Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (18): 3571-3582.doi: 10.3864/j.issn.0578-1752.2025.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Breeding of a New Heat-Tolerance Fragrant Rice Germplasm ZY532 Using Sanming Dominant Genic Male Sterile Rice

QIU DongFeng1,2(), LIU Gang2, LIU ChunPing3, XIA KuaiFei4, WANG TingBao1,2, WU Yan2, HE Yong1, HUANG XianBo5, ZHANG ZaiJun2(), YOU AiQing2(), TIAN ZhiHong1()   

  1. 1 College of Life Science, Yangtze University/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, Hubei
    2 Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm Innovation and Genetic Improvement, Wuhan 430064
    3 Xiangyang Agricultural Technology Extension Center, Xiangyang 421000, Hubei
    4 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
    5 Sanming Academy of Agricultural Sciences, Sanming 365051, Fujian
  • Received:2025-03-18 Accepted:2025-05-16 Online:2025-09-18 Published:2025-09-18
  • Contact: ZHANG ZaiJun, YOU AiQing, TIAN ZhiHong

Abstract:

【Objective】To meet the increasing food demand driven by population growth and environmental changes, it is necessary to continuously cultivate varieties with high yield, good quality, and multiple resistances. Efficiently create new germplasm with rich genetic backgrounds and genetic diversity to provide a reference for breeding new varieties that balance multiple excellent traits. 【Method】The Sanming dominant genic male sterile material was used to simplify the hybridization procedure. It was hybridized with multiple parents with distant geographical relationships to aggregate multiple excellent traits. Aiming at problems such as a narrow genetic basis and the difficulty of applying molecular markers, S221 was successively and continuously hybridized with materials such as 09598, Ezhong 5, Yuanfengzhan, Yunxiangruan, etc. Fertile plants were selected from the offspring of the last hybridization. The new variety was cultivated by combining the pedigree method with heat-tolerance analysis, rice quality analysis, and resistance screening. The DNA of 60 selected single plants from the F10 series of lines and 4 parents was extracted. Primers for the target sites were designed. The target DNA fragments were captured by PCR and sequenced. Finally, the genotyping analysis of the target sites was carried out. The SLYm1R high-density rice whole-genome SNP chip was used for the analysis of functional genes. 【Result】Genotype analysis is carried out to analyze the degree of genetic relationship or similarity based on the magnitude of the base substitution rate. The parental materials Ezhong 5 and Yunxiangruan have a relatively distant relationship with other parental materials, while 09598 has a relatively close relationship with Yuanfengzhan. The base substitution rates among the three newly obtained lines are as follows: 0.0099545 (170531-170532), 0.0338213 (170531-170533), and0.0371913 (170532-170533). Within each line, the base substitution rate is 0, indicating that there are differences among the three lines, but there is no genetic difference within each line. Through successive generations and expansion propagation, new germplasms were formed, which were named ZY531, ZY532, and ZY533 respectively. The results of functional gene analysis show that the functional genes of the ZY532 series of germplasms are respectively derived from 4 parents, aggregating excellent genes from multiple parents. For example, the Os-MOT1;1 gene is derived from Yunxiangruan, which can reduce abiotic stresses such as molybdenum accumulation; the Bph3 gene is derived from 09598 and Ezhong 5, which can enhance the resistance to brown planthoppers; the OsGSK2 gene is derived from 09598, Yuanfengzhan, and Yunxiangruan, which can increase the length of the mesocotyl and is suitable for direct seeding; the Badh2 gene is derived from Yunxiangruan, making the rice fragrant; multiple blast resistance genes are derived from different parents and can also be aggregated into the innovative resources, enabling it to obtain good blast resistance. ZY532 has excellent rice quality, good blast resistance, and strong heat resistance. ZY532 also has good heat resistance, and the heat resistance of the hybrid combination prepared reaches level 3. 【Conclusion】When using dominant genic male sterility to cultivate new varieties, due to the complex genetic background, the breeding cycle is often long. Combining high-throughput SNP marker detection can quickly screen out stable lines and more types, which not only broadens the genetic basis but also improves the breeding efficiency. It is an efficient breeding method.

Key words: rice, Sanming dominant genic male sterility, germplasm innovation, gene pyramiding, heat-tolerance

Table 1

The main characteristics and sources of the materials"

序号
Number
材料名称
Material name
特征
Characteristics
来源地
Source
1 S221 三明显性核不育 Sanming dominant genic male sterility 福建三明 Sanming, Fujian
2 09598 抗稻瘟病、耐高温 Resistant to rice blast and tolerant to high temperature 广东广州 Guangzhou, Guangdong
3 鄂中5号 Ezhong 5 hao 优质、耐高温 High quality and tolerant to high temperature 湖北武汉 Wuhan, Hubei
4 源丰占 Yuanfengzhan 优质 High quality 广东广州 Guangzhou, Guangdong
5 云香软 Yunxiangruan 优质有香味 High quality and fragrant 云南昆明 Kunming, Yunnan
6 R203 耐高温 Tolerant to high temperature 湖北武汉 Wuhan, Hubei

Fig. 1

The breeding process of new germplasm"

Fig. 2

Phylogenetic tree among plants of new germplasm and their parents The phylogenetic tree is drawn to scale, with the sum of branch length 0.44284212 is shown, and the branch lengths units are the number of base substitutions per site. The numbers on the chart are different individual plant numbers, composed of three parts (number-2017 number-2018 number)"

Table 2

The detection results of functional genes of ZY531, ZY532, ZY533 and their parents"

序号
Number
类别
Category
染色体
Chr.
基因
Gene
Alt_Allele功能
Alt_Allele_function
ZY531 ZY532 ZY533 09598 鄂中5号
Ezhong 5
源丰占
Yuanfengzhan
云香软
Yunxiangruan
1 非生物胁迫
Abiotic stress
4 BET1 硼毒耐性增加
Increasing boron-toxicity tolerance
2 9 bZIP73 降低耐寒性
Decreasing chilling tolerance
3 11 HAN1 降低耐寒性
Decreasing chilling tolerance
4 8 Os-MOT1;1 减少钼积累
Decreasing molybdenum accumulation
5 生物胁迫
Biotic stress
4 Bph3 增强褐飞虱的抗性Increasing brown planthopper resistance
6 11 LHCB5 增强稻瘟病抗性
Increasing blast resistance
7 6 Pi2 抗稻瘟病
Resistance to rice blast
PC PC
8 9 Pi5 抗稻瘟病
Resistance to rice blast
9 11 Pia 抗稻瘟病
Resistance to rice blast
10 6 Pid2 抗稻瘟病
Resistance to rice blast
11 6 Pid3 抗稻瘟病
Resistance to rice blast
12 12 Pita 抗稻瘟病
Resistance to rice blast
13 11 Xa26/Xa3 增强白叶枯病抗性
Increasing blight resistance
14 抽穗期
Heading date
2 DTH2/Hd7 长日照条件,抽穗期延迟
Delaying heading date under LD
15 6 Hd1 长光照条件,抽穗期提前
Promoting heading date under LD
16 6 Hd17/Hd3b 抽穗期延迟
Delaying heading date
17 1 HESO1/
OsHESO1
延迟抽穗
Later days to headings
18 2 OsCOL4 抽穗期提前
Promoting heading date
N N N
19 3 OsMADS50/
Hd9/OsSOC1/
DTH3
抽穗期延迟
Delaying heading date
20 1 OsMADS51 抽穗期延迟
Delaying heading date
21 株型
Plant architecture
5 OsGSK2 中胚轴长度增大
Increasing mesocotyl length
22 粒型
Seed morphology
3 GS3 长粒
Large grain (loss-of-function)
23 1 qSH1 落粒Seed shattering
24 5 qSW5/GW5 增加粒宽
Enhancing grain width
25 品质
Taste quality
6 ALK 增加了中长型支链淀粉的含量,糊化温度升高
High gelatinization temperature
26 8 Badh2 香味Fragrance
27 产量构成
Yield components
7 GE/CYP78A13/
BG2
增加籽粒大小
Increasing grain size
28 1 Gn1a/
OsCKX2
穗粒数增加
Increasing grain number
N
29 3 GNP1 穗粒数以及株高增加
Increasing grain number and plant height
30 5 GS5 粒宽减小
Decreasing grain width
31 8 GW8/
OsSPL16
增加粒宽
Increasing grain width
32 4 LSCHL4 增加千粒重
Increasing 1000-grain weight
N
33 1 NOG1 穗粒数增加
Increasing grain number
34 5 PTB1 提高结实率
Increasing setting rate
35 其他
Others
10 NRT1.1B 提高氮利用效率
Higher nitrogen use efficiency
36 1 OsPME1 提高羟甲基茉莉酸含量
More MeOH-Jasmonates
37 2 OsTSD2 提高羟甲基茉莉酸含量
More MeOH-Jasmonates
38 1 psr1 提高再生能力
Increasing regeneration ability

Fig. 3

The plant leaf morphology of ZY531, ZY532 and ZY533 at the mature stage"

Table 3

Differences in some characters of ZY531, ZY532 and ZY533"

种质名称
Germplasm name
全生育期
Entire growth period (d)
每穗粒数
Number of grains per panicle
结实率
Seed setting rate (%)
千粒重
Thousand grain weight (g)
长/宽
Length/width
ZY531 137 194.9 75.3 19.7 3.2
ZY532 132 162.0 78.3 21.0 3.3
ZY533 138 200.1 79.2 18.5 3.2

Table 4

Detection of 2-AP content in polished rice"

品种 Varieties 样品类型 Sample type 2-AP含量 2-AP content (μg·kg-1)
ZY532 精米 Polished rice 3858.17
美香占2号(对照)Meixiangzhan 2 (CK) 精米 Polished rice 749.31

Table 5

Results of the identification of blast resistance of ZY532 in the regional trial"

试验
年份
Test
year
试验组别
Test group
红庙病圃
Disease nursery at Hongmiao
两河病圃
Disease nursery at Lianghe
望家病圃
Disease nursery at Wangjia
咸丰病圃
Disease nursery at Xianfeng
抗性
指数
Resistance index
损失最
高病级
Highest loss level
抗性评价
Resistance evaluation
叶瘟
Leaf
blast
穗瘟
Panicle
blast
穗瘟损失
Loss of
panicle blast
综合指数
Comprehensive index
叶瘟
Leaf blast
穗瘟
Panicle blast
穗瘟
损失
Loss of
panicle blast
综合指数
Comprehensive index
叶瘟
Leaf blast
穗瘟
Panicle blast
穗瘟
损失
Loss of
panicle blast
综合指数
Comprehensive index
叶瘟
Leaf blast
穗瘟
Panicle blast
穗瘟
损失
Loss of panicle blast
综合指数
Comprehensive index
2020 湖北省中籼品比试验
The mid-season indica rice variety comparison trial in Hubei Province
2.0 3.0 1.0 1.8 2.0 5.0 3.0 3.3 5.0 3.0 3.0 3.5 2.9 3.0 中抗
MR
2024 湖北省恩施州迟熟试验
The late-maturing trial in Enshi Prefecture, Hubei Province
4.0 5.0 1.0 2.8 5.0 7.0 3.0 4.5 2.0 3.0 1.0 1.8 3.0 3.0 中抗
MR

Table 6

Evaluation of the heat resistance of ZY532"

试验地点
Test site
试验年份
Test year
品种
Variety
始穗期
Initial heading stage (M/D)
齐穗期
Full heading stage
(M/D)
穗期平均气温
Mean air temperature at heading stage (℃)
结实率
Seed setting rate
(%)
相对结实率
Relative seed setting rate (%)
海南陵水
Lingshui, Hainan
2022年春季 Spring 2022 R203 3/15 3/20 27.0 85.32
2022年春季 Spring 2022 ZY532 3/10 3/16 25.9 91.15
湖北武汉
Wuhan, Hubei
2022年夏季 Summer 2022 R203 8/6 8/11 33.3 77.41 90.73a
2022年夏季 Summer 2022 ZY532 8/15 8/20 34.0 81.89 89.84a
2024年夏季 Summer 2024 R203 8/10 8/15 31.4 76.74 89.94a
2024年夏季 Summer 2024 ZY532 8/12 8/17 31.0 78.73 86.37a
[1]
黎舒佳, 高谨, 李家洋, 王永红. 独脚金内酯调控水稻分蘖的研究进展. 植物学报, 2015, 50(5): 539-548.

doi: 10.11983/CBB15076
LI S J, GAO J, LI J Y, WANG Y H. Advances in regulating rice tillers by strigolactones. Chinese Bulletin of Botany, 2015, 50(5): 539-548. (in Chinese)
[2]
邓宏中, 王彩红, 徐群, 袁筱萍, 冯跃, 余汉勇, 王一平, 魏兴华. 中国水稻地方品种与选育品种的遗传多样性比较分析. 植物遗传资源学报, 2015, 16(3): 433-442.

doi: 10.13430/j.cnki.jpgr.2015.03.001
DENG H Z, WANG C H, XU Q, YUAN X P, FENG Y, YU H Y, WANG Y P, WEI X H. Comparative analysis of genetic diversity in Landrace and improved rice varieties in China. Journal of Plant Genetic Resources, 2015, 16(3): 433-442. (in Chinese)
[3]
简六梅, 肖英杰, 严建兵. 从头驯化: 作物品种设计与培育的新方向. 遗传, 2023, 45(9): 741-753.
JIAN L M, XIAO Y J, YAN J B. De novo domestication: A new way for crop design and breeding. Hereditas (Beijing), 2023, 45(9): 741-753. (in Chinese)
[4]
张学勇, 马琳, 郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43(2): 157-170.
ZHANG X Y, MA L, ZHENG J. Characteristics of genes selected by domestication and intensive breeding in crop plants. Acta Agronomica Sinica, 2017, 43(2): 157-170. (in Chinese)
[5]
WAN X Y, WU S W, LI X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era. Molecular Plant, 2021, 14(4): 531-534.
[6]
黄显波, 田志宏, 邓则勤, 郑家团, 林成豹, 唐江霞. 水稻三明显性核不育基因的初步鉴定. 作物学报, 2008, 34(10): 1865-1868.

doi: 10.3724/SP.J.1006.2008.01865
HUANG X B, TIAN Z H, DENG Z Q, ZHENG J T, LIN C B, TANG J X. Preliminary identification of a novel Sanming dominant male sterile gene in rice (Oryza sativa L.). Acta Agronomica Sinica, 2008, 34(10): 1865-1868. (in Chinese)
[7]
杨泽茂, 谢小芳, 黄显波, 王丰青, 童治军, 段远霖, 兰涛, 吴为人. 水稻“三明” 显性核不育基因的定位. 遗传, 2012, 34(5): 615-620.
YANG Z M, XIE X F, HUANG X B, WANG F Q, TONG Z J, DUAN Y L, LAN T, WU W R. Mapping of Sanming dominant genic male sterility gene in rice. Hereditas, 2012, 34(5): 615-620. (in Chinese)
[8]
YANG Y C, ZHANG C, LI H, YANG Z Y, XU Z T, TAI D W, NI D H, WEI P C, YI C X, YANG J B, DING Y. An epi-allele of SMS causes Sanming dominant genic male sterility in rice. Science China Life Sciences, 2023, 66(12): 2701-2710.
[9]
XU C H, XU Y F, WANG Z J, ZHANG X Y, WU Y Y, LU X Y, SUN H W, WANG L, ZHANG Q L, ZHANG Q H, et al. Spontaneous movement of a retrotransposon generated genic dominant male sterility providing a useful tool for rice breeding. National Science Review, 2023, 10(9): nwad210.
[10]
张安宁, 王飞名, 罗星星, 刘毅, 张分云, 刘国兰, 余新桥, 罗利军. 节水抗旱稻显性核不育轮回选择群体构建与种质创新. 上海农业学报, 2022, 38(4): 91-95.
ZHANG A N, WANG F M, LUO X X, LIU Y, ZHANG F Y, LIU G L, YU X Q, LUO L J. Germplasm enhancement of water-saving and drought-resistance rice based on recurrent selection facilitated by dominant nucleus male sterility. Acta Agriculturae Shanghai, 2022, 38(4): 91-95. (in Chinese)
[11]
邓则勤, 黄显波, 林成豹, 唐江霞, 叶仰东, 苏荣理, 梁水金. 以三明显性核不育系转导稻瘟病抗性基因Pi9改良恢复系的效果. 福建农业学报, 2020, 35(1): 6-12.
DENG Z Q, HUANG X B, LIN C B, TANG J X, YE Y D, SU R L, LIANG S J. Improvement of disease-resistance of restorer rice lines by transducing genes Pi9 onto Sanming dominant male sterile lines. Fujian Journal of Agricultural Sciences, 2020, 35(1): 6-12. (in Chinese)
[12]
刘进, 胡佳晓, 马小定, 陈武, 勒思, Jo Sumin, 崔迪, 周慧颖, 张立娜, Shin Dongjin, 黎毛毛, 韩龙植, 余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位. 中国农业科学, 2022, 55(22): 4327-4341. doi: 10.3864/j.issn.0578-1752.2022.22.001.
LIU J, HU J X, MA X D, CHEN W, LE S, SUMIN J, CUI D, ZHOU H Y, ZHANG L N, DONGJIN S, LI M M, HAN L Z, YU L Q. Construction of high density genetic map for RIL population and QTL analysis of heat tolerance at seedling stage in rice (Oryza sativa L.). Scientia Agricultura Sinica, 2022, 55(22): 4327-4341. doi: 10.3864/ j.issn.0578-1752.2022.22.001. (in Chinese)
[13]
YE C R, TENORIO F A, REDOÑA E D, MORALES-CORTEZANO P S, CABREGA G A, JAGADISH K S V, GREGORIO G B. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theoretical and Applied Genetics, 2015, 128(8): 1507-1517.

doi: 10.1007/s00122-015-2526-9 pmid: 25957114
[14]
PS S, SV A M, PRAKASH C, MK R, TIWARI R, MOHAPATRA T, SINGH N K. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice, 2017, 10(1): 28.

doi: 10.1186/s12284-017-0167-0 pmid: 28584974
[15]
张昌泉, 陈飞, 洪燃, 李钱峰, 顾铭洪, 刘巧泉. 利用染色体片段代换系定位水稻抽穗开花期耐热性QTL. 江苏农业科学, 2016, 44(12): 120-123.
ZHANG C Q, CHEN F, HONG R, LI Q F, GU M H, LIU Q Q. Mapping QTL for heat tolerance at heading and flowering stage of rice by chromosome fragment substitution lines. Jiangsu Agricultural Sciences, 2016, 44(12): 120-123. (in Chinese)
[16]
赵志刚, 江玲, 肖应辉, 张文伟, 翟虎渠, 万建民. 水稻孕穗期耐热性QTLs分析. 作物学报, 2006, 32(5): 640-644.
ZHAO Z G, JIANG L, XIAO Y H, ZHANG W W, ZHAI H Q, WAN J M. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agronomica Sinica, 2006, 32(5): 640-644. (in Chinese)
[17]
KILASI N L, SINGH J, VALLEJOS C E, YE C R, JAGADISH S V K, KUSOLWA P, RATHINASABAPATHI B. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 2018, 9: 1578.
[18]
LEI D Y, TAN L B, LIU F X, CHEN L Y, SUN C Q. Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.). Plant Science, 2013, 201: 121-127.
[19]
LI M M, LI X, YU L Q, WU J W, LI H, LIU J, MA X D, JO S M, PARK D S, SONG Y C, SHIN D, HAN L Z. Identification of QTLs associated with heat tolerance at the heading and flowering stage in rice (Oryza sativa L.). Euphytica, 2018, 214(4): 70.
[20]
POLI Y, BASAVA R K, PANIGRAHY M, VINUKONDA V P, DOKULA N R, VOLETI S R, DESIRAJU S, NEELAMRAJU S. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice, 2013, 6(1): 36.

doi: 10.1186/1939-8433-6-36 pmid: 24295086
[21]
TAZIB T, KOBAYASHI Y, KOYAMA H, MATSUI T. QTL analyses for anther length and dehiscence at flowering as traits for the tolerance of extreme temperatures in rice (Oryza sativa L.). Euphytica, 2015, 203(3): 629-642.
[22]
刘刚, 夏快飞, 吴艳, 张明永, 张再君, 杨金松, 邱东峰. 水稻耐热新种质R203的创制与应用. 中国农业科学, 2023, 56(3): 405-415. doi: 10.3864/j.issn.0578-1752.2023.03.001.
LIU G, XIA K F, WU Y, ZHANG M Y, ZHANG Z J, YANG J S, QIU D F. Breeding and application of a new thermo-tolerance rice germplasm R203. Scientia Agricultura Sinica, 2023, 56(3): 405-415. doi: 10.3864/j.issn.0578-1752.2023.03.001. (in Chinese)
[23]
杨扬, 谢震泽, 王轲, 晏月明. 水稻香味的遗传研究进展. 首都师范大学学报(自然科学版), 2010, 31(3): 24-29.
YANG Y, XIE Z Z, WANG K, YAN Y M. Advance in genetic studies on aromatic rice. Journal of Capital Normal University (Natural Science Edition), 2010, 31(3): 24-29. (in Chinese)
[24]
张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展. 中国水稻科学, 2025, 39(2): 171-186.

doi: 10.16819/j.1001-7216.2025.240301
ZHANG L T, YANG L, LIU H, ZHAO X M, CHENG T, XU Z J. Research advances of fragrance substances in rice. Chinese Journal of Rice Science, 2025, 39(2): 171-186. (in Chinese)

doi: 10.16819/j.1001-7216.2025.240301
[25]
张倩倩, 殷春渊, 刘贺梅, 胡秀明, 孟利红, 王和乐, 张金霞, 田芳慧, 袁泽科, 孙建权, 王书玉. 48份水稻骨干材料香味及Badh2变异类型的鉴定. 种子, 2024, 43(1): 107-113.
ZHANG Q Q, YIN C Y, LIU H M, HU X M, MENG L H, WANG H L, ZHANG J X, TIAN F H, YUAN Z K, SUN J Q, WANG S Y. Identification of fragrance and Badh2 variant types in 48 Oryza sativa L. backbone materials. Seed, 2024, 43(1): 107-113. (in Chinese)
[26]
王占春, 钟桂涛, 张贝贝, 谢怡琳, 唐定中, 王伟. 水稻稻瘟病抗性基因研究进展. 遗传, 2025, 47(5): 533-545.
WANG Z C, ZHONG G T, ZHANG B B, XIE Y L, TANG D Z, WANG W. Research advances in rice blast resistance genes. Hereditas (Beijing), 2025, 47(5): 533-545. (in Chinese)
[27]
肖宁, 吴云雨, 王如意, 赵均良, 余玲, 高鹏, 郝泽芸, 宁约瑟, 李爱宏. 水稻抗稻瘟病基因克隆及其育种应用研究进展. 生命科学, 2025, 37(5): 558-566.
XIAO N, WU Y Y, WANG R Y, ZHAO J L, YU L, GAO P, HAO Z Y, NING Y S, LI A H. Advancements in cloning of rice blast resistance genes and their application in breeding. Chinese Bulletin of Life Sciences, 2025, 37(5): 558-566. (in Chinese)
[28]
TAMURA K, NEI M, KUMAR S.Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11030-11035.
[29]
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33: 1870-1874.

doi: 10.1093/molbev/msw054 pmid: 27004904
[30]
邱东峰, 葛平娟, 刘刚, 杨金松, 陈建国, 张再君. 优质水稻新种质ZY56的创制及评价. 中国农业科学, 2021, 54(6): 1081-1091. doi: 10.3864/j.issn.0578-1752.2021.06.001.
QIU D F, GE P J, LIU G, YANG J S, CHEN J G, ZHANG Z J. Breeding and evaluation of elite rice line ZY56. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091. doi: 10.3864/j.issn.0578-1752.2021.06.001. (in Chinese)
[31]
査中萍, 殷得所, 万丙良, 焦春海. 水稻种质资源开花期耐热性分析. 湖北农业科学, 2016, 55(1): 17-19, 23.
ZHA Z P, YIN D S, WAN B L, JIAO C H. Analyzing of rice germplasm heat resistance during flowering stage. Hubei Agricultural Sciences, 2016, 55(1): 17-19, 23. (in Chinese)
[32]
胡声博, 张玉屏, 朱德峰, 林贤青, 向镜. 杂交水稻耐热性评价. 中国水稻科学, 2012, 26(6):751-756.
HU S B, ZHANG Y P, ZHU D F, LIN X Q, XIANG J. Evaluation of heat resistance in hybrid rice. Chinese Journal of Rice Science, 2012, 26(6):751-756. (in Chinese)
[33]
贾子苗, 邱玉亮, 林志珊, 王轲, 叶兴国. 利用近缘种属优良基因改良小麦研究进展. 作物杂志, 2021(2): 1-14.
JIA Z M, QIU Y L, LIN Z S, WANG K, YE X G. Research progress on wheat improvement by using desirable genes from its relative species. Crops, 2021(2): 1-14. (in Chinese)
[34]
LIU Y Y, SHEN K C, YIN C B, XU X W, YU X C, YE B T, SUN Z W, DONG J Y, BI A Y, ZHAO X B, et al. Genetic basis of geographical differentiation and breeding selection for wheat plant architecture traits. Genome Biology, 2023, 24(1): 114.

doi: 10.1186/s13059-023-02932-x pmid: 37173729
[1] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[2] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[5] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[6] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[7] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[8] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[9] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[10] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[11] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[12] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[13] HU JiaYan, SHEN ZhiHan, WEN LiHui, YU JiaHao, ZHANG YuJun, JIANG DongHua. Identification and Evaluation of Biocontrol Actinomycetes Against Xanthomonas oryzae pv. oryzicola for Disease Suppression and Growth Promotion in Rice [J]. Scientia Agricultura Sinica, 2025, 58(17): 3434-3450.
[14] WANG AnXin, FANG YaTing, DUN Qian, WU YongQing, LIAO ShiPeng, LI XiaoKun, REN Tao, LU ZhiFeng, CONG RiHuan, LU JianWei. Effects of Direct and Biochar-Based Straw Incorporation on Crop Yield and Nitrogen Uptake and Utilization in a Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3280-3292.
[15] XIONG ZhiHao, LIU JunQuan, YE Lin, ZHU DanDan, HOU SuSu, FANG YaTing, CONG RiHuan, REN Tao, LI XiaoKun, LU JianWei. Characterization of Crop Yield and Nutrient Apparent Balance Between Direct and Burning Straw Return in Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3293-3303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!