Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2793-2804.doi: 10.3864/j.issn.0578-1752.2025.14.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Drought Stress During the Pupal Stage on Mating Behavior and Sensitivity to Lufenuron in Bradysia odoriphaga

LIU WenLong(), CHANG YiFang, LI WenYu, SUN LiJuan, ZHENG ChangYing*()   

  1. Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong
  • Received:2025-04-18 Accepted:2025-06-09 Online:2025-07-17 Published:2025-07-17
  • Contact: ZHENG ChangYing

Abstract:

【Objective】Drought stress during the entire developmental period of Bradysia odoriphaga significantly suppresses its population occurrence. However, the specific impact of drought stress applied solely during the pupal stage on its population remains unreported. This study aims to clarify the effects of pupal-stage drought stress on the mating behavior of B. odoriphaga and the sensitivity of its F1 generation to lufenuron. It further explores the regulatory mechanism of soil drought stress on the B. odoriphaga population, providing a theoretical basis for reducing chemical pesticide application in its control.【Method】Soil drought treatment (10% relative water content) and soil wet treatment (40% relative water content) were established. Differences in water loss rate, developmental duration, and adult longevity were measured under these soil humidity conditions. Mating behavior of emerged adults was observed through paired trials. The sensitivity of F1 2nd-instar larvae to lufenuron was determined using the stem-dip method. Additionally, detoxifying enzyme activities and the expression levels of related coding genes were measured.【Result】Drought stress during the pupal stage significantly shortened adult longevity but did not affect pupal developmental duration. Mating trials revealed that drought-stressed males exhibited a 78.70% decrease in courtship attempts per minute, a 76.44% reduction in courtship duration per minute, and a 78.57% decline in mating success rate. Under drought treatment, the water loss rates at 72 h were 36.12% for female pupae and 41.12% for male pupae, both significantly higher than those in the wet treatment group. The LC50 value for F1 2nd-instar larvae from the drought group (14.343 mg·L-1) decreased by 37.37% compared to the wet group (22.902 mg·L-1). The mortality rate of 2nd-instar larvae treated with 14.00 mg·L-1 lufenuron was 53.33% in the drought treatment group and 26.67% in the wet treatment group. The difference was significant. The activities of P450 detoxifying enzymes, glutathione S-transferase and carboxylesterase in drought treatment group were significantly lower than those in wet treatment group. The results of real-time fluorescence quantitative PCR showed that the expression levels of CarE2, CarE3, GSTd1, CYP6QE1 and CYP3356A in the drought treatment group were significantly lower than those in the wet treatment group. The expression levels of CarE1 and CYP6FU12 were not significantly different, and the expression of GSTd2 was significantly up-regulated.【Conclusion】Drought stress leads to significant water loss in pupae, shortens adult longevity, and inhibits mating behavior. The use of soil drought stress during pupal stage can inhibit the occurrence of B. odoriphaga population. At the same time, drought stress during pupal stage leads to the increase of the lethal rate of lufenuron to F1 larvae and the change of detoxifying enzyme activity in larvae, indicating that it is feasible to control B. odoriphaga with drought stress and chemical control.

Key words: Bradysia odoriphaga, drought stress, mating behavior, lufenuron, detoxifying enzyme

Table 1

Primers of qRT-PCR"

基因
Gene
引物名称
Prime name
序列信息
Sequence information (5′-3′)
CarE CarE1-F GTGCAAGGTGTTTCGCTGAG
CarE1-R GTGCAATTGGAACGGGAACC
CarE2-F TGTGTCCCACAGCACAAAGT
CarE2-R CAGGATCGGCGGATTGAAGA
CarE3-F TCCGGCAAACGTGGAAAAAC
CarE3-R GCATACACCCTTCACACCCA
GSTs GST-d1-F ATGCCGTGCTGTCTTGATGA
GST-d1-R ATCAACCATGGTCGGGATCG
GST-d2-F TGACCGTGCCAAAGTCATCA
GST-d2-R AGGCCTAAACTGGCACATCC
P450 CYP3356A1-F GCAGCATAGTGCAGAGGTGA
CYP3356A1-R CAACAGCCGCTCTCAAATCG
CYP6QE1-F CCCACGTTCACATCCGGTAA
CYP6QE1-R GCTTACCGCTAACCGATCCA
CYP6FU12-F AAGCTGGGCCTAATGCTTGT
CYP6FU12-R CTGGCTGATCGCGGAGTTAT
RPS15 RPS15-F ATCGTGGCGTCGATTTGGAT
RPS15-R CTCATTTGGTGGGGCTTCCT

Table 2

Effects of drought stress on pupal developmental duration and adult longevity"

处理
Treatment
发育历期Developmental duration (d) 成虫寿命Adult longevity (d)
雌蛹Female pupa 雄蛹<BOLD>M</BOLD>ale pupa 雌虫Female adult 雄虫<BOLD>M</BOLD>ale adult
湿润处理Wet treatment 4.58±0.11a 4.95±0.11a 4.55±0.28b 4.60±0.31b
干旱处理Drought treatment 4.85±0.10a 4.83±0.11a 2.60±0.26a 2.35±0.25a

Table 3

Effect of soil drought treatment on the water content of pupae"

处理时长
Processing time (h)
雌蛹失水率Female pupa water loss rate (%) 雄蛹失水率Male pupa water loss rate (%)
干旱处理
Drought treatment
湿润处理
Wet treatment
干旱处理
Drought treatment
湿润处理
Wet treatment
24 12.72±6.01bcA 1.72±0.44abA 23.42±3.06cA 1.20±0.79aA
48 22.38±3.19bAB 3.34±1.24aA 35.66±1.52cB 4.33±2.33aA
72 36.12±2.09bB 4.91±1.18aA 41.12±2.94bB 5.85±5.12aA

Fig. 1

Courtship behavior and mating behavior of B. odoriphaga"

Table 4

Effect of drought stress during the pupal stage on adult mating behavior of B. odoriphaga"

项目
Item
干旱雌虫+干旱雄虫
Dry female+dry male
湿润雌虫+湿润雄虫
Wet female+wet male
干旱雌虫+湿润雄虫
Dry female+wet male
湿润雌虫+干旱雄虫
Wet female+dry male
交配时长Mating duration (s) 404.67±33.93a 377.07±24.49a 352.83±75.74a 372.30±71.18a
每分钟求偶次数
Courtship per minute
0.36±0.11b 1.69±0.15a 0.50±0.19b 0.50±0.19b
每分钟求偶时长
Courtship time per minute (s)
1.60±0.57b 6.79±0.75a 2.42±0.73b 1.69±0.76b
交配率Mating rate (%) 20.00±11.55b 93.33±6.67a 33.33±11.55b 40.00±9.32b

Table 5

Effect of drought stress during pupal stage on the sensitivity of F1 2nd-instar larvae to lufenuron"

处理Treatment 斜率Slope LC50 (95% CL) (mg·L-1) 卡方χ² (df)
湿润处理Wet treatment 0.914±0.233 22.902 (12.048-60.793) 2.402 (3)
干旱处理Drought treatment 0.763±0.119 14.343 (7.909-33.892) 2.065 (3)

Fig. 2

Lethality rate of lufenuron on 2nd-instar larvae of different treated populations"

Fig. 3

Effect of drought stress during pupal stage on detoxifying enzyme activities in F1 2nd-instar larvae"

Fig. 4

Effect of drought stress during pupal stage on carboxylesterase gene expression levels in F1 2nd-instar larvae"

Fig. 5

Effect of drought stress during pupal stage on relative expression levels of glutathione S-transferase genes in F1 2nd-instar larvae"

Fig. 6

Effect of drought stress during pupal stage on relative expression levels of cytochrome P450 monooxygenase genes in F1 2nd-instar larvae"

[1]
梅增霞, 李建庆. 苏云金杆菌对韭菜迟眼蕈蚊幼虫的室内毒力测定. 北方园艺, 2019(24): 51-55.
MEI Z X, LI J Q. Indoor toxicity test of Bacillus thuringiensis to Bradysia odoriphaga larva. Northern Horticulture, 2019(24): 51-55. (in Chinese)
[2]
王哲, 钟涛, 刘培斌, 许国庆. 韭菜迟眼蕈蚊发生规律及防治方法研究进展. 环境昆虫学报, 2017, 39(6): 1397-1406.
WANG Z, ZHONG T, LIU P B, XU G Q. Research progress on incidence and control of Bradysia odoriphaga. Journal of Environmental Entomology, 2017, 39(6): 1397-1406. (in Chinese)
[3]
张华敏, 尹守恒, 张明, 陈中府. 韭菜迟眼蕈蚊防治技术研究进展. 河南农业科学, 2013, 42(3): 6-9.
ZHANG H M, YIN S H, ZHANG M, CHEN Z F. Research progress on control techniques of Bradysia odoriphaga. Journal of Henan Agricultural Sciences, 2013, 42(3): 6-9. (in Chinese)
[4]
杨玉婷, 梁玲, 史彩华, 谢文, 张友军. 不同温度下韭菜迟眼蕈蚊年龄-阶段两性实验种群生命表的构建. 植物保护, 2019, 45(1): 51-57.
YANG Y T, LIANG L, SHI C H, XIE W, ZHANG Y J. Age-stage, two-sex life table of laboratory populations of Bradysia odoriphaga Yang et Zhang under different temperatures. Plant Protection, 2019, 45(1): 51-57. (in Chinese)
[5]
陈丽潇, 刘志培, 李靓靓, 付宏阳, 向世标, 常堃, 李慧, 陈祥, 李评, 谢菊英. 韭菜迟眼蕈蚊生物学及防控方法研究进展. 湖北农业科学, 2021, 60(24): 16-19.
CHEN L X, LIU Z P, LI L L, FU H Y, XIANG S B, CHANG K, LI H, CHEN X, LI P, XIE J Y. Research progress on the biology and prevention and control methods of Bradysia odoriphaga. Hubei Agricultural Sciences, 2021, 60(24): 16-19. (in Chinese)
[6]
LI W X, YANG Y T, XIE W, WU Q J, XU B Y, WANG L S, ZHU X, WANG S J, ZHANG Y J. Effects of temperature on the age-stage, two-sex life table of Bradysia odoriphaga (Diptera: Sciaridae). Journal of Economic Entomology, 2015, 108(1): 126-134.
[7]
段小凤, 王晓庆, 李品武, 彭萍. 几种环境因子对昆虫适应性影响的研究进展. 中国农学通报, 2015, 31(14): 79-82.

doi: 10.11924/j.issn.1000-6850.casb14120024
DUAN X F, WANG X Q, LI P W, PENG P. Research progress on the effects of several environmental factors on adaptability of insects. Chinese Agricultural Science Bulletin, 2015, 31(14): 79-82. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb14120024
[8]
SALES K, VASUDEVA R, GAGE M J G. Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect. Royal Society Open Science, 2021, 8(3): 201717.
[9]
KALRA B, PARKASH R. A trade-off between desiccation resistance and developmental humidity for pupation height in the North Indian seasonal population of Drosophilid-Zaprionus indianus. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 2024, 296: 111684.
[10]
MUTAMISWA R, TARUSIKIRWA V L, NYAMUKONDIWA C, CUTHBERT R N, CHIDAWANYIKA F. Thermal stress exposure of pupal oriental fruit fly has strong and trait-specific consequences in adult flies. Physiological Entomology, 2023, 48(1): 35-44.
[11]
曾保娟, 冯启理. 昆虫的变态发育研究. 应用昆虫学报, 2014, 51(2): 317-328.
ZENG B J, FENG Q L. Study of insect metamorphosis. Chinese Journal of Applied Entomology, 2014, 51(2): 317-328. (in Chinese)
[12]
赵龙龙, 张未仲. 温度和水分对越冬代冬型中国梨木虱存活的影响. 植物医生, 2021, 34(1): 52-56.
ZHAO L L, ZHANG W Z. Effects of temperature and water on the survival of overwintering winter form Psylla chinensis. Plant Doctor, 2021, 34(1): 52-56. (in Chinese)
[13]
常晓娜, 韩超, 肖能文, 李俊生, 陈法军. CO2倍增和转Bt水稻对二化螟幼虫的生理影响. 昆虫知识, 2010, 47(5): 904-909.
CHANG X N, HAN C, XIAO N W, LI J S, CHEN F J. Impacts of elevated CO2on the larvae of stem borer Chilo suppressalis fed on transgenic Bt rice. Chinese Bulletin of Entomology, 2010, 47(5): 904-909. (in Chinese)
[14]
李爱华, 孙瑞红, 张勇, 刘秀芳. 温湿度对桃小食心虫成虫生殖力的影响. 昆虫知识, 2006, 43(6): 867-869.
LI A H, SUN R H, ZHANG Y, LIU X F. Influence of temperature and humidity on fecundity of peach fruit borer, Carposina niponensis. Chinese Bulletin of Entomology, 2006, 43(6): 867-869. (in Chinese)
[15]
王宝山, 孙丽娟, 王英磊, 郑长英. 土壤干旱胁迫对韭菜迟眼蕈蚊种群动态的影响. 应用昆虫学报, 2023, 60(1): 245-253.
WANG B S, SUN L J, WANG Y L, ZHENG C Y. Effect of drought stress on the population dynamics of Bradysia cellarum. Chinese Journal of Applied Entomology, 2023, 60(1): 245-253. (in Chinese)
[16]
王宝山, 刘文龙, 迟秀丽, 刘泽洋, 孙丽娟, 郑长英. 土壤干旱胁迫对韭菜迟眼蕈蚊生理代谢、卵巢发育和卵黄蛋白含量的影响. 昆虫学报, 2024, 67(10): 1327-1338.
WANG B S, LIU W L, CHI X L, LIU Z Y, SUN L J, ZHENG C Y. Effects of soil drought stress on the physiological metabolism, ovarian development and yolk protein content of Bradysia cellarum (Diptera: Sciaridae). Acta Entomologica Sinica, 2024, 67(10): 1327-1338. (in Chinese)
[17]
KNISLEY C B, GOWAN C, WIRTH C. Effects of soil moisture, vegetation and food on adult activity, oviposition and larval development in the tiger beetle, Cicindela albissima Rumpp. Journal of Insect Conservation, 2018, 22(3/4): 443-449.
[18]
ROYER L, MC NEIL J N. Changes in calling behavior and mating success in the European corn-borer (Ostrinia nubilalis), caused by relative-humidity. Entomologia Experimentalis et Applicata, 1991, 61(2): 131-138.
[19]
SENTIS A, BERTRAM R, DARDENNE N, RAMON-PORTUGAL F, ESPINASSE G, LOUIT I, NEGRI L, HAELER E, ASHKAR T, PANNETIER T, et al. Evolution without standing genetic variation: Change in transgenerational plastic response under persistent predation pressure. Heredity, 2018, 121(3): 266-281.

doi: 10.1038/s41437-018-0108-8 pmid: 29959428
[20]
BROUFAS D G, PAPPAS L M, KOVEOS S D. Effect of relative humidity on longevity, ovarian maturation, and egg production in the olive fruit fly (Diptera: Tephritidae). Annals of the Entomological Society of America, 2009, 102(1): 70-75.
[21]
张旭艳, 贾尊尊, 吐尔逊·阿合买提, 付开赟, 丁新华, 乔小燕, 李亚文, 郭文超, 牙森·沙力. 温湿度对番茄潜叶蛾生长发育及繁殖的影响. 环境昆虫学报, 2024, 46(6): 1358-1366.
ZHANG X Y, JIA Z Z, TUERXUN·A H M T, FU K Y, DING X H, QIAO X Y, LI Y W, GUO W C, YASEN·S L. Effects of temperature and humidity on the growth, development and reproduction of Tuta absoluta Meyrick. Journal of Environmental Entomology, 2024, 46(6): 1358-1366. (in Chinese)
[22]
周仙红, 曹雪, 沈一凡, 庄乾营, 张思聪, 于毅, 张安盛. 营养物质和水分对韭菜迟眼蕈蚊成虫繁殖和寿命的影响. 应用昆虫学报, 2016, 53(6): 1205-1210.
ZHOU X H, CAO X, SHEN Y F, ZHUANG Q Y, ZHANG S C, YU Y, ZHANG A S. Effects of supplementary nutrition and water on the reproduction and longevity of Bradysia odoriphaga. Chinese Journal of Applied Entomology, 2016, 53(6): 1205-1210. (in Chinese)
[23]
段国琪, 张战备, 张慧杰, 张一白, 王娇娟, 马利平. 芦笋木蠹蛾对芦笋根茎的选择及湿度对其蛹发育的影响. 环境昆虫学报, 2010, 32(2): 152-157.
DUAN G Q, ZHANG Z B, ZHANG H J, ZHANG Y B, WANG J J, MA L P. Preference of Isoceras sibirica to storage root and stem of asparagus and effects of humidity on development of its pupae. Journal of Environmental Entomology, 2010, 32(2): 152-157. (in Chinese)
[24]
张慧杰, 段国琪, 张战备, 许爱玲, 张丽萍, 王娇娟. 空气和土壤湿度对美洲斑潜蝇发育与存活的影响. 生态学报, 2004, 24(3): 538-541.
ZHANG H J, DUAN G Q, ZHANG Z B, XU A L, ZHANG A P, WANG J J. Effect of air and soil humidity on development and survival of Liriomyza sativae. Acta Ecologica Sinica, 2004, 24(3): 538-541. (in Chinese)
[25]
吴坤君, 龚佩瑜. 棉铃虫蛹期在极端湿度下的失水动态. 昆虫学报, 2001, 44(4): 512-517.
WU K J, GONG P Y. Water loss dynamics during the pupal stage of the cotton bollworm at extreme humidities. Acta Entomologica Sinica, 2001, 44(4): 512-517. (in Chinese)
[26]
WANG H, LIANG S, MA T, XIAO Q, CAO P R, CHEN X, QIN W Q, XIONG H P, SUN Z H, WEN X J, WANG C. No-substrate and low-moisture conditions during pupating adversely affect Ectropis grisescens (Lepidoptera: Geometridae) adults. Journal of Asia-Pacific Entomology, 2018, 21(2): 657-662.
[27]
THORNHIL R, ALCOCK J. The Evolution of Insect Mating Systems. Harvard University Press, 1983.
[28]
骆丹. 马尾松毛虫交配行为与生殖适合度的研究——环境因子、寄主植物和近亲交配的影响[D]. 南昌: 江西农业大学, 2018.
LUO D. Mating behavior and reproductive fitness in pine Caterpilar, Dendrolimus punctatus (Lepidopera: Lasiocampidae): Effects of environmental factors, host plants and inbreeding[D]. Nanchang: Jiangxi Agricultural University, 2018. (in Chinese)
[29]
马继芳, 李立涛, 甘耀进, 董立, 董志平. 湿度对二点委夜蛾生长发育及繁殖的影响. 中国植保导刊, 2014, 34(7): 46-50.
MA J F, LI L T, GAN Y J, DONG L, DONG Z P. The effect of humidity on the development and reproduction of Proxenus lepigone. China Plant Protection, 2014, 34(7): 46-50. (in Chinese)
[30]
程东美, 黄江华, 徐汉虹, 张志祥. 50 g/L虱螨脲乳油对草地贪夜蛾的室内活性和田间药效研究. 环境昆虫学报, 2019, 41(5): 974-978.
CHENG D M, HUANG J H, XU H H, ZHANG Z X. Activity and field effect trials of lufenuron 50% EC against Spodoptera frugiperda. Journal of Environmental Entomology, 2019, 41(5): 974-978. (in Chinese)
[31]
贾变桃, 焦鹏, 杨素梅. 虱螨脲亚致死浓度对小菜蛾保护酶系和解毒酶系活力的影响. 植物保护学报, 2016, 43(2): 293-299.
JIA B T, JIAO P, YANG S M. Effects of sublethal concentrations of lufenuron on endogenous protective and detoxifying enzymes in the diamondback moth, Plutella xylostella (L.). Journal of Plant Protection, 2016, 43(2): 293-299. (in Chinese)
[32]
GUO L, SU M, LIANG P, LI S, CHU D. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype. Pesticide Biochemistry and Physiology, 2018, 150: 97-104.
[33]
左太强, 李帅, 张彬, 张芳, 万方浩, 郑长英. 低剂量杀虫剂与高温结合对西花蓟马种群的防控. 植物保护学报, 2017, 44(4): 687-692.
ZUO T Q, LI S, ZHANG B, ZHANG F, WAN F H, ZHENG C Y. Prevention and control of western flower thrips Frankliniella occidentalis by treatment with low doses of pesticides and high temperatures. Journal of Plant Protection, 2017, 44(4): 687-692. (in Chinese)
[34]
张建军. 温度、湿度及蒸发量对小菜蛾AchE和CarE活力影响的研究[D]. 福州: 福建农林大学, 2007.
ZHANG J J. Effects of cultural temperature, humidity and evaporation on the activities of AchE and CarE of Piutella xylostella larvae[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007. (in Chinese)
[35]
王晨. 干旱胁迫对棉花生理代谢及棉蚜种群发生的影响[D]. 扬州: 扬州大学, 2022.
WANG C. Effects of drought stress on the physiological metabolism of cotton plant and population dynamics of Aphis gossypii Glover[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
[36]
ZHU G D, DING W J, ZHAO Y F, XUE M, ZHAO H P, LIU S Z. Biological and physiological responses of two Bradysia pests, Bradysia odoriphaga and Bradysia difformis, to dinotefuran and lufenuron. Pesticide Biochemistry and Physiology, 2023, 190: 105338.
[37]
HAFEEZ M, JAN S, NAWAZ M, ALI E, ALI B, QASIM M, FERNÁNDEZ-GRANDON G M, SHAHID M, WANG M. Sub-lethal effects of lufenuron exposure on spotted bollworm Earias vittella (Fab): Key biological traits and detoxification enzymes activity. Environmental Science and Pollution Research International, 2019, 26(14): 14300-14312.
[38]
RICHARDSON E B, TROCZKA B J, GUTBROD O, DAVIES T G E, NAUEN R. Diamide resistance: 10 years of lessons from lepidopteran pests. Journal of Pest Science, 2020, 93(3): 911-928.
[39]
李兴烨, 李玉婷. 热驯化对禾谷缢管蚜杀虫剂敏感性及解毒酶的影响. 应用昆虫学报, 2024, 61(4): 845-853.
LI X Y, LI Y T. The effects of heat acclimation on insecticide susceptibility and detoxification enzyme of Rhopalosiphum padi. Chinese Journal of Applied Entomology, 2024, 61(4): 845-853. (in Chinese)
[40]
PERRIN M, MOIROUX J, MAUGIN S, OLIVARES J, RAULT M, SIEGWART M. Cross effects of heat stress and three insecticides on the survival of the codling moth Cydia pomonella (L.): Investigating the molecular and biochemical mechanisms. Pesticide Biochemistry and Physiology, 2022, 185: 105139.
[41]
ZHANG C N, LI Y, QIU T, WANG Y, WANG H, WANG K H, DAI W. Functional characterization of CYP6QE1 and CYP6FV21 in resistance to λ-cyhalothrin and imidacloprid in Bradysia odoriphaga. Journal of Agricultural and Food Chemistry, 2024, 72(6): 2925-2934.
[1] WANG WenJuan, SHI ShangLi, KANG WenJuan, DU YuanYuan, YIN Chen. The Physiological Response of Longzhong Alfalfa to Exogenous Spermine Under Drought Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 676-691.
[2] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[3] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[4] ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657.
[5] LI Han, JIANG ShangTao, PENG HaiYing, LI PeiGen, GU ChangYi, ZHANG JinLian, CHEN TingSu, XU YangChun, SHEN QiRong, DONG CaiXia. Effects of Inoculation with Indigenous and Exogenous Arbuscular Mycorrhizal Fungi on Drought Resistance of Pyrus betulaefolia and Its Adaptation Mechanism [J]. Scientia Agricultura Sinica, 2024, 57(1): 159-172.
[6] WANG RongRong, CHEN TianPeng, YIN HaoJie, JIANG GuiYing. Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties [J]. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841.
[7] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[8] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[9] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[10] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[11] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[12] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[13] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[14] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[15] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!