Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2966-2976.doi: 10.3864/j.issn.0578-1752.2023.15.011

• HORTICULTURE • Previous Articles     Next Articles

Development of Ogura CMS Restorers of Broccoli via Genetic Transformation of Rfo

XING MiaoMiao(), XU YuanYuan, LU YuYu, YAN JiYong, ZENG AiSong()   

  1. Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014
  • Received:2022-12-02 Accepted:2023-05-22 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 The broccoli restorers were developed by transforming the matching fertility restorer gene of Rfo from radish into the leading cultivar Ogura CMS line of Nai Han You Xiu (named as SFB45), so as to efficaciously use Ogura cytoplasmic male sterility (CMS) hybrids in breeding and to provide resources for genetic improvement of germplasm.【Method】 The sequence of CDS with its preceding promoter of Rfo were synthesized and the pRfo::Rfo plant expression vector was constructed to infect the cotyledon with petiole, and hypocotyl explants of the SFB45 through Agrobacterium-mediated transformation method. After regeneration and screening of herbicide resistant seedlings, transgenic plants were identified by detection of the Bar resistant marker. The fertility of transgenic plants were observed at flowering stage. The pollen viability of SFB45 and the transgenic plants were analyzed using the alexander stain. Total RNA of <3 mm and >3 mm flower buds from SFB45 and the transgenic plants were isolated and transcribed into cDNA. The Rfo specific primers were designed, and RT-PCR was performed to analyze the expression levels of Rfo and also the genes related to tapetum and pollen wall development in flower buds of SFB45 and its restorer lines.【Result】 A total of 10 transgenic plants were obtained by genetic transformation. Among which, the fertilities of 8 were restored to varying degrees with the average pollen viability ranging from 84.2% to 90.4%. RT-PCR analysis showed that Rfo was expressed in flower buds of fertility restored plants. The key regulators of tapetum development (DYT1 and TDF1) and the essential gene (ACOS5) for the synthesis of sporopollenin, a major component of the pollen wall were up-regulated in <3 mm flower buds of Ogura CMS restore lines. The tapetum degradation related gene AMS and tetrad callose wall and pollen outer wall development related genes CalS5 and CYP703 were up-regulated in >3 mm flower buds of the restore lines. The analysis of the self- and hybrid-crossing progenies of the positive transgenic lines R-1, R-3 and R-6 showed that the introduced Rfo could be stably inherited, which was consistent with the Mendelian inheritance.【Conclusion】 The fertility restorer lines of Ogura CMS SFB45 were obtained by genetic transformation of Rfo, and the integration of Rfo into the genome of SFB45 recovered the expression of genes associated with tapetum and pollen wall development.

Key words: broccoli, genetic transformation, Ogura CMS, Rfo, tapetum and pollen wall development-related genes

Table 1

Components of different culture medium for genetic transformation of broccoli"

培养基 Medium 成分 Component
MS培养基
MS medium
4.43 g∙L-1 MS培养基,30 g∙L-1蔗糖,8 g∙L-1琼脂粉,pH 5.9
4.43 g∙L-1 MS, 30 g∙L-1 sugar, 8 g∙L-1 agar, pH 5. 9
预培养基
Preculture medium
4.43 g∙L-1 MS培养基,30 g∙L-1蔗糖,8 g∙L-1琼脂粉,1 mg∙L-1 6-苄氨基嘌呤,0.1 mg∙L-1 萘乙酸,pH 5.9
4.43 g∙L-1 MS, 30 g∙L-1 sugar, 8 g∙L-1 agar, 1 mg∙L-1 6-BA, 0.1 mg∙L-1 NAA, pH 5. 9
共培养基
Cocultivation medium
4.43 g∙L-1 MS培养基,30 g∙L-1蔗糖,8 g∙L-1琼脂粉,1 mg∙L-1 6-苄氨基嘌呤,0.1 mg∙L-1 萘乙酸,100 μmol∙L-1乙酰丁香酮,pH 5.9
4.43 g∙L-1 MS, 30 g∙L-1 sugar, 8 g∙L-1 agar, 1 mg∙L-1 6-BA, 0.1 mg∙L-1 NAA, 100 μmol∙L-1 Acetosyringone, pH 5. 9
延迟培养基
Delayed medium
4.43 g∙L-1 MS培养基,30 g∙L-1蔗糖,8 g∙L-1琼脂粉,1 mg∙L-1 6-苄氨基嘌呤,0.1 mg∙L-1 萘乙酸,300 mg∙L-1特美汀,pH 5.9
4.43 g∙L-1 MS, 30 g∙L-1 sugar, 8 g∙L-1 agar, 1 mg∙L-1 6-BA, 0.1 mg∙L-1 NAA, 300 mg∙L-1 Timentin, pH 5. 9
选择培养基
Selective medium
4.43 g∙L-1 MS培养基,30 g∙L-1蔗糖,8 g∙L-1琼脂粉,1 mg∙L-1 6-苄氨基嘌呤,0.1 mg∙L-1 萘乙酸,300 mg∙L-1特美汀,pH 5.9
4.43 g∙L-1 MS, 30 g∙L-1 sugar, 8 g∙L-1 agar, 1 mg∙L-1 6-BA, 0.1 mg∙L-1 NAA, 10 mg∙L-1 basta, 300 mg∙L-1 Timentin, pH 5. 9
长苗培养基
Seedling medium
4.43 g∙L-1 MS培养基,30 g∙L-1蔗糖,8 g∙L-1琼脂粉,0.2 mg∙L-1 6-苄氨基嘌呤,0.1 mg∙L-1 萘乙酸,300 mg∙L-1特美汀,pH 5.9
4.43 g∙L-1 MS, 30 g∙L-1 sugar, 8 g∙L-1 agar, 0.2 mg∙L-1 6-BA, 0.1 mg∙L-1 NAA, 300 mg∙L-1 Timentin, pH 5. 9
生根培养基
Rooting medium
4.43 g∙L-1 MS培养基,30 g∙L-1蔗糖,8 g∙L-1琼脂粉,0.1 mg∙L-1 6-苄氨基嘌呤,0.1 mg∙L-1吲哚乙酸,pH 5. 9
4.43 g∙L-1 MS, 30 g∙L-1 sugar, 8 g∙L-1 agar, 0.1 mg∙L-1 NAA, 0.1 mg∙L-1 IBA, pH 5. 9

Table 2

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence
Bar-F AAACCCACGTCATGCCAGTT
Bar-R GTCTGCACCATCGTCAACCAC
Bo138300-F CCATGGACAATAATCTTAGT
Bo138300-R TAATGTGCATGAAGTTGAAG
PRfo-F cagtGCTCTTCaagacatattcatagattttgttt
PRfo-R cgatCGTCTCatttatttttgtttcgcctaa
Rfo-F cagtCGTCTCataaaatgttggctagggtttgtgg
Rfo-R cagtGCTCTTCaagttcatcccccaaatgatagat
Rfo-qF TGCTCTAAGCTCCCCTTTGC
Rfo-qR CAGAGCTACGGCTTCGACAA
Actin-F CCAGAGGTCTTGTTCCAGCCATC
Actin-R GTTCCACCACTGAGCACAATGTTAC
DYT1-F TTATGAACAACAAACGGT
DYT1-R ATCTCAAATCCCAACAGG
TDF1-F GAGATGTGGGAAGAGTTG
TDF1-R ATTAGGTGTGAGAAAGGC
BolC7t41091H-F TTCCTTCTTCCATCCCTC
BolC7t41091H-R GACCTCATCCGCTACCAT
BolC3t18036H-F TGCCCATCTTCCTTCTTC
BolC3t18036H-R CGTTACGGTTTCATCCAT
CYP703A2-F CTGGTGAGAATGGGAAAG
CYP703A2-R TCGTGAGGAATCAAGAAC
ACOS5-F AAGAGCATACCAATCCTA
ACOS5-R AGACACCTTCCTCAACAT
CalS5-F TGGTGTCATTGGTGCCTT
CalS5-R TTTTGCCGCTTCAGTTCT

Fig. 1

Structure of T-DNA in the plant expression cassette A: The structure of T-DNA in the plant expression cassette of pBWA (V) BS; B: The structure of T-DNA in the plant expression cassette of pRfo::Rfo"

Fig. 2

The process of transforming Rfo into SFB45 A: Sowing in MS culture medium; B: Pre-culture of cotyledon with petiole and hypocotyl; C: Resistant buds in selection medium; D: Resistant seedlings in selection medium; E: Positive plant; F: Positive plant at flowering stage"

Fig. 3

Identification of positive plants using specific markers of orf138 and Bar A: Line #1 represents negative control, the PCR template is transformed cabbage plant named e-10 with Bar gene. Line #2 represents positive control, the PCR template is broccoli Ogura CMS line SFB45. B: Line #1 represents negative control, the PCR template is SFB45; Line #2 represents positive control, the PCR template is e-10. Line #3 to #12 in A and B represent the transgenic plants numbered from R-1 to R-10"

Fig. 4

The flowers (A) and stamens (B) from SFB45 and different transgenic lines Scale bar in A is 3 mm, in B is 2 mm"

Fig. 5

Pollen viability of the transgenic plants with different restoration degrees Scale bar is 50 μm"

Fig. 6

Expression analysis of Rfo and genes related to tapetum and pollen wall development in flower buds of SFB45 and the restorer lines R-1s and R-1L represent the <3 mm and >3 mm flower buds in restorer line R-1, respectively; 45s and 45L indicate the <3 mm and >3 mm flower buds in Ogura CMS SFB45 respectively"

Table 3

Ratio of positive plants in the inbred/hybrid progenies of R-1, R-3 and R-6 transgenic plants"

自交/杂交Inbreds/Hybrids 阳性株数
Number of positive plants
阴性株数
Number of negative
plants
检测株数
Number of total detective plants
比例
Ratio
χ2 χ20.05,1
R-1×R-1 23 8 31 3:1 0.01 3.84
R-3×R-3 17 9 26 3:1 1.28 3.84
R-6×R-6 15 10 25 3:1 3.00 3.84
MXS×R-3 25 25 50 1:1 0 3.84
[1]
李占省, 刘玉梅, 韩风庆, 方智远, 张扬勇, 杨丽梅, 庄木, 吕红豪, 王勇, 季家磊. “十三五”我国青花菜遗传育种研究进展. 中国蔬菜, 2021(1): 33-40.
LI Z S, LIU Y M, HAN F Q, FANG Z Y, ZHANG Y Y, YANG L M, ZHUANG M, H H, WANG Y, JI J L. Research progress on broccoli genetic breeding during ‘The Thirteenth Five-Year Plan' in China. China Vegetables, 2021(1): 33-40. (in Chinese)
[2]
TALALAY P, FAHEY J W. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. The Journal of Nutrition, 2001, 131(11): 3027S-3033S.
[3]
WENG J R, TSAI C H, KULP S K, CHEN C S. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Letters, 2008, 262(2): 153-163.

doi: 10.1016/j.canlet.2008.01.033
[4]
RAMIREZ M C, SINGLETARY K. Regulation of estrogen receptor α expression in human breast cancer cells by sulforaphane. The Journal of Nutritional Biochemistry, 2009, 20(3): 195-201.

doi: 10.1016/j.jnutbio.2008.02.002
[5]
刘倩男, 黄伟, 丁云花, 王亚钦, 胡丽萍, 赵学志, 何洪巨, 刘光敏. 青花菜中硫代葡萄糖苷RAA和GBC的近红外光谱快速测定. 中国农业科学, 2020, 53(21): 4497-4506. doi: 10.3864/j.issn.0578-1752.2020.21.017.

doi: 10.3864/j.issn.0578-1752.2020.21.017
LIU Q N, HUANG W, DING Y H, WANG Y Q, HU L P, ZHAO X Z, HE H J, LIU G M. Rapid determination of RAA and GBC in broccoli by near infrared spectroscopy. Scientia Agricultura Sinica, 2020, 53(21): 4497-4506. doi: 10.3864/j.issn.0578-1752.2020.21.017. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.21.017
[6]
李占省, 戚如诗, 刘玉梅, 韩风庆. 我国青花菜生产布局、价格变化及趋势. 长江蔬菜, 2021(4): 1-5.
LI Z S, QI R S, LIU Y M, HAN F Q. Production layout, price change and trend of broccoli in China. Journal of Changjiang Vegetables, 2021(4): 1-5. (in Chinese)
[7]
李占省, 刘玉梅, 方智远, 杨丽梅, 庄木, 张扬勇, 吕红豪, 王勇. 我国青花菜产业发展现状、存在问题与应对策略. 中国蔬菜, 2019(4): 1-5.
LI Z S, LIU Y M, FANG Z Y, YANG L M, ZHUANG M, ZHANG Y Y, H H, WANG Y. Present situation, existing problems and countermeasures of broccoli industry in China. China Vegetables, 2019(4): 1-5. (in Chinese)
[8]
SHU J S, LIU Y M, LI Z S, ZHANG L L, FANG Z Y, YANG L M, ZHUANG M, ZHANG Y Y, H H. Detection of the diversity of cytoplasmic male sterility sources in broccoli (Brassica oleracea var. italica) using mitochondrial markers. Frontiers in Plant Science, 2016, 7: 927.
[9]
OGURA H. Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towerds the practical raising of hybrid seeds. Memoirs of the Faculty of Agriculture Kagoshima University, 1968, 6: 39-78.
[10]
GRELON M, BUDAR F, BONHOMME S, PELLETIER G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Molecular and General Genetics, 1994, 243(5): 540-547.

doi: 10.1007/BF00284202
[11]
于海龙. 甘蓝类蔬菜Ogura CMS恢复材料的创制及其遗传构成分析[D]. 杨凌: 西北农林科技大学, 2018.
YU H L. Creation and genetic composition analysis of Ogura CMS restoration materials for cabbage vegetables[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[12]
DESLOIRE S, GHERBI H, LALOUI W, MARHADOUR S, CLOUET V, CATTOLICO L, FALENTIN C, GIANCOLA S, RENARD M, BUDAR F, SMALL I, CABOCHE M, DELOURME R, BENDAHMANE A. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Reports, 2003, 4(6): 588-594.

doi: 10.1038/sj.embor.embor848 pmid: 12740605
[13]
QIN X K, WARGUCHUK R, ARNAL N, GABORIEAU L, MIREAU H, BROWN G G. In vivo functional analysis of a nuclear restorer PPR protein. BMC Plant Biology, 2014, 14(1): 313.

doi: 10.1186/s12870-014-0313-4
[14]
BELLAOUI M, GRELON M, PELLETIER G, BUDAR F. The restorer Rfo gene acts post-translationally on the stability of the\u00a0ORF138 Ogura CMS-associated protein in reproductive tissues of rapeseed cybrids. Plant Molecular Biology, 1999, 40(5): 893-902.

doi: 10.1023/A:1006223908044
[15]
UYTTEWAAL M, ARNAL N, QUADRADO M, MARTIN- CANADELL A, VRIELYNCK N, HIARD S, GHERBI H, BENDAHMANE A, BUDAR F, MIREAU H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. The Plant Cell, 2008, 20(12): 3331-3345.

doi: 10.1105/tpc.107.057208
[16]
PRIMARD-BRISSET C, POUPARD J P, HORVAIS R, EBER F, PELLETIER G, RENARD M, DELOURME R. A new recombined double low restorer line for the Ogu-INRA cms in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2005, 111(4): 736-746.

doi: 10.1007/s00122-005-2059-8
[17]
陈卫江, 李莓, 王同华, 惠荣奎, 涂金星, 傅廷栋. 甘蓝型油菜萝卜细胞质雄性不育恢复材料的创制. 中国农业科学, 2012, 45(8): 1465-1474. doi: 10.3864/j.issn.0578-1752.2012.08.002.

doi: 10.3864/j.issn.0578-1752.2012.08.002
CHEN W J, LI M, WANG T H, HUI R K, TU J X, FU T D. Creative process of a new restorer material with ogu CMS in Brassica nupus. Scientia Agricultura Sinica, 2012, 45(8): 1465-1474. doi: 10.3864/j.issn.0578-1752.2012.08.002. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.08.002
[18]
黄静静, 刘伟, 刘玉梅, 韩风庆, 方智远, 杨丽梅, 庄木, 张扬勇, 吕红豪, 王勇, 季家磊, 李占省. Ogura CMS青花菜育性恢复材料创制及其遗传背景研究. 园艺学报, 2022, 49(3): 533-547.

doi: 10.16420/j.issn.0513-353x.2021-0100
HUANG J J, LIU W, LIU Y M, HAN F Q, FANG Z Y, YANG L M, ZHUANG M, ZHANG Y Y, H H, WANG Y, JI J L, LI Z S. Creation of fertility restorer materials for Ogura CMS broccoli and the study of its genetic background. Acta Horticulturae Sinica, 2022, 49(3): 533-547. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-0100
[19]
YU H L, FANG Z Y, LIU Y M, YANG L M, ZHUANG M, H H, LI Z S, HAN F Q, LIU X P, ZHANG Y Y. Development of a novel allele-specific Rfo marker and creation of Ogura CMS fertility- restored interspecific hybrids in Brassica oleracea. Theoretical and Applied Genetics, 2016, 129(8): 1625-1637.

doi: 10.1007/s00122-016-2728-9
[20]
LI Q F, XU B B, DU Y M, PENG A, REN X S, SI J, SONG H Y. Development of Ogura CMS restorers in Brassica oleracea subspecies via direct RfoB gene transformation. Theoretical and Applied Genetics, 2021, 134(4): 1123-1132.

doi: 10.1007/s00122-020-03757-z
[21]
任文静, 于海龙, 陈立, 张斌, 陈文迪, 方智远, 杨丽梅, 庄木, 吕红豪, 王勇, 季家磊, 张扬勇. 甘蓝Ogura CMS育性恢复基因Rfo的传递效率解析及育种应用. 园艺学报, 2021, 48(11): 2197-2210.

doi: 10.16420/j.issn.0513-353x.2020-1078
REN W J, YU H L, CHEN L, ZHANG B, CHEN W D, FANG Z Y, YANG L M, ZHUANG M, H H, WANG Y, JI J L, ZHANG Y Y. High-throughput screening of transmission rate for Qgura CMS fertility restorer gene Rfo by HRM technique in cabbage. Acta Horticulturae Sinica, 2021, 48(11): 2197-2210. (in Chinese)
[22]
崔慧琳. 结球甘蓝YL-1遗传转化体系的建立及花色基因BolC.cpc-1的功能验证[D]. 合肥: 安徽农业大学, 2018.
CUI H L. Establishment of genetic transformation system of YL-1 in cabbage and functional verification of color gene BolC. cpc-1[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese)
[23]
朱琴, 康宗利, 简元才, 丁云花, 康俊根. 甘蓝细胞质雄性不育相关基因orf138的分子特性分析. 中国农学通报, 2012, 28(4): 104-109.
ZHU Q, KANG Z L, JIAN Y C, DING Y H, KANG J G. The molecular characteristics of ogura cytoplasmic male sterility related gene orf138 in cabbage (Brassica oleracea var. capitata). Chinese Agricultural Science Bulletin, 2012, 28(4): 104-109. (in Chinese)
[24]
SHI J X, CUI M H, YANG L, KIM Y J, ZHANG D B. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science, 2015, 20(11): 741-753.

doi: S1360-1385(15)00201-0 pmid: 26442683
[25]
LI N, ZHANG D S, LIU H S, YIN C S, LI X X, LIANG W Q, YUAN Z, XU B, CHU H W, WANG J, WEN T Q, HUANG H, LUO D, MA H, ZHANG D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant Cell, 2006, 18(11): 2999-3014.

doi: 10.1105/tpc.106.044107
[26]
XIE H H, CHEN L, XU F Q, GUO W S, WANG S, YANG Z N, ZHANG S. ACOS 5 is required for primexine formation and exine pattern formation during microsporogenesis in Arabidopsis. Journal of Plant Biology, 2017, 60(4): 404-412.

doi: 10.1007/s12374-016-0523-4
[27]
XIONG S X, LU J Y, LOU Y, TENG X D, GU J N, ZHANG C, SHI Q S, YANG Z N, ZHU J. The transcription factors MS188 and AMS form a complex to activate the expression ofCYP703A2for sporopollenin biosynthesis in Arabidopsis thaliana. The Plant Journal, 2016, 88(6): 936-946.

doi: 10.1111/tpj.13284
[28]
DONG X Y, HONG Z L, SIVARAMAKRISHNAN M, MAHFOUZ M, VERMA D P S. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. The Plant Journal, 2005, 42(3): 315-328.

doi: 10.1111/tpj.2005.42.issue-3
[29]
ZIEMIENOWICZ A. Plant Transgenesis. Plant Epigenetics. Totowa, NJ: Humana Press, 2010: 253-268.
[30]
HOBBS S L A, WARKENTIN T D, DELONG C M O. Transgene copy number can be positively or negatively associated with transgene expression. Plant Molecular Biology, 1993, 21(1): 17-26.

doi: 10.1007/BF00039614 pmid: 7678759
[31]
DE BUCK S, WINDELS P, DE LOOSE M, DEPICKER A. Single- copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable β-glucuronidase accumulation levels. Cellular and Molecular Life Sciences, 2004, 61(19/20): 2632-2645.

doi: 10.1007/s00018-004-4284-8
[32]
ELMAYAN T, VAUCHERET H. Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. The Plant Journal, 1996, 9(6): 787-797.

doi: 10.1046/j.1365-313X.1996.9060787.x
[33]
MATZKE A J M, MATZKE M A. Position effects and epigenetic silencing of plant transgenes. Current Opinion in Plant Biology, 1998, 1(2): 142-148.

doi: 10.1016/s1369-5266(98)80016-2 pmid: 10066569
[34]
DAY C D, LEE E, KOBAYASHI J, HOLAPPA L D, ALBERT H, OW D W. Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes & Development, 2000, 14(22): 2869-2880.

doi: 10.1101/gad.849600
[35]
SCOTT R J. Stamen structure and function. The Plant Cell, 2004, 16: S46-S60.

doi: 10.1105/tpc.017012
[36]
康俊根. 四种类型甘蓝雄性不育系花药败育特征及基因表达谱分析[D]. 北京: 中国农业科学院, 2006.
KANG J G. Analysis of anther abortion characteristics and gene expression profile of four types of cabbage male sterile lines[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)
[37]
BROWN G G, FORMANOVÁ N, JIN H, WARGACHUK R, DENDY C, PATIL P, LAFOREST M, ZHANG J F, CHEUNG W Y, LANDRY B S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. The Plant Journal, 2003, 35(2): 262-272.

doi: 10.1046/j.1365-313X.2003.01799.x
[1] DU JingYa, CHEN KaiYuan, PU Jin, ZHOU HuiYing, ZHU GuangTao, ZHANG ChunZhi, DU Hui. The Modification of Gene Editing Vector for Efficient GFPuv Fluorescence Screening and Its Application in Potato Genetic Transformation [J]. Scientia Agricultura Sinica, 2023, 56(11): 2223-2236.
[2] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[3] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[4] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[5] LIU QianNan,HUANG Wei,DING YunHua,WANG YaQin,HU LiPing,ZHAO XueZhi,HE HongJu,LIU GuangMin. Rapid Determination of RAA and GBC in Broccoli by Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2020, 53(21): 4497-4506.
[6] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[7] LIU MengQi,WU FengYing,WANG YueJin. Expression of Stilbene Synthase Gene and Resistance to Powdery Mildew Analysis of Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2019, 52(14): 2436-2449.
[8] YE MingWang, ZHANG ChunZhi, HUANG SanWen. Construction of High Efficient Genetic Transformation System for Diploid Potatoes [J]. Scientia Agricultura Sinica, 2018, 51(17): 3249-3257.
[9] LI ZhanSheng, LIU YuMei, FANG ZhiYuan, YANG LiMei, ZHUANG Mu, ZHANG YangYong, Lü HongHao. Full Length Cloning, Expression and Correlation Analysis of P450 CYP79F1 Gene with Sulforaphane Content in Different Broccoli Organs [J]. Scientia Agricultura Sinica, 2018, 51(12): 2357-2367.
[10] LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming. Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23 [J]. Scientia Agricultura Sinica, 2016, 49(20): 3927-3933.
[11] LIU Rui, ZHANG Huan-Huan, CHEN Zhi-Xiong, SHAHID Muhammad Qasim, FU Xue-Lin, LIU Yao-Guang, LIU Xiang-Dong, LU Yong-Gen. Development of Drought-Tolerant Rice Germplasm by Screening and Transforming TAC Clones of Oryza officinalis Wall. [J]. Scientia Agricultura Sinica, 2014, 47(8): 1445-1457.
[12] XIN Yan-Hua-1, XIAO Zhao-Yan-1, YOU Lin-Feng-1, GUO Li-Qiong-1, 2 , LIN Jun-Fang-1, 2 . Heterologous Expression of Taxadiene Synthase Gene in Ganoderma lucidum [J]. Scientia Agricultura Sinica, 2014, 47(3): 546-552.
[13] WANG Hai-Yan, LI Bao-Hua, ZHANG Qing-Ming, LI Gui-Fang, DONG Xiang-Li, WANG Cai-Xia. Transformation of Agrobacterium tumefaciens-Mediated Colletotrichum gloeosporioides and Identification of Transformants [J]. Scientia Agricultura Sinica, 2013, 46(9): 1799-1807.
[14] DU Kun, GAO Ya-Nan, KONG Yue-Qin, FAN Yun, WANG You-Ping. Effects of OsLTP Gene on Salt Tolerance of Transgenic Brassica napus [J]. Scientia Agricultura Sinica, 2013, 46(13): 2625-2632.
[15] XIE Chao, YANG Qing, SHI Ce, JUE Deng-Wei, ZHU Yan-Ping, LIU Shui-Ping. Cloning and Analysis of StLTPa7 from Solanum torvum [J]. Scientia Agricultura Sinica, 2012, 45(8): 1505-1512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!