Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2782-2792.doi: 10.3864/j.issn.0578-1752.2025.14.006

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Crop Planting Structure on Formation of Natal Host Types of Helicoverpa armigera Moths in Hexi Corridor

GUO JianGuo1,*(), JIANG XiaoFeng2, XIE XiaoLi1, ZHENG Rong3, MIAO ChunQing4, WEI JianRong5   

  1. 1 Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    2 Institute of Dryland Farming, Gansu Academy of Agricultural Science, Lanzhou 730070
    3 Jiuquan Academy of Agricultural Sciences, Jiuquan 735000, Gansu
    4 Zhangye Academy of Agricultural Sciences, Zhangye 734000, Gansu
    5 Wuwei Agro-Technical Extension Center, Wuwei 733000, Gansu
  • Received:2025-03-19 Accepted:2025-05-23 Online:2025-07-17 Published:2025-07-17
  • Contact: GUO JianGuo

Abstract:

【Objective】The objective of this study is to clarify the effect of crop planting structure on formation of natal host types of bollworm (Helicoverpa armigera) moths, and to construct a regional integrated green prevention and control system in Hexi Corridor.【Method】A number of H. armigera moths were collected by sex pheromone traps and δ13C (13C/12C) value of one forewing of each H. armigera moth was determined by stable carbon isotope ratio method in Hexi Corridor from 2021 to 2023.【Result】Under 1:1, 1:2 and 1:3 planting structure patterns of vegetables/maize in Hexi Corridor, 25.00%, 26.19% and 3.61% of the first generation moths were originated from C3 vegetables and 75.00%, 73.81% and 96.39% of the first generation moths were originated from C4 maize, the average δ13C (13C/12C) values were -26.28‰, -26.81‰, -23.20‰, -12.56‰, -13.48‰ and -12.82‰, respectively. 42.62%, 38.33% and 23.87% of the second generation moths were originated from C3 vegetables and 57.38%, 61.67% and 76.13% of the second generation moths were originated from C4 maize, the average δ13C (13C/12C) values were -26.25‰, -25.98‰, -25.78‰, -12.93‰, -12.61‰ and -12.52‰, respectively. 44.29%, 40.95% and 22.86% of the third generation moths were originated from C3 vegetables and 55.71%, 59.05% and 77.14% of the third generation moths were originated from C4 maize, the average δ13C(13C/12C)values were -25.57‰, -26.09‰, -25.85‰, -12.56‰, -12.25‰ and -12.75‰, respectively. On the whole, 36.94%, 35.23% and 15.17% of the first, second and third generation moths were separately originated from C3 vegetables and 63.06%, 64.77% and 84.83% were respectively originated from C4 maize, the average δ13C (13C/12C) values were -26.09‰, -26.19‰, -25.59‰, -12.66‰, -12.86‰ and 12.69‰ under 1:1, 1:2 and 1:3 planting structure patterns of vegetables/maize in Hexi Corridor. One-way ANOVA analysis showed that the proportion of the first, second and third generations of C3 host type of moths originated from 1:1 and 1:2 planting structure patterns of vegetables/maize was significantly higher than that originated from 1:3 planting structure pattern of vegetables/maize, while the proportion of the first, second and third generations of C4 host type of moths originated from 1:1 and 1:2 planting structure patterns of vegetables/maize was significantly lower than that originated from 1:3 planting structure pattern of vegetables/maize.【Conclusion】Under 1:1, 1:2 and 1:3 planting structure patterns of vegetables/maize in Hexi Corridor, 36.94%, 35.23% and 15.17% of H. armigera moths from the first to the third generation were originated from C3 vegetables and 63.06%, 64.77% and 84.83% of H. armigera moths from the first to the third generation were originated from C4 maize, the moths produced by three planting structure patterns mainly were of C4 host types. The results indicated that the reduced area ratio of vegetables/maize was conducive to increasing the relative abundance of the moth population of H. armigera with adjustment of crop planting structure in the Hexi Corridor, in particular, the expansion of maize played a decisive role in the formation of the C4 host type of H. armigera moths. Therefore, the comprehensive control of H. armigera should adhere to the integrated control strategy of “key control in the maize and balanced control in the vegetables” in Hexi Corridor so as to avoid secondary disasters caused by local control in the maize or in the vegetables and unbalance the integrality of maize and vegetables.

Key words: Hexi Corridor, crop planting structure, Helicoverpa armigera moth, natal host type, formation

Table 1

Planting structure of vegetables/maize in Hexi Corridor"

作物结构类型
<BOLD>T</BOLD>ype of crop structure
取样地点
Sampling spot
年份
Year
种植面积 Planting area (×103 hm2) C3蔬菜/C4玉米种植面积近似比例
Approximate proportion of C3 vegetables/C4 maize planting area
C3作物(蔬菜)
C3 crop (vegetable)
C4作物(玉米)
C4 crop (maize)
I 酒泉
Jiuquan
2021 35.64 46.08 ≈1:1
2022 39.11 45.32 ≈1:1
2023 41.78 45.29 ≈1:1
II 武威
Wuwei
2021 42.98 99.75 ≈1:2
2022 45.65 96.47 ≈1:2
2023 50.90 92.71 ≈1:2
III 张掖
Zhangye
2021 37.50 108.27 ≈1:3
2022 40.92 115.31 ≈1:3
2023 45.15 117.97 ≈1:3

Table 2

Host types of H. armigera moths under 1:1 planting structure pattern of vegetables/maize in Jiuquan"

世代
Generation
年份
Year
总数
Total number
寄主类型
Host type
δ13C (‰, PDB) 类型数量(头)
Type number
比例
Proportion (%)
第1代
The first generation
2021 12 C3 -24.19±0.52b 3 25.00
C4 -12.15±0.58a 9 75.00
2022 8 C3 -26.16±0.32b 2 25.00
C4 -12.40±0.32a 6 75.00
2023 20 C3 -26.71±1.01b 5 25.00
C4 -13.48±0.69a 15 75.00
第2代
The second generation
2021 7 C3 -26.48±0.76b 3 42.86
C4 -11.74±0.37a 4 57.14
2022 14 C3 -26.30±1.31b 7 50.00
C4 -12.69±0.67a 7 50.00
2023 20 C3 -26.16±1.17b 7 35.00
C4 -13.74±2.03a 13 65.00
第3代
The third generation
2021 7 C3 -25.01±1.53b 3 42.86
C4 -12.39±0.47a 4 57.14
2022 6 C3 -27.24±0b 3 50.00
C4 -11.60±0.35a 3 50.00
2023 20 C3 -25.57±1.49b 8 40.00
C4 -13.23±0.94a 12 60.00
合计Total 114 C3 -26.09±1.33b 41 35.96
C4 -12.66±1.09a 73 64.04

Table 3

Host types of H. armigera moths under 1:2 planting structure pattern of vegetables/maize in Wuwei"

世代
Generation
年份
Year
总数
Total number
寄主类型
Host type
δ13C (‰, PDB) 类型数量(头)
Type number
比例
Proportion (%)
第1代
The first generation
2021 10 C3 -27.01±0.57b 3 30.00
C4 -13.12±1.13a 7 70.00
2022 21 C3 -27.23±1.33b 6 28.57
C4 -13.08±0.80a 15 71.43
2023 10 C3 -25.25±1.23b 2 20.00
C4 -14.56±1.89a 8 80.00
第2代
The second generation
2021 12 C3 -25.78±0.50b 5 41.67
C4 -12.95±1.83a 7 58.33
2022 24 C3 -25.05±1.82b 8 33.33
C4 -12.48±0.72a 16 66.67
2023 10 C3 -26.92±0.84b 4 40.00
C4 -12.34±0.00a 6 60.00
第3代
The third generation
2021 10 C3 -26.54±1.17b 4 40.00
C4 -12.38±0.48a 6 60.00
2022 21 C3 -25.47±2.18b 9 42.86
C4 -12.38±0.57a 12 57.14
2023 10 C3 -26.57±0.71b 4 40.00
C4 -11.70±0.21a 6 60.00
合计Total 128 C3 -26.19±1.58b 45 35.16
C4 -12.86±1.27a 83 64.84

Table 4

Host types of H. armigera moths under 1:3 planting structure pattern of vegetables/maize in Zhangye"

世代
Generation
年份
Year
总数
Total number
寄主类型
Host type
δ13C (‰, PDB) 类型数量(头)
Type number
比例
Proportion (%)
第1代
The first generation
2021 24 C3 -24.65±0b 1 4.17
C4 -12.78±0.66a 23 95.83
2022 15 C3 -21.76±0b 1 6.67
C4 -12.09±0.73a 14 93.33
2023 20 C3
C4 -13.36±0.87a 20 100.00
第2代
The second generation
2021 35 C3 -26.36±1.09b 8 22.86
C4 -12.38±0.58a 27 77.14
2022 16 C3 -25.49±0.36b 3 18.75
C4 -12.31±0.64a 13 81.25
2023 20 C3 -25.23±3.58b 6 30.00
C4 -13.04±0.63a 14 70.00
第3代
The third generation
2021 3 C3 -25.84±0b 1 33.33
C4 -13.07±0.63a 2 66.67
2022 15 C3 -24.76±0b 1 6.67
C4 -12.26±0.31a 14 93.33
2023 14 C3 -26.12±1.22b 4 28.57
C4 -13.37±1.05a 10 71.43
合计Total 162 C3 -25.59±2.22b 25 15.43
C4 -12.69±0.83a 137 84.57

Table 5

Effect of crop planting structure on formation of host type of H. armigera moths in Hexi Corridor"

世代
Generation
寄主类型
Host type
处理
Treatment
δ13C (‰, PDB) 类型数量(头)
Type number
比例
Proportion (%)
第1代
The first generation
C3 I (1:1) -26.28±1.27b 10 25.00±0a
II (1:2) -26.81±1.37b 11 26.19±3.12a
III (1:3) -23.20±1.44a 2 3.61±1.95b
C4 I (1:1) -12.56±0.77a 30 75.00±0b
II (1:2) -13.48±1.41b 30 73.81±3.12b
III (1:3) -12.82±0.90a 57 96.39±1.95a
第2代
The second generation
C3 I (1:1) -26.25±1.16b 17 42.62±4.33a
II (1:2) -25.98±1.50a 17 38.33±2.55a
III (1:3) -25.78±2.41b 17 23.87±3.29b
C4 I (1:1) -12.93±1.48a 24 57.38±4.33b
II (1:2) -12.61±1.17b 29 61.67±2.55b
III (1:3) -12.52±0.68a 54 76.13±3.29a
第3代
The third generation
C3 I (1:1) -25.57±1.53b 14 44.29±2.97a
II (1:2) -26.09±1.69a 17 40.95±0.95a
III (1:3) -25.85±1.11b 6 22.86±8.21b
C4 I (1:1) -12.56±0.99a 19 55.71±2.97b
II (1:2) -12.25±0.57b 24 59.05±0.95b
III (1:3) -12.75±0.89a 26 77.14±8.21a
合计Total C3 I (1:1) -26.09±1.33b 41 36.94±2.99a
II (1:2) -26.19±1.58a 45 35.23±1.22a
III (1:3) -25.59±2.22b 25 15.17±2.26b
C4 I (1:1) -12.66±1.09a 73 63.06±2.99b
II (1:2) -12.86±1.27b 83 64.77±1.22b
III (1:3) -12.69±0.83a 137 84.83±2.26a
[1]
CHEN Y H, GOLS R, BENREY B. Crop domestication and its impact on naturally selected trophic interactions. Annual Review of Entomology, 2015, 60: 35-58.

doi: 10.1146/annurev-ento-010814-020601 pmid: 25341108
[2]
WETZEL W C, KHAROUBA H M, ROBINSON M, HOLYOAK M, KARBAN R. Variability in plant nutrients reduces insect herbivore performance. Nature, 2016, 539(7629): 425-427.
[3]
ALTERMATT F. Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B-Biological Sciences, 2010, 277: 1281-1287.
[4]
YANG L, LI M, LIU J, ZENG J, LU Y. Long-term expansion of cereal crops promotes regional population increase of polyphagous Helicoverpa armigera. Journal of Pest Science, 2025, 98(1): 131-144.
[5]
BEHERE G T, TAY W T, RUSSELL D A, BATTERHAM P. Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera: Noctuidae). Bulletin of Entomological Research, 2008, 98(6): 599-603.
[6]
WALSH T, PERERA O, ANDERSON C, GORDON K, CZEPAK C, MCGAUGHRAN A, ZWICK A, HACKETT D, TAY W T. Mitochondrial DNA genomes of five major Helicoverpa pest species from the old and new worlds (Lepidoptera: Noctuidae). Ecology and Evolution, 2019, 9(5): 2933-2944.
[7]
IVEY V, HILLIER N K. Hybridization in heliothine moths: Impacts on reproduction, pheromone communication, and pest management. Frontiers in Ecology and Evolution, 2023, 11: 1208079.
[8]
ZHANG S, GU S H, NI X Z, LI X C. Genome size reversely correlates with host plant range in Helicoverpa species. Frontiers in Physiology, 2019, 10: 29.
[9]
CHALIVENDRA S, HUANG F, BUSMAN M, WILLIAMS W P, HAM J H. Low aflatoxin levels in Aspergillus flavus-resistant maize are correlated with increased corn earworm damage and enhanced seed fumonisin. Frontiers in Plant Science, 2020, 11: 565323.
[10]
REIGADA C, DE ANDRADE MORAL R, DEMÉTRIO C G B, PARRA J R P. Cross-crop effects on larval growth, survivorship and fecundity of Helicoverpa armigera. Journal of Pest Science, 2018, 91(1): 121-131.
[11]
LI M, YANG L, JIA S, KANG S, YANG Y, LU Y. Effects of Bt-cotton cultivation on Helicoverpa armigera activity-density in agricultural landscapes in northwestern China. Pest Management Science, 2025, 81(2): 689-697.
[12]
SMITH B N, EPSTEIN S. Two categories of 13C/12C ratios for higher plants. Plant Physiology, 1971, 47(3): 380-384.
[13]
QUADE J, CERLING T E, BOWMAN J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 1989, 342(6246): 163-166.
[14]
CERLING T E, WANG Y, QUADE J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 1993, 361(6410): 344-345.
[15]
CERLING T E, HARRIS J M, MACFADDEN B J, LEAKEY M G, QUADE J, EISENMANN V, EHLERINGER J R. Global vegetation change through the Miocene/Pliocene boundary. Nature, 1997, 389(6647): 153-158.
[16]
KOHN M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19691-19695.
[17]
VAN DER MERWE N J, VOGEL J C. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature, 1978, 276(5690): 815-816.
[18]
DENIRO M J, EPSTEIN S. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 1978, 42(5): 495-506.
[19]
GOULD F, BLAIR N, REID M, RENNIE T L, LOPEZ J, MICINSKI S. Bacillus thuringiensis-toxin resistance management: Stable isotope assessment of alternate host use by Helicoverpa zea. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16581-16586.
[20]
HEAD G, JACKSON R E, ADAMCZYK J, BRADLEY J R, VAN DUYN J, GORE J, HARDEE D D, LEONARD B R, LUTTRELL R, RUBERSON J, MULLINS J W, ORTH R G, SIVASUPRAMANIAM S, VOTH R. Spatial and temporal variability in host use by Helicoverpa zea as measured by analyses of stable carbon isotope ratios and gossypol residues. Journal of Applied Ecology, 2010, 47(3): 583-592.
[21]
BAKER G H, TANN C R. Mating of Helicoverpa armigera (Lepidoptera: Noctuidae) moths and their host plant origins as larvae within Australian cotton farming systems. Bulletin of Entomological Research, 2013, 103(2): 171-181.
[22]
BAKER G H, TANN C R, VERWEY P, LISLE L. Do the plant host origins of Helicoverpa (Lepidoptera: Noctuidae) moth populations reflect the agricultural landscapes within which they are caught? Bulletin of Entomological Research, 2019, 109(1): 1-14.
[23]
DOURADO P M, PANTOJA-GOMEZ L M, HORIKOSHI R J, CARVALHO R A, OMOTO C, CORRÊA A S, KIM J H, MARTINELLI S, HEAD G P. Host plant use of Helicoverpa spp. (Lepidoptera: Noctuidae) in the Brazilian agricultural landscape. Pest Management Science, 2021, 77(2): 780-794.
[24]
TSAFACK N, ALIGNIER A, HEAD G P, KIM J H, GOULARD M, MENOZZI P, OUIN A. Landscape effects on the abundance and larval diet of the polyphagous pest Helicoverpa armigera in cotton fields in North Benin. Pest Management Science, 2016, 72(8): 1613-1626.
[25]
叶乐夫, 付雪, 戈峰. C3和C4植物寄主对华北地区棉铃虫越冬代和第一代的影响. 生态学报, 2011, 31(2): 449-454.
YE L F, FU X, GE F. Contribution of C3and C4 host plants for the overwintering and 1st generation of Helicoverpa armigera (Hübner) in Northern China. Acta Ecologica Sinica, 2011, 31(2): 449-454. (in Chinese)
[26]
YE L F, FU X, OUYANG F, XIE B Y, GE F. Determining the major Bt refuge crops for cotton bollworm in North China. Insect Science, 2015, 22: 829-839.
[27]
叶乐夫, 付雪, 谢宝瑜, 戈峰. 应用稳定同位素技术分析华北部分地区第三代棉铃虫虫源性质. 生态学报, 2011, 31(6): 1714-1719.
YE L F, FU X, XIE B Y, GE F. Larval host types for the 3rd Helicoverpa armigera in Bt cotton field from North China determined by δ13C. Acta Ecologica Sinica, 2011, 31(6): 1714-1719. (in Chinese)
[28]
GE F, CHEN F, PARAJULEE M N, YARDIM E N. Quantification of diapausing fourth generation and suicidal fifth generation cotton bollworm, Helicoverpa armigera, in cotton and corn in northern China. Entomologia Experimentalis et Applicata, 2005, 116(1): 1-7.
[29]
李娜, 张娟, 刘永健, 张豹, 熊建喜, 王佩玲, 吕昭智. 新疆北部棉铃虫寄主来源与转基因棉区庇护所评估. 生态学报, 2015, 35(19): 6280-6287.
LI N, ZHANG J, LIU Y J, ZHANG B, XIONG J X, WANG P L, Z Z. Analysis of larval host types of cotton bollworm (Helicoverpa armigera) populations for evaluation of Bt refuges in northern Xinjiang. Acta Ecologica Sinica, 2015, 35(19): 6280-6287. (in Chinese)
[30]
甘肃发展年鉴委员会. 甘肃发展年鉴. 北京: 中国科学技术出版社, 2016-2021.
Gansu Development Yearbooks Committee. Gansu Development Yearbooks. Beijing: China Science and Technology Press, 2016-2021. (in Chinese)
[31]
张宣, 刘雪莹, 胡迪, 袁向群, 冯克云, 康波, 张军, 罗进仓, 南宏宇, 李怡萍. 河西走廊棉田主要害虫发生动态及植物源杀虫剂防治技术. 植物保护学报, 2021, 48(5): 1125-1138.
ZHANG X, LIU X Y, HU D, YUAN X Q, FENG K Y, KANG B, ZHANG J, LUO J C, NAN H Y, LI Y P. Occurrence dynamics of major pests in cotton areas and the control techniques with botanical pesticides in the Hexi Corridor, China. Journal of Plant Protection, 2021, 48(5): 1125-1138. (in Chinese)
[32]
HOOD-NOWOTNY R, KNOLS B G J. Stable isotope methods in biological and ecological studies of arthropods. Entomologia Experimentalis et Applicata, 2007, 124(1): 3-16.
[33]
YANG L, PAN Y F, WYCKHUYS K A G, LI M L, WANG K T, LIU B, LIU Y T, JIA S S, LI Q, LI Y, DESNEUX N, LU Y H. Context- dependent response of crop pests to landscape composition. Entomologia Generalis, 2025, 45(2): 339-350.
[34]
FITT G P. The ecology of Heliothis species in relation to agroecosystems. Annual Review of Entomology, 1989, 34: 17-52.
[35]
ANDOW D A. Vegetational diversity and arthropod population response. Annual Review of Entomology, 1991, 36: 561-586.
[36]
ROOT R B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecological Monographs, 1973, 43(1): 95-124.
[37]
ZHAO Z, SANDHU H S, OUYANG F, GE F. Landscape changes have greater effects than climate changes on six insect pests in China. Science China Life Sciences, 2016, 59(6): 627-633.
[38]
吕昭智, 潘卫林, 张鑫, 李贤超, 张娟. 新疆北部棉区作物景观多样性对棉铃虫种群的影响. 生态学报, 2012, 32(24): 7925-7931.
Z Z, PAN W L, ZHANG X, LI X C, ZHANG J. The effect of cropping landscapes on the population dynamics of the cotton bollworm Helicoverpa armigera (Lepidoptera, Noctuidae) in the northern Xinjiang. Acta Ecologica Sinica, 2012, 32(24): 7925-7931. (in Chinese)
[39]
LU Z Z, BAKER G. Spatial and temporal dynamics of Helicoverpa armigera (Lepidoptera, Noctuidae) in contrasting agricultural landscapes in northwestern China. International Journal of Pest Management, 2013, 59(1): 25-34.
[40]
GAO Y L, FENG H Q, WU K M. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting. Transgenic Research, 2010, 19(4): 557-562.
[41]
MA J, LU Z, GAO G. Population patterns of Helicoverpa armigera (Hb.) on Bacillus thuringiensis transgenic cotton in Xinjiang, China. Egyptian Journal of Biological Pest Control, 2012, 22(2): 131-139.
[42]
CUNNINGHAM J P, JALLOW M F, WRIGHT D J, ZALUCKI M P. Learning in host selection in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Animal Behaviour, 1998, 55(1): 227-234.
[43]
HU P, LI H L, ZHANG H F, LUO Q W, GUO X R, WANG G P, LI W Z, YUAN G H. Experience-based mediation of feeding and oviposition behaviors in the cotton bollworm: Helicoverpa armigera (Lepidoptera: Noctuidae). PLoS ONE, 2018, 13(1): e0190104.
[44]
JALLOW M F A, MATSUMURA M, SUZUKI Y. Oviposition preference and reproductive performance of Japanese Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 2001, 36(4): 419-426.
[45]
盛承发, 苏建伟, 王红托, 范伟民, 宣维健. 两种性信息素诱捕器对棉铃虫雄蛾的诱捕效果比较. 昆虫学报, 2002, 45(2): 271-274.
SHENG C F, SU J W, WANG H T, FAN W M, XUAN W J. An efficiency comparison of cone and water tray traps baited with pheromone for capturing male moths of Helicoverpa armigera. Acta Entomologica Sinica, 2002, 45(2): 271-274. (in Chinese)
[46]
吴孔明, 翟保平, 封洪强, 程登发, 郭予元. 华北北部地区二代棉铃虫成虫迁飞行为的雷达观测. 植物保护学报, 2006, 33(2): 163-167.
WU K M, ZHAI B P, FENG H Q, CHENG D F, GUO Y Y. Radar observations on the migratory behavior of the second generation cotton bollworm moths in the north part of northern China. Acta Phytophylacica Sinica, 2006, 33(2): 163-167. (in Chinese)
[47]
CARRIÈRE Y, ONSTAD D W. The role of landscapes in insect resistance management// Insect Resistance Management, 2023: 329-379.
[48]
WU K M. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. Journal of Invertebrate Pathology, 2007, 95(3): 220-223.
[49]
ZHANG H N, TIAN W, ZHAO J, JIN L, YANG J, LIU C H, YANG Y H, WU S W, WU K M, CUI J J, TABASHNIK B E, WU Y D. Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10275-10280.
[50]
LU Z Z, ZALUCKI M P, PERKINS L E, WANG D Y, WU L L. Towards a resistance management strategy for Helicoverpa armigera in Bt-cotton in northwestern China: An assessment of potential refuge crops. Journal of Pest Science, 2013, 86(4): 695-703.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] WANG WeiMeng, WEI YunXiao, TANG YunNi, LIU MiaoMiao, CHEN QuanJia, DENG XiaoJuan, ZHANG Rui. Establishment and Rooting Optimization of Agrobacterium rhizogenes Transformation System in Cotton [J]. Scientia Agricultura Sinica, 2025, 58(8): 1479-1493.
[3] XIE LuLu, LI Fu, ZHANG SiYuan, GAO JianChang. Analysis of Conserved Genes in Adventitious Root Formation Based on Cross Species Transcriptomes [J]. Scientia Agricultura Sinica, 2025, 58(6): 1195-1209.
[4] YAO Li, DENG ChunXiu, TANG Biao, WANG Hong, WU YueYing, ZHANG Qi, LI YuanHong, LIU ZhongYou, LU ChangAi, LIN ChaoWen. Suitability Evaluation of Late Maturing Citrus in Dongpo District, Meishan City, Sichuan Province Based on Maximum Entropy Model (MaxEnt) and Geographic Information System (GIS) [J]. Scientia Agricultura Sinica, 2025, 58(4): 748-758.
[5] ZHAO YuLei, XIN JiaLu, LI ChengNan, LI Shan, XIE XuFei, YIN Xiao. Screening of Target Genes Downstream of VviERF045, a Transcription Factor Associated with Gray Mold Resistance in Vitis vinifera [J]. Scientia Agricultura Sinica, 2025, 58(13): 2578-2590.
[6] TAO JianBin, WANG Yun, ZHANG XinYue, JIANG QiYue, WU WenBin. Remote Sensing Monitoring of Cropping Patterns Based on Phenology Information Atlas [J]. Scientia Agricultura Sinica, 2024, 57(4): 663-678.
[7] HAN LiJie, CAI HongWei. Progress on Genetic Transformation of Sorghum [J]. Scientia Agricultura Sinica, 2024, 57(3): 454-468.
[8] ZHAO Jie, ZHAO LongYuan, PAN NingHui, GUAN LiRong, DU YunLong, LI ChengYun, WANG YunYue, XIE Yong. Hydrolase Gene BGIOSGA023826 Involved in Regulation of Resistance Process to Rice Blast [J]. Scientia Agricultura Sinica, 2024, 57(23): 4607-4618.
[9] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[10] CAO Peng, ZHOU JinHuan, WANG XinLiang, LI ChuXin, LI JiaXIN, JIANG Pei, LIU JinXiang, SONG Zhen. Optimization and Application of Rapid Evaluation System for Citrus Huanglongbing Resistance Mediated by Agrobacterium rhizogenes [J]. Scientia Agricultura Sinica, 2024, 57(16): 3182-3191.
[11] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[12] CUI HongJie, LU ChunTing, PAN LiQin, HU Hui, ZHONG PeiYun, ZHU JieYing, ZHANG KaiZhao, HUANG XiaoHong. Curcumin Alleviates Zearalenone-Induced Oxidative Damage in Porcine Renal Epithelial Cells via SIRT1/FOXO1 Pathway [J]. Scientia Agricultura Sinica, 2023, 56(5): 1007-1018.
[13] XING MiaoMiao, XU YuanYuan, LU YuYu, YAN JiYong, ZENG AiSong. Development of Ogura CMS Restorers of Broccoli via Genetic Transformation of Rfo [J]. Scientia Agricultura Sinica, 2023, 56(15): 2966-2976.
[14] DU JingYa, CHEN KaiYuan, PU Jin, ZHOU HuiYing, ZHU GuangTao, ZHANG ChunZhi, DU Hui. The Modification of Gene Editing Vector for Efficient GFPuv Fluorescence Screening and Its Application in Potato Genetic Transformation [J]. Scientia Agricultura Sinica, 2023, 56(11): 2223-2236.
[15] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!