Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2766-2781.doi: 10.3864/j.issn.0578-1752.2025.14.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Increasing Planting Density and Optimizing Plant Row Spacing to Improve Yield Water and Nitrogen Use Efficiency of Drip-Irrigated Maize in Sandy Areas of the Xiliaohe Plain

LI XiaoHong1,2(), WANG KeRu2, ZHANG GuoQiang2,*(), MING Bo2, XUE Jun2, FANG Liang2, ZHANG TingTing2, YE JianQuan3, LI ShaoKun2,*()   

  1. 1 College of Agriculture, Ningxia University, Yinchuan 750021
    2 Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081
    3 Tongliao Academy of Agricultural and Animal Husbandry Sciences, Tongliao 028000, Inner Mongolia
  • Received:2025-01-23 Accepted:2025-07-02 Online:2025-07-17 Published:2025-07-17
  • Contact: ZHANG GuoQiang, LI ShaoKun

Abstract:

【Objective】Reasonable increase of planting density and row spacing configuration is an important way to achieve high yield and high efficiency of maize. In order to provide the technical basis for high yield and high efficiency cultivation of drip irrigation maize in sandy land, the effects of dense planting and row spacing configuration on maize yield and water and fertilizer utilization efficiency in sandy land were studied under drip irrigation condition in Xiliaohe Plain.【Method】Field experiments were carried out in Naiman Banner of Inner Mongolia in 2023 and 2024, and 'Zhengdan 958' was used as the test maize variety. Two planting densities: 60 000 plants/hm2 (D1) and 90 000 plants/hm2 (D2) and seven row spacing treatments: 60 cm+60 cm (L60+60, CK), 40 cm+ 80 cm (L40+80), 30 cm+90 cm (L30+90), 30 cm+80 cm (L30+80), 40 cm+70 cm (L40+70), 30 cm+70 cm (L30+70) and 20 cm+70 cm (L20+70) were set. The effects of planting density and row spacing on maize yield, dry matter production, photosynthetic performance and water and nitrogen use efficiency under drip irrigation in sandy land were systematically analyzed.【Result】Planting density and row spacing significantly affected the grain yield and water and nitrogen use efficiency of drip-irrigated maize in sandy land. In the two-year experiment, L30+70 and L30+80 obtained higher yield under D2 density, which were 15.6 and 15.5 t·hm-2, respectively. The water use efficiency (WUE) reached 2.57 and 2.55 kg·m-3, respectively, and the partial factor productivity of nitrogen fertilizer (PFPN) reached 57.8 and 57.2 kg·kg-1, respectively. Among them, the yield difference between L30+80 and L30+90 in 2023 did not reach a significant level, and the yield was 18.2% and 17.0% higher than that of L60+60, respectively. The dry matter accumulation at silking stage (DMAS), dry matter accumulation at maturity stage (DMAM), dry matter accumulation after anthesis (DMAAS) and harvest index (HI) increased by 49.5%, 75.0%, 97.6%, 18.3% and 45.1%, 73.3%, 96.8%, 19.3% compared with L60+60, respectively. The total photosynthetic potential increased by 33.6% and 30.1% compared with L60+60 during the growth period. The light transmittance (Tr) of the bottom layer and ear layer decreased by 51.7%, 27.5% and 37.9%, 20.9% compared with L60+60, respectively. The photosynthetic rate (Pn) of ear leaf at silking stage (R1) and maturity stage (R6) increased by 61.0%, 60.3% and 61.5%, 59.4%, respectively. WUE and PFPN increased by 19.7%, 17.8% and 21.1%, 16.8% compared with L60+60, respectively. In 2024, there was no significant difference in yield between L30+70 and L30+80, which was 14.3% and 13.8% higher than that of L60+60, respectively; DMAS, DMAM, DMAAS and HI increased by 56.6%, 87.0%, 118.4%, 28.9% and 52.1%, 81.0%, 114.6%, 29.0%, respectively; the total photosynthetic potential increased significantly by 65.9% and 63.0% during the growth period, respectively; the Tr of the bottom layer and the ear layer decreased by 53.8%, 24.9% and 52.1%, 22.8%; the Pn of ear leaf of R1 and R6 increased by 18.7%, 86.6% and 65.6%, 86.2%, respectively. WUE and PFPN increased by 18.7%, 13.6% and 18.9%, 14.1%, respectively. Correlation analysis showed that maize yield was significantly positively correlated with 1000-grain weight, grain number per spike, number of harvested spikes, HI, WUE and PFPN. DMAS and DMAAS were significantly positively correlated with grain number per spike, 1000-grain weight, LAD before anthesis, LAD after anthesis and Pn, and negatively correlated with Tr.【Conclusion】Under the condition of drip irrigation and fertilizer integration in the sandy land of Xiliaohe Plain, the interaction between planting density and row spacing mainly affected the grain yield and water and nitrogen use efficiency of maize by affecting the light transmittance of maize population, leaf photosynthetic capacity, dry matter accumulation and LAD. Therefore, the high yield and water and nitrogen production efficiency could be obtained by reasonably increasing the density of high-yield varieties to 90 000 plants/hm2 and wide-narrow row spacing of 30 cm+70/80 cm.

Key words: sandy land, drip-irrigated maize, plant row spacing, yield, water and nitrogen use efficiency

Fig. 1

Changes in precipitation and mean temperature during the reproductive period of maize"

Table 1

Changes of yield and composition of maize under different planting density and row spacing treatments in sandy land"

年份
Year
密度
Density
株行距
Plant row spacing
收获穗数
Harvest Ears per ha (×104·hm-2)
穗粒数
Kernel number per ear
千粒重
1000-kernel weight (g)
产量
Yield (t·hm-2)
2023 D1 L40+80 5.89±0.01a 591.33±21.34a 373.93±3.67b 12.87±0.05b
L30+90 5.61±0.24a 603.60±8.73a 421.97±2.40a 13.82±0.01a
L60+60 5.67±0.10a 526.13±11.48b 309.83±4.71c 11.83±0.02c
L30+80 5.42±0.19a 614.87±21.80a 432.40±1.18a 13.99±0.14a
D2 L40+80 8.89±0.06a 569.60±3.94a 339.00±2.52b 14.62±0.08b
L30+90 8.72±0.05a 578.13±28.98a 359.00±4.04a 15.07±0.07a
L60+60 8.83±0.01a 448.40±50.24b 308.03±3.65c 12.90±0.03c
L30+80 8.83±0.29a 598.40±31.95a 371.07±6.71a 15.15±0.12a
2024 D1 L40+80 5.35±0.21a 550.53±22.74b 390.80±0.95b 12.79±0.03b
L40+70 5.72±0.21a 558.20±2.00b 409.30±3.62b 12.90±0.01b
L60+60 5.53±0.31a 491.77±6.70c 318.43±5.54d 12.26±0.03c
L30+80 5.43±0.20a 636.40±21.19a 436.70±5.66a 13.83±0.10a
L30+70 5.52±0.13a 640.27±10.70a 442.03±5.06a 13.83±0.02a
L20+70 5.31±0.13a 496.13±10.31c 344.07±11.01c 12.31±0.04c
D2 L40+80 8.90±0.42a 519.60±3.20b 357.63±1.88b 15.13±0.14a
L40+70 8.91±0.12a 513.07±6.78b 371.20±2.10b 15.14±0.03a
L60+60 8.72±0.70a 455.20±21.70c 301.20±3.61d 13.64±0.05c
L30+80 8.88±0.72a 561.87±10.10a 406.50±11.49a 15.73±0.15b
L30+70 8.78±0.81a 568.53±14.54a 421.20±4.01a 15.60±0.03b
L20+70 8.90±0.91a 463.87±11.00c 334.87±4.81c 13.60±0.03c
年份Year NS ** ** **
密度Density ** ** ** **
株行距Plant row spacing NS ** ** **
年份×密度Year×Density NS NS * **
年份×株行距Year×Plant row spacing NS NS ** **
密度×株行距Density×Plant row spacing NS NS ** **
年份×密度×株行距
Year×Density×Plant row spacing
NS NS ** NS

Table 2

Changes of dry matter accumulation and HI of maize under different planting density and row spacing treatments in sandy land"

年份
Year
密度
Density
株行距
Plant row spacing
吐丝期干物质积累量
Dry matter accumulation before silking (t·hm-2)
成熟期干物质积累量
Dry matter accumulation at maturity (t·hm-2)
花后干物质积累量
Dry matter accumulation
after anthesis (t·hm-2)
花后干物质积累率
Dry matter accumulation rate after anthesis (%)
收获指数
HI
2023 D1 L40+80 6.96±0.07b 16.28±0.15b 9.32±0.11b 57.23±0.33b 0.52±0.01b
L30+90 7.88±0.14a 20.11±0.47a 12.23±0.33a 60.80±0.26a 0.57±0.01a
L60+60 5.45±0.22c 11.23±0.29c 5.78±0.07c 51.44±0.74c 0.49±0.02c
L30+80 8.33±0.15a 20.56±0.16a 12.23±0.14a 59.50±0.59a 0.56±0.01a
D2 L40+80 8.94±0.28b 21.14±0.04b 12.45±0.19b 58.91±1.01b 0.49±0.02b
L30+90 11.05±0.23a 28.71±0.34a 17.37±0.08a 61.13±0.37a 0.53±0.01a
L60+60 7.59±0.14c 17.14±0.25c 9.54±0.11c 55.70±0.20c 0.44±0.01c
L30+80 11.10±0.15a 28.60±0.25a 17.51±0.23a 61.21±0.47a 0.53±0.01a
2024 D1 L40+80 8.01±0.19b 17.09±0.42b 9.08±0.25b 53.13±0.44b 0.52±0.01b
L40+70 8.01±0.33b 17.73±0.67b 9.71±0.35b 54.81±0.22b 0.52±0.02b
L60+60 6.52±0.03c 12.86±0.27c 6.34±0.29c 49.22±1.26c 0.46±0.01c
L30+80 10.14±0.34a 23.78±0.84a 14.32±0.50a 58.55±0.04a 0.57±0.02a
L30+70 10.06±0.03a 24.34±0.23a 14.48±0.20a 59.01±0.42a 0.57±0.01a
L20+70 7.16±0.30c 13.95±0.27c 6.80±0.23c 48.73±1.61c 0.47±0.01c
D2 L40+80 9.81±0.20b 22.53±0.31b 12.72±0.23b 56.47±0.65b 0.47±0.01b
L40+70 9.92±0.38b 22.65±0.66b 12.73±0.28b 56.25±0.41b 0.47±0.01b
L60+60 8.30±0.34c 17.26±0.53c 8.96±0.27c 51.94±0.95c 0.40±0.03c
L30+80 12.34±0.67a 30.56±1.23a 18.21±0.57a 59.66±0.58a 0.54±0.01a
L30+70 13.19±0.27a 31.87±0.31a 18.68±0.04a 58.63±0.44a 0.53±0.01a
L20+70 8.60±0.24c 18.27±0.57c 9.66±0.33c 52.87±0.19c 0.41±0.01b
年份Year (Y) ** ** ** ** *
密度Density (D) ** ** ** ** **
株行距Plant row spacing (P) ** ** ** ** **
年份×密度 Y×D * ** ** ** **
年份×株行距 Y×P ** ** ** ** **
密度×株行距 D×P * ** ** ** **
年份×密度×株行距 Y×D×P NS NS * NS NS

Table 3

Variance analysis of photosynthetic potential of maize under different planting density and row spacing treatments in sandy land"

变异来源
Source of variation
光合势LAD (m2·d-1·m-2)
花前 Pre-silking 花后 Post-silking 全生育期Whole growth period
年份Year (Y) ** ** **
密度Density (D) ** ** **
株行距Plant row spacing (P) ** ** **
年份×密度 Y×D NS ** **
年份×株行距 Y×P * ** **
密度×株行距 D×P NS ** **
年份×密度×株行距 Y×D×P NS NS NS

Fig. 2

Changes of photosynthetic potential of maize under different planting density and row spacing treatments in sandy land"

"

Fig. 4

Changes of photosynthetic rate of ear leaf of maize under different planting density and row spacing treatments in sandy land"

Fig. 5

Changes of water use efficiency of maize under different planting density and row spacing treatments in sandy land"

Fig. 6

Changes of nitrogen partial factor productivity of maize under different planting density and row spacing treatments in sandy land"

Fig. 7

The correlation between yield and dry matter accumulation, photosynthetic potential, light transmittance and photosynthetic rate"

[1]
李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 等. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, et al. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)
[2]
WANG K R, XIE R Z, XUE J, SUN L R, LI S K. Comparison and analysis of maize grain commodity quality and mechanical harvest quality between China and the United States. International Journal of Agricultural and Biological Engineering, 2022, 15(1): 55-61.
[3]
JIN X L, LI Z H, FENG H K, REN Z B, LI S K. Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model. Agricultural Water Management, 2020, 227: 105846.
[4]
LI J, WU M, WANG K R, MING B, CHANG X, WANG X B, YANG Z S, XIE R Z, LI S K. Identifying ways to narrow maize yield gaps based on plant density experiments. Agronomy, 2020, 10(2): 281.
[5]
LI J, XIE R Z, WANG K R, HOU P, MING B, ZHANG G Q, LIU G Z, WU M, YANG Z S, LI S K. Response of canopy structure, light interception and grain yield to plant density in maize. The Journal of Agricultural Science, 2018, 156(6): 785-794.
[6]
胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018, 44(6): 920-930.

doi: 10.3724/SP.J.1006.2018.00920
HU D D, ZHANG J W, LIU P, ZHAO B, DONG S T. Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agronomica Sinica, 2018, 44(6): 920-930. (in Chinese)
[7]
何冬冬, 杨恒山, 张玉芹. 扩行距、缩株距对春玉米冠层结构及产量的影响. 中国生态农业学报, 2018, 26(3): 397-408.
HE D D, YANG H S, ZHANG Y Q. Effects of line-spacing expansion and row-spacing shrinkage on canopy structure and yield of spring corn. Chinese Journal of Eco-Agriculture, 2018, 26(3): 397-408. (in Chinese)
[8]
LI J, XIE R Z, WANG K R, MING B, GUO Y Q, ZHANG G Q, LI S K. Variations in maize dry matter, harvest index, and grain yield with plant density. Agronomy Journal, 2015, 107(3): 829-834.
[9]
王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15000 kg·hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45(16): 3437-3445. doi:10.3864/j.issn.0578-1752.2012.16.025.
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K. Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012, 45(16): 3437-3445. doi:10.3864/j.issn.0578-1752.2012.16.025. (in Chinese)
[10]
朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53(15): 3048-3058. doi:10.3864/j.issn.0578-1752.2020.15.006.
PIAO L, LI B, CHEN X C, DING Z S, ZHANG Y, ZHAO M, LI C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Scientia Agricultura Sinica, 2020, 53(15): 3048-3058. doi:10.3864/j.issn.0578-1752.2020.15.006. (in Chinese)
[11]
李静, 王洪章, 许佳诣, 刘鹏, 张吉旺, 赵斌, 任佰朝. 不同栽培模式对夏玉米冠层结构及光合性能的影响. 中国农业科学, 2020, 53(22): 4550-4560. doi:10.3864/j.issn.0578-1752.2020.22.003.
LI J, WANG H Z, XU J Y, LIU P, ZHANG J W, ZHAO B, REN B Z. Effects of different cultivation modes on canopy structure and photosynthetic performance of summer maize. Scientia Agricultura Sinica, 2020, 53(22): 4550-4560. doi:10.3864/j.issn.0578-1752.2020.22.003. (in Chinese)
[12]
LIU G Z, HOU P, XIE R Z, MING B, WANG K R, XU W J, LIU W M, YANG Y S, LI S K. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg·ha-1. Field Crops Research, 2017, 213: 221-230.
[13]
LI R F, ZHANG G Q, XIE R Z, HOU P, MING B, XUE J, WANG K R, LI S K. Optimizing row spacing increased radiation use efficiency and yield of maize. Agronomy Journal, 2021, 113(6): 4806-4818.
[14]
辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响. 作物学报, 2025, 51 (1): 221-232.

doi: 10.3724/SP.J.1006.2025.34189
XIN M H, MI Y D, WANG G P, LI X F, LI Y B, DONG H L, HAN Y C, FENG L. Effects of row spacing configuration and density regulation on dry matter production and yield in cotton. Acta Agronomica Sinica, 2025, 51 (1): 221-232. (in Chinese)
[15]
白晶, 张春雨, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 行距配置和覆反光膜对夏玉米产量及光能利用的影响. 中国农业科学, 2020, 53(19): 3942-3953. doi:10.3864/j.issn.0578-1752.2020.19.008.
BAI J, ZHANG C Y, DING X P, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of row spacing and mulching reflective film on the yield and light utilization of summer maize. Scientia Agricultura Sinica, 2020, 53(19): 3942-3953. doi:10.3864/j.issn.0578-1752.2020.19.008. (in Chinese)
[16]
贺玉鹏, 樊志龙, 赵财, 胡发龙, 殷文, 于爱忠, 柴强. 行距比例及密度对绿洲灌区玉米水分利用效率的互作效应. 水土保持学报, 2020, 34(4): 224-229, 236.
HE Y P, FAN Z L, ZHAO C, HU F L, YIN W, YU A Z, CHAI Q. The interaction effect of row spacing ratio and planting density on water use efficiency of maize in oasis irrigation district. Journal of Soil and Water Conservation, 2020, 34(4): 224-229, 236. (in Chinese)
[17]
肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018, 51(22): 4264-4276. doi:10.3864/j.issn.0578-1752.2018.22.005.
XIAO J B, LIU Z, KONG F X, XIN Z X, WU H S. Effects of planting pattern and density on population structure and yield of sorghum. Scientia Agricultura Sinica, 2018, 51(22): 4264-4276. doi:10.3864/j.issn.0578-1752.2018.22.005. (in Chinese)
[18]
金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630.

doi: 10.3724/SP.J.1006.2020.93034
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)

doi: 10.3724/SP.J.1006.2020.93034
[19]
丁相鹏, 白晶, 张春雨, 张吉旺, 刘鹏, 任佰朝, 赵斌. 扩行缩株对夏玉米群体冠层结构及产量的影响. 中国农业科学, 2020, 53(19): 3915-3927. doi:10.3864/j.issn.0578-1752.2020.19.006.
DING X P, BAI J, ZHANG C Y, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of line-spacing expansion and row-spacing shrinkage on population structure and yield of summer maize. Scientia Agricultura Sinica, 2020, 53(19): 3915-3927. doi:10.3864/j.issn.0578-1752.2020.19.006. (in Chinese)
[20]
熊淑萍, 曹文博, 张志勇, 张捷, 高明, 樊泽华, 沈帅杰, 王小纯, 马新明. 行距和播种量对冬小麦冠层光合有效辐射垂直分布、生物量和籽粒产量的影响. 应用生态学报, 2021, 32(4): 1298-1306.

doi: 10.13287/j.1001-9332.202104.026
XIONG S P, CAO W B, ZHANG Z Y, ZHANG J, GAO M, FAN Z H, SHEN S J, WANG X C, MA X M. Effects of row spacing and sowing rate on vertical distribution of photosynthetically active radiation, biomass and grain yield in winter wheat canopy. Chinese Journal of Applied Ecology. 2021, 32(4): 1298-1306. (in Chinese)
[21]
LI R F, ZHANG G Q, LIU G Z, WANG K R, XIE R Z, HOU P, MING B, WANG Z G, LI S K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food and Energy Security, 2021, 10(4): e312.
[22]
石德杨, 李艳红, 王飞飞, 夏德君, 矫岩林, 孙妮娜, 赵健. 高密度下扩行缩株对夏玉米干物质与养分积累、转运的调控效应. 中国农业科学, 2024, 57(23): 4658-4672. doi: 10.3864/j.issn.0578-1752.2024.23.007.
SHI D Y, LI Y H, WANG F F, XIA D J, JIAO Y L, SUN N N, ZHAO J. Regulatory effects of line-spacing expansion and row-spacing shrinkage on dry matter and nutrient accumulation and transport of summer maize under high plant density. Scientia Agricultura Sinica, 2024, 57(23): 4658-4672. doi: 10.3864/j.issn.0578-1752.2024.23.007. (in Chinese)
[23]
李利敏, 李娟娟, 马理辉, 高成平, 刘思春. 沙地滴灌春玉米最适氮磷钾配方施肥研究. 中国土壤与肥料, 2021(1): 95-100.
LI L M, LI J J, MA L H, GAO C P, LIU S C. Optimum application of nitrogen, phosphorus and potassium with drip irrigation for spring maize in sandy soil. Soil and Fertilizer Sciences in China, 2021(1): 95-100. (in Chinese)
[24]
ZHANG G Q, LIU C W, XIAO C H, XIE R Z, MING B, HOU P, LIU G Z, XU W J, SHEN D P, WANG K R, LI S K. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Research, 2017, 211: 137-146.
[25]
梅园雪, 冯玉涛, 冯天骄, 汪伟, 孙宝忠. 玉米浅埋滴灌节水种植模式产量与效益分析. 玉米科学, 2018, 26(1): 98-102.
MEI Y X, FENG Y T, FENG T J, WANG W, SUN B Z. Brief discussion on the efficient water-saving planting mode of shallow buried drip irrigation. Journal of Maize Sciences, 2018, 26(1): 98-102. (in Chinese)
[26]
任佰朝, 张吉旺, 董树亭, 赵斌, 刘鹏. 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017, 50(11): 2093-2103. doi: 10.3864/j.issn.0578-1752.2017.11.015.
REN B Z, ZHANG J W, DONG S T, ZHAO B, LIU P. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2017, 50(11): 2093-2103. doi: 10.3864/j.issn.0578-1752.2017.11.015. (in Chinese)
[27]
沈东萍, 张国强, 王克如, 肖春华, 徐文娟, 刘广周, 张小伟, 陈永生, 刘朝巍, 李少昆, 等. 滴灌量对高产春玉米冠层结构特征及产量的影响. 西北农业学报, 2018, 27(8):1137-1145.
SHEN D P, ZHANG G Q, WANG K R, XIAO C H, XU W J, LIU G Z, ZHANG X W, CHEN Y S, LIU C W, LI S K, et al. Effects of drip irrigation amount on canopy structure characteristics and yield of high-yield spring maize. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(8): 1137-1145. (in Chinese)
[28]
胡旦旦, 李荣发, 刘鹏, 董树亭, 赵斌, 张吉旺, 任佰朝. 密植条件下玉米品种混播提高籽粒灌浆性能和产量. 中国农业科学, 2021, 54(9): 1856-1868. doi: 10.3864/j.issn.0578-1752.2021.09.004.
HU D D, LI R F, LIU P, DONG S T, ZHAO B, ZHANG J W, REN B Z. Mixed-cropping improved on grain filling characteristics and yield of maize under high planting densities. Scientia Agricultura Sinica, 2021, 54(9): 1856-1868. doi: 10.3864/j.issn.0578-1752.2021.09.004. (in Chinese)
[29]
刘永忠, 李万星, 曹晋军, 靳鲲鹏. 高密度条件下行距配置对春玉米光合特性及产量的影响. 华北农学报, 2017, 32(3): 111-117.

doi: 10.7668/hbnxb.2017.03.017
LIU Y Z, LI W X, CAO J J, JIN K P. Effects of row spacing on photosynthetic characteristics and yield of spring maize under high density. Acta Agriculturae Boreali-Sinica, 2017, 32(3): 111-117. (in Chinese)

doi: 10.7668/hbnxb.2017.03.017
[30]
SAENZ E, RUIZ A, SCIARRESI C, KING K, BAUM M, FERELA A, DANALATOS G J N, GAMBIN B, KALOGEROPOULOS G, THIES A, et al. Historical increases in plant density increased vegetative maize biomass while breeding increased reproductive biomass and allocation to ear over stem. Field Crops Research, 2025, 322: 109704.
[31]
胡昌浩, 董树亭, 王空军, 孙庆泉. 我国不同年代玉米品种生育特性演进规律研究产量性状的演进. 玉米科学, 1998, 6(2): 44-48.
HU C H, DONG S T, WANG K J, SUN Q Q. A study on the evolutionary pattern of fertility traits of maize varieties of different ages in China Evolution of yield traits. Journal of Maize Sciences, 1998, 6(2): 44-48. (in Chinese)
[32]
杨恒山, 薛新伟, 张瑞富, 李金琴, 王宇飞, 邰继承, 刘晶. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响. 农业工程学报, 2019, 35(21): 69-77.
YANG H S, XUE X W, ZHANG R F, LI J Q, WANG Y F, TAI J C, LIU J. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe Plain. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 69-77. (in Chinese)
[33]
吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3): 447-455.
L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 447-455. (in Chinese)
[34]
SHEN D P, WANG K R, ZHOU L L, FANG L, WANG Z, FU J L, ZHANG T T, LIANG Z Y, XIE R Z, MING B, et al. Increasing planting density and optimizing irrigation to improve maize yield and water-use efficiency in Northeast China. Agronomy, 2024, 14(2): 400.
[35]
WANG N, ZHANG T H, CONG A Q, LIAN J. Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region. Agricultural Water Management, 2023, 289: 108566.
[36]
常佳悦, 马小龙, 吴艳莉, 李建明. 行距和灌水量对番茄冠层光截获和光合能力、物质积累及果实品质的影响. 中国农业科学, 2023, 56(11): 2141-2157. doi: 10.3864/j.issn.0578-1752.2023.11.009.
CHANG J Y, MA X L, WU Y L, LI J M. Effects of row spacing and irrigation amount on canopy light interception and photosynthetic capacity, matter accumulation and fruit quality of tomato. Scientia Agricultura Sinica, 2023, 56(11): 2141-2157. doi: 10.3864/j.issn.0578-1752.2023.11.009. (in Chinese)
[37]
覃凤, 汪小飞, 吴臻, 胡一波, 王小琴, 张家伟, 蔡铁. 集雨种植模式下种植密度与行距配置对小麦茎秆糖积累及倒伏性能的影响. 中国农业科学, 2024, 57(1): 65-79. doi:10.3864/j.issn.0578-1752.2024.01.006.
QIN F, WANG X F, WU Z, HU Y B, WANG X Q, ZHANG J W, CAI T. Effects of planting density and row spacing configuration on sugar accumulation and lodging performance of wheat stem under rainfall harvesting planting mode. Scientia Agricultura Sinica, 2024, 57(1): 65-79. doi:10.3864/j.issn.0578-1752.2024.01.006. (in Chinese)
[38]
苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海. 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016, 42(1): 104-112.
CHANG J F, ZHANG H H, LI H P, DONG P F, LI C H. Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agronomica Sinica, 2016, 42(1): 104-112. (in Chinese)
[39]
范盼盼, 谢瑞芝, 明博, 李姚姚, 王克如, 侯鹏, 李少昆. 基于不同叶位受光条件的玉米冠层光合生产能力分析. 玉米科学, 2017, 25(5): 68-72.
FAN P P, XIE R Z, MING B, LI Y Y, WANG K R, HOU P, LI S K. Analysis of photosynthetic productivity of maize canopy based on light conditions of different leaf positions. Journal of Maize Sciences, 2017, 25(5): 68-72. (in Chinese)
[40]
魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25(2): 441-450.
WEI S S, WANG X Y, DONG S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chinese Journal of Applied Ecology, 2014, 25(2): 441-450. (in Chinese)
[41]
梁熠, 何文寿, 代晓华, 马琨, 侯贤清. 株行配置对春玉米根冠空间分布及产量的影响. 玉米科学, 2016, 24(6): 97-102.
LIANG Y, HE W S, DAI X H, MA K, HOU X Q. Effect of planting density and row spacing on root-shoot spatial distribution and grain yield of spring maize. Journal of Maize Sciences, 2016, 24(6): 97-102. (in Chinese)
[42]
王心, 林涛, 崔建平, 张鹏忠, 汤秋香, 郭仁松, 王亮, 邵亚杰. 种植模式与灌溉定额对机采长绒棉冠层不同层次光截获与产量形成的影响. 生态学杂志, 2024, 43(3): 741-748.
WANG X, LIN T, CUI J P, ZHANG P Z, TANG Q X, GUO R S, WANG L, SHAO Y J. Effects of planting patterns and irrigation quotas on light interception at different canopy layers and yield formation of machine-picked sea-island cotton. Chinese Journal of Ecology, 2024, 43(3): 741-748. (in Chinese)

doi: 10.13292/j.1000-4890.202403.004
[43]
LIU G Z, YANG Y S, GUO X X, LIU W M, XIE R Z, MING B, XUE J, WANG K R, LI S K, HOU P. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg·ha-1. Field Crops Research, 2022, 283:108544.
[44]
王佳旭, 满艳苹, 李凤海, 朱敏, 钟雪梅, 王宏伟. 不同种植方式对玉米冠层调控及产量的影响. 西北农业学报, 2023, 32(1): 33-43.
WANG J X, MAN Y P, LI F H, ZHU M, ZHONG X M, WANG H W. Effects of different planting patterns on canopy regulation and yield in maize. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(1): 33-43. (in Chinese)
[45]
高亚男, 曹庆军, 韩海飞, 崔金虎, 王洪预. 不同行距对春玉米产量和光合速率的影响. 玉米科学, 2010, 18(2): 73-76.
GAO Y N, CAO Q J, HAN H F, CUI J H, WANG H Y. Effect of different row spacings on yield and chloroplast rats of spring maize. Journal of Maize Sciences, 2010, 18(2): 73-76. (in Chinese)
[46]
王磊, 李雅文, 樊廷录, 张建军, 赵刚, 党翼, 李尚中. 适宜机械收获株行距对黄土旱塬春玉米产量及水分利用效率的影响. 水土保持研究, 2017, 24(5): 363-370.
WANG L, LI Y W, FAN T L, ZHANG J J, ZHAO G, DANG Y, LI S Z. Effects of row spacing on grain yield and water use efficiency of mechanical harvest spring maize in Dryland of the Loess Plateau. Research of Soil and Water Conservation, 2017, 24(5): 363-370. (in Chinese)
[47]
刘鹏, 董树亭, 李少昆, 张吉旺. 高产玉米氮素高效利用. 中国农业科学, 2017, 50(12): 2232-2237. doi:10.3864/j.issn.0578-1752.2017.12.004.
LIU P, DONG S T, LI S K, ZHANG J W. High nitrogen use efficiency of high-yielding maize. Scientia Agricultura Sinica, 2017, 50(12): 2232-2237. doi:10.3864/j.issn.0578-1752.2017.12.004. (in Chinese)
[48]
徐晨, 闫伟平, 孙宁, 刘晓龙, 赵洪祥, 谭国波, 武志海, 张治安, 张丽华, 边少锋. 不同灌水处理对春玉米生理特性的影响. 灌溉排水学报, 2021, 40(1): 7-14.
XU C, YAN W P, SUN N, LIU X L, ZHAO H X, TAN G B, WU Z H, ZHANG Z A, ZHANG L H, BIAN S F. The impacts of irrigation amount on physiological characteristics and yield of spring maize. Journal of Irrigation and Drainage, 2021, 40(1): 7-14. (in Chinese)
[49]
何建宁, 张振, 石玉, 于振文. 宽幅精播与行距对小麦耗水特性和产量的影响. 应用生态学报, 2024, 35(7): 1833-1842.

doi: 10.13287/j.1001-9332.202407.014
HE J N, ZHANG Z, SHI Y, YU Z W. Effect of wide precision sowing and row spacing on water consumption characteristics and yield of wheat. Chinese Journal of Applied Ecology, 2024, 35(7): 1833-1842. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!