L, GUO X J, KANG C R, LIU C, ZECHARIAH E, WANG J B. Effects of conservation tillage on photosynthesis and yield formation of rain-fed spring wheat in semi-arid areas. Journal of Triticeae Crops, 2020, 40(12): 1493-1500. (in Chinese)
[41]
PENG Z K, WANG L L, XIE J H, LI L L, COULTER J A, ZHANG R Z, LUO Z Z, CAI L Q, CARBERRY P, WHITBREAD A. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agricultural Water Management, 2020, 231: 106024.
[42]
YANG Y L, BAO X L, XIE H T, HE H B, ZHANG X D, SHAO P S, ZHU X F, JIANG Y J, LIANG C. Frequent stover mulching builds healthy soil and sustainable agriculture in Mollisols. Agriculture, Ecosystems & Environment, 2022, 326: 107815.
[43]
李友军, 吴金芝, 黄明, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对小麦旗叶光合特性和水分利用效率的影响. 农业工程学报, 2006, 22(12): 44-48.
LI Y J, WU J Z, HUANG M, YAO Y Q, ZHANG C J, CAI D X, JIN K. Effects of different tillage systems on photosynthesis characteristics of flag leaf and water use efficiency in winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(12): 44-48. (in Chinese)
[44]
刘鹏, 董树亭, 李少昆, 张吉旺. 高产玉米氮素高效利用. 中国农业科学, 2017, 50(12): 2232-2237. doi: 10.3864/j.issn.0578-1752.2017.12.004.
LIU P, DONG S T, LI S K, ZHANG J W. High nitrogen use efficiency of high-yielding maize. Scientia Agricultura Sinica, 2017, 50(12): 2232-2237. doi: 10.3864/j.issn.0578-1752.2017.12.004. (in Chinese)
[45]
LU F, HU P P, LIN M L, YE X, CHEN L S, HUANG Z R. Photosynthetic characteristics and chloroplast ultrastructure responses of Citrus leaves to copper toxicity induced by Bordeaux mixture in greenhouse. International Journal of Molecular Sciences, 2022, 23(17): 9835.
[46]
李佳蓓, 张富仓, 段晨骁, ABDELGHANY Ahmed Elsayed, 杨玲, 李志军. 氮肥溶液磁化灌溉下土壤入渗特征和水氮迁移规律研究. 农业机械学报, 2022, 53(7): 316-324.
LI J B, ZHANG F C, DUAN C X, ABDELGHANY A E, YANG L, LI Z J. Characteristics of soil infiltration and water and nitrogen transport under irrigation with magnetized nitrogen fertilizer solution. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 316-324. (in Chinese)
[47]
WANG Q, LI H, HE J. Effect of ridge culture and no-tillage on soil moisture and maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28: 146-150.
[48]
周瑜, 苏旺, 王舰, 屈洋, 高小丽, 杨璞, 冯佰利. 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响. 作物学报, 2016, 42(6): 873-885.
ZHOU Y, SU W, WANG J, QU Y, GAO X L, YANG P, FENG B L. Effects of mulching and nitrogen application on photosynthetic characteristics and yield traits in broomcorn millet. Acta Agronomica Sinica, 2016, 42(6): 873-885. (in Chinese)
[49]
魏欢欢, 王仕稳, 杨文稼, 孙海妮, 殷俐娜, 邓西平. 免耕及深松耕对黄土高原地区春玉米和冬小麦产量及水分利用效率影响的整合分析. 中国农业科学, 2017, 50(3): 461-473. doi: 10.3864/j.issn.0578-1752.2017.03.005.
WEI H H, WANG S W, YANG W J, SUN H N, YIN L N, DENG X P. Meta analysis on impact of No-tillage and subsoiling tillage on spring maize and winter wheat yield and water use efficiency on the Loess Plateau. Scientia Agricultura Sinica, 2017, 50(3): 461-473. doi: 10.3864/j.issn.0578-1752.2017.03.005. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[10] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[11] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[12] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[13] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[14] ZHAO TongTong, GU XiaoBo, TAN ChuanDong, YAN TingLin, LI XiaoYan, CHANG Tian, DU YaDan. Effects of Water-Nitrogen Coupling on the Mineralization of Organic Carbon and Nitrogen for Mulched Farmland Soils in the Arid Regions of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(5): 929-942.
[15] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!