Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (13): 2591-2603.doi: 10.3864/j.issn.0578-1752.2025.13.008

• PLANT PROTECTION • Previous Articles     Next Articles

Insecticidal Active Component Identification of Camellia oleifera Shell Against Mythimna separata and Its Action Mechanism

ZHAN Li1(), LIANG ZongSuo2, YU Jing3, LU Jun1, LIANG Qian1()   

  1. 1 College of Biology and Food Engineering, Southwest Forestry University, Kunming 650224
    2 College of Life Sciences and Medicine, Zhejiang Science and Technology University, Hangzhou 310018
    3 College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, Hainan
  • Received:2025-03-21 Accepted:2025-05-03 Online:2025-07-01 Published:2025-07-05

Abstract:

【Objective】 The objective of this study is to clarify the insecticidal active component and mechanism of Camellia oleifera shell on Mythimna separate, and to provide a basis for the development of botanical insecticides for M. separata. 【Method】 The insecticidal activity of petroleum ether, chloroform, ethyl acetate, and aqueous extracts of C. oleifera shell against 3rd instar larvae of M. separata was evaluated using the immersion and leaf-dipping methods. The petroleum ether extract was subjected to silica gel column chromatography for separation, followed by gas chromatography-mass spectrometry (GC-MS) analysis to identify the active components. Furthermore, a non-targeted metabolomics approach was employed to annotate, screen, and analyze differential metabolites in M. separata. 【Result】 The petroleum ether extract of C. oleifera shell exhibited the highest contact toxicity against M. separata, with LC50 values of 9.53, 8.00, 7.51, and 7.02 mg·mL-1 on 1, 3, 5, and 7 d, respectively. The petroleum ether extract was separated by silica gel column chromatography to obtain 20 fractions, among which fraction 6 showed the best contact toxicity against M. separata, with LC50 values of 3.99, 3.85, 3.72, and 3.72 mg·mL-1 on 1, 3, 5, and 7 d, respectively. Further separation of fraction 6 yielded 21 subfractions, with subfraction 6.4 demonstrating the highest contact toxicity. GC-MS analysis identified hexadecane (19.33%), 1-hexadecene (14.21%), octacosane (4.03%), octadecane (9.24%), dichlorochrysanthemic acid (6.73%), 1-octadecene (7.27%), 1-tetracosanol (3.87%) and isophytol (5.92%) as the main compounds. Among these, dichlorochrysanthemic acid exhibited the strongest contact toxicity against M. separata, with LC50 values of 91.62, 55.61, 34.94, and 24.43 μg·mL-1 on 1, 3, 5, and 7 d, respectively. Its insecticidal efficacy was comparable to that of the positive control, pyrethrin. Non-targeted metabolomics analysis identified six differential metabolites, among which piceid, cannabinoid, 5-fluoro-cannabinoid metabolite, and caproylglycine were significantly upregulated, while 4-ethyl-2,6-dihydroxyphenyl sulfate and N-pentacosanoylglycine were significantly downregulated. These differential metabolites were primarily enriched in four metabolic pathways: cofactor biosynthesis, tryptophan metabolism, niacin and nicotinamide metabolism, ubiquinone and terpenoid-quinone biosynthesis. 【Conclusion】 Dichlorochrysanthemic acid from C. oleifera shell extract exhibits insecticidal activity against M. separata, providing a new avenue for the biological control of M. separata and the high-value utilization of C. oleifera shell.

Key words: Camellia oleifera shell, Mythimna separata, contact toxicity, dichlorochrysanthemic acid, metabolomics

Table 1

Gradient elution program for mobile phase"

时间
Time (min)
流动相Mobile
phase A (v%)
流动相B
Mobile phase B (v%)
0 95 5
0.5 95 5
5.5 50 50
9.0 5 95
10.5 5 95
10.6 95 5
12.0 95 5

Fig. 1

Experimental flowchart"

Table 2

Corrected mortality rates of insecticidal activity of different extracts from C. oleifera shell at concentration of 15 mg·mL-1 against M. separata"

杀虫方式
Insecticidal method
提取物
Extract
校正死亡率Corrected mortality rate (%)
1 d 3 d 5 d 7 d
触杀活性
Contact toxicity
石油醚Petroleum ether 84.00±2.45a 84.00±2.45a 84.00±2.45a 84.00±2.45a
三氯甲烷Chloroform 6.00±2.45c 12.00±3.74c 12.00±3.74d 16.00±5.10d
乙酸乙酯Ethyl acetate 42.00±12.81b 42.00±12.81b 42.00±12.81bc 46.00±13.27bc
水Aqueous 4.00±2.45c 6.00±2.45c 10.00±3.16d 14.00±5.10d
胃毒活性
Stomach toxicity
石油醚Petroleum ether 82.00±7.35a 84.00±6.00a 86.00±6.78a 86.00±6.78a
三氯甲烷Chloroform 52.00±8.60b 54.00±7.48b 58.00±8.00b 58.00±8.00b
乙酸乙酯Ethyl acetate 14.00±2.45c 18.00±5.83c 18.00±5.83cd 26.00±6.78cd
水Aqueous 14.00±5.10c 18.00±5.83c 18.00±5.83cd 22.00±3.74cd

Table 3

Insecticidal activity of petroleum ether extract from C. oleifera shell against M. separata"

杀虫方式
Insecticidal method
处理时间
Treatment time (d)
致死中浓度
LC50 (mg∙mL-1)
95%置信区间
95% CI
斜率±标准误
Slope±standard error
卡方
χ2
P
P value
触杀活性
Contact toxicity
1 9.53 5.31-43.85 3.38±0.30 25.00 <0.001
3 8.00 6.04-11.55 3.00±0.25 6.95 0.073
5 7.51 6.68-8.55 2.83±0.23 4.87 0.181
7 7.02 6.24-7.98 2.76±0.23 4.84 0.184
胃毒活性
Stomach toxicity
1 10.34 5.48-125.52 3.68±0.34 27.66 <0.001
3 9.41 4.36-858.62 2.79±0.24 32.84 <0.001
5 8.76 4.48-59.47 2.90±0.25 28.16 <0.001
7 8.76 4.48-59.47 2.90±0.25 28.16 <0.001

Table 4

Corrected mortality rates of contact toxicity of various fractions of petroleum ether extract from C. oleifera shell at 10 mg·mL-1 against M. separata"

馏分
Fraction
校正死亡率Corrected mortality rate (%)
1 d 3 d 5 d 7 d
1 22.00±2.00c 22.00±2.00cd 26.00±2.45cd 26.00±2.45cd
2 22.00±2.00cd 30.00±0c 30.00±0c
3 46.00±2.45b 52.00±2.00b 52.00±2.00b 54.00±2.45b
4 10.00±3.16def 10.00±3.16efg 10.00±3.16ghij 10.00±3.16ghij
5 6.00±2.45efgh 8.00±2.00efg 12.00±2.00fghi 12.00±2.00fghi
6 98.00±2.00a 98.00±2.00a 98.00±2.00a 98.00±2.00a
7 6.00±2.45efgh 8.00±2.00efg 10.00±0ghij 10.00±0ghij
8 12.00±2.00de 14.00±2.45def 16.00±2.45efg 16.00±2.45efg
9 8.00±2.00efg 14.00±2.45def 18.00±2.00ef 18.00±2.00ef
10 10.00±0def 16.00±2.45de 22.00±2.00de 22.00±2.00de
11 4.00±2.45fgh 4.00±2.45g 10.00±0ghij 10.00±0ghij
12 16.00±2.45cd 20.00±0cd 22.00±2.00de 22.00±2.00de
13 2.00±2.00gh 4.00±2.45g 8.00±2.00hij 8.00±2.00hij
14 2.00±2.00gh 2.00±2.00g 4.00±2.45j 4.00±2.45j
15 2.00±2.00gh 8.00±2.00efg 8.00±2.00hij 10.00±0ghij
16 2.00±2.00gh 6.00±2.45fg 16.00±2.45efg 16.00±2.45efg
17 52.00±2.00b 56.00±2.45b 56.00±2.45b 56.00±2.45b
18 4.00±2.45fgh 6.00±2.45fg 14.00±2.45fgh 14.00±2.45fgh
19 2.00±2.00g 6.00±2.45ij 6.00±2.45ij
20 22.00±2.00c 26.00±2.45c 28.00±2.00cd 28.00±2.00cd

Table 5

Contact toxicity of fraction 6 from petroleum ether extract of C. oleifera shell against M. separata"

处理时间
Treatment time (d)
致死中浓度
LC50 (mg∙mL-1)
95%置信区间
95% CI
斜率±标准误
Slope±standard error
卡方
χ2
P
P value
1 3.99 1.78-19.41 2.71±0.21 32.94 <0.001
3 3.85 1.58-26.52 2.49±0.20 34.31 <0.001
5 3.72 1.36-45.36 2.31±0.18 35.96 <0.001
7 3.72 1.36-45.36 2.31±0.18 35.96 <0.001

Table 6

Corrected mortality rates of contact toxicity of various fractions of fraction 6 from petroleum ether at 10 mg·mL-1 against M. separata"

馏分
Fraction
校正死亡率Corrected mortality rate (%)
1 d 3 d 5 d 7 d
6.1 38.00±2.00ij 42.00±2.00h 44.00±2.45f 44.00±2.45f
6.2 84.00±2.45b 84.00±2.45b 84.00±2.45b 84.00±2.45b
6.3 26.00±2.45kl 26.00±2.45jk 26.00±2.45hi 26.00±2.45hi
6.4 100.00±0a 100.00±0a 100.00±0a 100.00±0a
6.5 56.00±2.45fg 56.00±2.45ef 58.00±2.00e 60.00±0e
6.6 22.00±2.00l 24.00±2.45jk 24.00±2.45hi 24.00±2.45hi
6.7 26.00±2.45kl 28.00±2.00ij 28.00±2.00gh 28.00±2.00gh
6.8 60.00±0def 60.00±0de 62.00±2.00de 62.00±2.00de
6.9 34.00±2.45j 34.00±2.45i 34.00±2.45g 34.00±2.45g
6.10 50.00±0gh 50.00±0fg 50.00±0f 50.00±0f
6.11 46.00±2.45h 46.00±2.45gh 46.00±2.45f 46.00±2.45f
6.12 62.00±2.00def 64.00±2.45cd 64.00±2.45cde 64.00±2.45cde
6.13 60.00±0def 60.00±0de 62.00±2.00de 62.00±2.00de
6.14 66.00±2.45cd 68.00±2.00c 70.00±0c 70.00±0c
6.15 64.00±2.45cde 64.00±2.45cd 68.00±2.00cd 68.00±2.00cd
6.16 60.00±0def 60.00±0de 60.00±0e 60.00±0e
6.17 58.00±2.00ef 60.00±0de 60.00±0e 60.00±0e
6.18 32.00±2.00jk 34.00±2.45i 34.00±2.45g 34.00±2.45g
6.19 44.00±2.45hi 46.00±2.45gh 46.00±2.45f 46.00±2.45f
6.20 70.00±0c 70.00±0c 70.00±0c 70.00±0c
6.21 20.00±0l 20.00±0k 20.00±0i 20.00±0i

Table 7

Chemical composition of fraction 6.4"

序号
No.
保留时间
Retention time (min)
化合物
Compound
相对含量
Relative content (%)
1 1.839 正十六烷Hexadecane 19.33
2 1.971 1-十六烯1-Hexadecene 14.21
3 2.251 二十八烷Octacosane 4.03
4 2.503 十八烷Octadecane 9.24
5 2.595 二氯菊酸甲酯Dichlorochrysanthemic acid methyl ester 6.73
6 2.766 1-十八烯1-Octadecene 7.27
7 4.197 二十四烷醇1-Tetracosanol 3.87
8 6.909 异植醇Isophytol 5.92

Table 8

Corrected mortality rates of contact toxicity of chemical components in fraction 6.4 against M. separata"

化合物
Compound
校正死亡率Corrected mortality rate (%)
1 d 3 d 5 d 7 d
正十六烷Hexadecane 12.00±2.00c 14.00±2.45c 14.00±2.45d 14.00±2.45cd
1-十六烯1-Hexadecene 18.00±2.00b 30.00±0b 30.00±0b 32.00±2.00b
二十八烷Octacosane 2.00±2.00e 2.00±2.00f 4.00±2.45e
十八烷Octadecane
二氯菊酸Dichlorochrysanthemic acid 100.00±0a 100.00±0a 100.00±0a 100.00±0a
1-十八烯1-Octadecene 10.00±0cd 16.00±2.45c 18.00±2.00c 18.00±2.00c
二十四烷醇1-Tetracosanol
异植醇Isophytol 8.00±2.00d 10.00±0d 10.00±0e 10.00±0d

Table 9

Contact toxicity of dichlorochrysanthemic acid and pyrethrin against M. separata"

处理
Treatment
处理时间
Treatment time (d)
致死中浓度
LC50 (μg∙mL-1)
95%置信区间
95% CI
斜率±标准误
Slope±standard error
卡方
χ2
P
P value
二氯菊酸
Dichlorochrysanthemic acid
1 91.62 76.93-110.12 2.42±0.08 258.93 <0.001
3 55.61 46.62-66.40 1.49±0.05 132.25 <0.001
5 34.94 28.04-42.64 1.19±0.05 115.49 <0.001
7 24.43 18.20-31.08 1.10±0.05 129.87 <0.001
除虫菊酯
Pyrethrin
1 39.50 23.80-65.65 0.53±0.03 100.34 <0.001
3 23.19 12.67-40.16 0.56±0.03 133.79 <0.001
5 11.98 6.40-20.08 0.53±0.03 104.19 <0.001
7 8.10 3.90-14.22 0.54±0.03 117.25 <0.001

Fig. 2

Structure of dichlorochrysanthemic acid"

Fig. 3

Differential metabolite volcano plot"

Table 10

Significantly differential metabolites in M. separata samples between the dichlorochrysanthemic acid treatment and control groups"

序号
No.
名称
Name
变异倍数
Fold change
P
P value
保留时间
Retention time (min)
1 4-乙基-2,6-二羟基苯基硫酸氢酯
4-Ethyl-2,6-dihydroxyphenyl hydrogen sulfate
0.423 0.017 0.713
2 云杉苷Piceid 2.150 0.004 2.849
3 大麻素Cannabinoid 2.669 0.032 3.027
4 己酰甘氨酸Caproylglycine 2.069 0.012 3.326
5 5-氟大麻素代谢物5-Fluoro-cannabinoid metabolite 2.460 0.040 4.216
6 N-二十五酰甘氨酸N-Pentacosanoylglycine 0.487 0.047 8.806

Fig. 4

KEGG functional pathway of differential metabolites The color intensity indicates the P value, where darker colors correspond to smaller P values, where each bubble represents a metabolic pathway"

[1]
XIAO X M, HE L M, CHEN Y Y, WU L H, WANG L, LIU Z P. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components. Future Medicinal Chemistry, 2017, 9(17): 2069-2079.
[2]
ZHANG F H, LI Z, ZHOU J Q, GU Y Y, TAN X F. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. BMC Plant Biology, 2021, 21(1): 348.
[3]
PRACHYA S, WATTANASIRI C, PANSANIT A. Cytotoxic endophyte from Camellia oleifera Abel - Penicillium chermesinum NR121310. Mycology, 2020, 11(4): 316-321.
[4]
XIE Y Z, GE S B, JIANG S C, LIU Z L, CHEN L, WANG L S, CHEN J T, QIN L C, PENG W X. Study on biomolecules in extractives of Camellia oleifera fruit shell by GC-MS. Saudi Journal of Biological Sciences, 2018, 25(2): 234-236.
[5]
LIAO D L, SHI W, GAO J, DENG B, YU R J. Modified Camellia oleifera shell carbon with enhanced performance for the adsorption of cooking fumes. Nanomaterials, 2021, 11(5): 1349.
[6]
WANG Q Q, CHANG S S, TAN Y J, HU J B. Mesopore structure in Camellia oleifera shell. Protoplasma, 2019, 256(4): 1145-1151.
[7]
HU J B, SHI Y, LIU Y, CHANG S S. Anatomical structure of Camellia oleifera shell. Protoplasma, 2018, 255(6): 1777-1784.
[8]
PATIL J, VIJAYAKUMAR R, LINGA V, SIVAKUMAR G. Susceptibility of oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae) larvae and pupae to native entomopathogenic nematodes. Journal of Applied Entomology, 2020, 144(7): 647-654.
[9]
KIM K N, JO Y C, HUANG Z J, SONG H S, RYU K H, HUANG Q Y, LEI C L. Influence of green light illumination at night on biological characteristics of the oriental armyworm Mythimna separata (Lepidoptera: Noctuidae). Bulletin of Entomological Research, 2020, 110(1): 136-143.

doi: 10.1017/S0007485319000397 pmid: 31203829
[10]
KIM K N, SIN U C, JO Y C, HUANG Z J, HASSAN A, HUANG Q Y, LEI C L. Influence of green light at night on juvenile hormone in the oriental armyworm Mythimna separata (Lepidoptera: Noctuidae). Physiological Entomology, 2019, 44(3/4): 245-251.
[11]
GUO Y F, QIU J R, CHEN T, GAO S J, BU S H, WANG R, WANG J D. Characterization and functional analysis of a β-adrenergic-like octopamine receptor from the oriental armyworm (Mythimna separata Walker). Archives of Insect Biochemistry and Physiology, 2021, 106(4): e21772.
[12]
LI F F, CUI J, SHAHEEN T, TANG G H, WANG T, WOOLFLEY T, LI M L. Biocidal efficacy of tutin and its influence on immune cells and expression of growth-blocking and neuroglian peptides in Mythimna separata (Lepidoptera: Noctuidae). Archives of Insect Biochemistry and Physiology, 2021, 107(1): e21767.
[13]
ZHAO Y Y, SU L, LI S, LI Y P, XU X L, CHENG W N, WANG Y, WU J X. Insecticide resistance of the field populations of oriental armyworm, Mythimna separata (Walker) in Shaanxi and Shanxi provinces of China. Journal of Integrative Agriculture, 2018, 17(7): 1556-1562.
[14]
WANG J D, WANG W Z, WANG Y R, GAO S J, ELZAKI M, WANG R, WANG R, WU M. Response of detoxification and immune genes and of transcriptome expression in Mythimna separata following chlorantraniliprole exposure. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics, 2018, 28: 90-98.
[15]
LI X R, LI Y, WANG W, HE N, TAN X L, YANG X Q. LC50 of lambda-cyhalothrin stimulates reproduction on the moth Mythimna separata (Walker). Pesticide Biochemistry and Physiology, 2019, 153: 47-54.
[16]
RODRIGUES G C, DOS SANTOS MAIA M, CAVALCANTI A B, BARROS R P, SCOTTI L, CESPEDES-ACUNA C L, MURATOV E N, SCOTTI M T. Computer-assisted discovery of compounds with insecticidal activity against Musca domestica and Mythimna separata. Food and Chemical Toxicology, 2021, 147: 111899.
[17]
VELASQUES J, CARDOSO M H, ABRANTES G, FRIHLING B E, FRANCO O L, MIGLIOLO L. The rescue of botanical insecticides: A bioinspiration for new niches and needs. Pesticide Biochemistry and Physiology, 2017, 143: 14-25.

doi: S0048-3575(17)30296-1 pmid: 29183583
[18]
董小绮, 康兆勇, 刘胜男, 高清志. 新型植物源天然产物杀虫剂研究进展. 农药学学报, 2023, 25(5): 969-989.
DONG X Q, KANG Z Y, LIU S N, GAO Q Z. Research progress of novel botanical insecticides. Chinese Journal of Pesticide Science, 2023, 25(5): 969-989. (in Chinese)
[19]
LI Y K, WANG S K, AIOUB A A, QIE X T, WU W J, HU Z N. Identification and analysis of full-length transcripts involved in the biosynthesis of insecticidal lignan (+)-haedoxan A in Phryma leptostachya. Industrial Crops and Products, 2019, 142: 111868.
[20]
TIAN Y Y, CHEN Z J, HUANG X Q, ZHANG L X, ZHANG Z Q. Evaluation of botanicals for management of piercing-sucking pests and the effect on beneficial arthropod populations in tea trees Camellia sinensis (L.) O. Kuntze (Theaceae). Journal of Insect Science, 2020, 20(6): 27.
[21]
田晓霖, 方晓武, 戴纪琛, 马青淑, 胡嘉隽, 何军, 田向荣. 32种植物甲醇提取物杀虫活性评价. 陕西农业科学, 2018, 64(11): 68-73.
TIAN X L, FANG X W, DAI J C, MA Q S, HU J J, HE J, TIAN X R. Insecticidal activity evaluation of 32 methanol extracts. Shaanxi Journal of Agricultural Sciences, 2018, 64(11): 68-73. (in Chinese)
[22]
沈静, 周玉, 李琰, 马志卿, 张秀云, 张兴. 129种植物丙酮提取物杀虫活性筛选. 西北农林科技大学学报(自然科学版), 2017, 45(10): 101-110.
SHEN J, ZHOU Y, LI Y, MA Z Q, ZHANG X Y, ZHANG X. Screening of the insecticidal activities of acetone extracts from 129 plants. Journal of Northwest A&F University (Natural Science Edition), 2017, 45(10): 101-110. (in Chinese)
[23]
李晶, 李娜, 丁品, 付麟雲, 王涛, 杜文静, 张建军, 武建荣, 刘锦霞. 3种橐吾属植物提取物的杀虫抑菌活性. 草业科学, 2022, 39(5): 899-906.
LI J, LI N, DING P, FU L Y, WANG T, DU W J, ZHANG J J, WU J R, LIU J X. Insecticidal and bacteriostatic activities of extracts from three species of Ligularia. Pratacultural Science, 2022, 39(5): 899-906. (in Chinese)
[24]
于化龙, 李晶晶, 任美儒, 刘禄威, 马树杰. 110种植物提取物杀虫活性初步研究. 热带作物学报, 2021, 42(7): 2085-2093.

doi: 10.3969/j.issn.1000-2561.2021.07.036
YU H L, LI J J, REN M R, LIU L W, MA S J. Insecticidal activity of extracts from 110 traditional Chinese medicines. Chinese Journal of Tropical Crops, 2021, 42(7): 2085-2093. (in Chinese)

doi: 10.3969/j.issn.1000-2561.2021.07.036
[25]
张洁, 李雪娇. 五加皮丙酮提取物杀虫活性的初步研究. 西北农业学报, 2019, 28(11): 1906-1912.
ZHANG J, LI X J. Study on insecticidal activity of acetone extracts from Acanthopanar gracilistylus. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(11): 1906-1912. (in Chinese)
[26]
马树杰, 李雪娇, 马志卿, 张兴. 中国粗榧杀虫活性初步研究. 西北农林科技大学学报(自然科学版), 2016, 44(8): 155-161.
MA S J, LI X J, MA Z Q, ZHANG X. Preliminary study on insecticidal activity of extracts from Cephalotaxus sinensis. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(8): 155-161. (in Chinese)
[27]
张新瑞. 红蓼提取物的杀虫作用和作用机理研究[D]. 兰州: 甘肃农业大学, 2009.
ZHANG X R. Insecticidal action and insecticidal mechanism on extracts from Polygonum orientale L.[D]. Lanzhou: Gansu Agricultural University, 2009. (in Chinese)
[28]
CUI C J, YANG Y Q, ZHAO T Y, ZOU K K, PENG C Y, CAI H M, WAN X C, HOU R Y. Insecticidal activity and insecticidal mechanism of total saponins from Camellia oleifera. Molecules, 2019, 24: 4518.
[29]
刘泽文, 王伟, 黄永芳, 吴春银, 史晓雨, 单体江. 油茶果壳提取物及其生物活性. 经济林研究, 2022, 40(3): 259-264.
LIU Z W, WANG W, HUANG Y F, WU C Y, SHI X Y, SHAN T J. Biological activities of the fruit shell extracts of Camellia oleifera. Non-Wood Forest Research, 2022, 40(3): 259-264. (in Chinese)
[30]
詹丽, 李敬丹, 赵传琦, 梁倩. 蔓长春花对草地贪夜蛾杀虫活性成分及机制研究. 环境昆虫学报, 2024, 46(5): 1202-1212.
ZHAN L, LI J D, ZHAO C Q, LIANG Q. Studies on the insecticidal constituents and mechanism of Vinca major against Spodoptera frugiperda. Journal of Environmental Entomology, 2024, 46(5): 1202-1212. (in Chinese)
[31]
FAROOQ M, FREED S. Infectivity of housefly, Musca domestica (Diptera: Muscidae) to different entomopathogenic fungi. Brazilian Journal of Microbiology, 2016, 47(4): 807-816.
[32]
CHI Y Y, QIAO K, JIANG H, LIN R H, WANG K Y. Comparison of two acute toxicity test methods for the silkworm (Lepidoptera: Bombycidae). Journal of Economic Entomology, 2015, 108(1): 145-149.

doi: 10.1093/jee/tou016 pmid: 26470114
[33]
ALVES T J, CRUZ G S, WANDERLEY-TEIXEIRA V, TEIXEIRA A A, OLIVEIRA J V, CORREIA A A, CAMARA C A, CUNHA F M. Effects of Piper hispidinervum on spermatogenesis and histochemistry of ovarioles of Spodoptera frugiperda. Biotechnic & Histochemistry, 2014, 89(4): 245-255.
[34]
GANG F L, LI X T, YANG C F, HAN L J, QIAN H, WEI S P, WU W J, ZHANG J W. Synthesis and insecticidal activity evaluation of virtually screened phenylsulfonamides. Journal of Agricultural and Food Chemistry, 2020, 68(42): 11665-11671.
[35]
LI Y K, WEI J Q, FANG J M, LV W B, JI Y F, AIOUB A A, ZHANG J W, HU Z N. Insecticidal activity of four lignans isolated from Phryma leptostachya. Molecules, 2019, 24(10): 1976.
[36]
冀宇飞. 透骨草杀虫成分提取方法及分离研究[D]. 杨凌: 西北农林科技大学, 2017.
JI Y F. Studies on the extraction methods and isolation of insecticidal components from Phryma leptostachya L.[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[37]
李春燕, 梁倩, 赵文兴, 梁宗锁, 王芳. 叉枝蒿对黏虫杀虫活性成分及作用机制研究. 南方农业学报, 2024, 55(1): 105-116.
LI C Y, LIANG Q, ZHAO W X, LIANG Z S, WANG F. Insecticidal activity constituents and mechanism of Artemisia divaricata against Mythimna separata(Walker). Journal of Southern Agriculture, 2024, 55(1): 105-116. (in Chinese)
[38]
李春燕, 梁倩, 高成香, 梁宗锁, 王芳. 黄花蒿对黏虫杀虫活性成分及机制研究. 中国农业科技导报, 2024, 26(12): 129-137.
LI C Y, LIANG Q, GAO C X, LIANG Z S, WANG F. Study on insecticidal activity constituents and mechanism of Artemisia annua against Mythimna separate. Journal of Agricultural Science and Technology, 2024, 26(12): 129-137. (in Chinese)
[39]
ZHU X Z, SUN M X, ZHANG Z W, LIU H X, HUANG J Y, HU Z N, WU W J, ZHANG J W. Design synthesis and insecticidal activities of 4-propargyloxybenzene sulfonamide derivatives substituted with amino acids. Journal of Asian Natural Products Research, 2023, 25(4): 379-386.
[40]
BURKON A, SOMOZA V. Quantification of free and protein-bound trans-resveratrol metabolites and identification of trans-resveratrol- C/O-conjugated diglucuronides - Two novel resveratrol metabolites in human plasma. Molecular Nutrition & Food Research, 2008, 52: 549-557.
[41]
AL-EITAN L, KHARMAH H A. Effect of EMB-FUBINACA on brain endothelial cell angiogenesis: Expression analysis of angiogenic markers. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2025, 398: 1613-1624.
[42]
ARRESE E L, SOULAGES J L. Insect fat body: Energy, metabolism, and regulation. Annual Review of Entomology, 2010, 55: 207-225.

doi: 10.1146/annurev-ento-112408-085356 pmid: 19725772
[43]
贾男, 臧国伟, 李春, 王颖. 辅因子在微生物细胞工厂中的代谢调控与应用. 中国生物工程杂志, 2022, 42(7): 79-89.
JIA N, ZANG G W, LI C, WANG Y. Metabolic regulations and applications of cofactors in microbial cell factories. China Biotechnology, 2022, 42(7): 79-89. (in Chinese)
[44]
张源洁. 烟酸和烟酰胺对奶牛肝脂代谢的比较研究[D]. 杨凌: 西北农林科技大学, 2024.
ZHANG Y J. Comparative study of niacin and niacinamide on liver lipid metabolism in dairy cows[D]. Yangling: Northwest A&F University, 2024. (in Chinese)
[45]
MOFFETT J R, NAMBOODIRI M A. Tryptophan and the immune response. Immunology and Cell Biology, 2003, 81: 247-265.

doi: 10.1046/j.1440-1711.2003.t01-1-01177.x pmid: 12848846
[46]
NOWICKA B, KRUK J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochimica et Biophysica Acta, 2010, 1797: 1587-1605.

doi: 10.1016/j.bbabio.2010.06.007 pmid: 20599680
[1] TAN XiBei, LAN XuYing, LIU ChongHuai, FAN XiuCai, JIANG JianFu, SUN Lei, LI Peng, YU ShuXin, ZHANG Ying. Changes of Secondary Metabolites in Grapes with Different Resistance Levels in Response to White Rot Infection [J]. Scientia Agricultura Sinica, 2025, 58(9): 1767-1778.
[2] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[3] LUO ChaoDan, FENG ChunMei, LI JianQiang, LI XinRong, WEI Yong, YANG LiYi, LIU XiaoJin, TAN He, REN ErFang, LUO XiaoJie. Analysis of Differential Aroma Volatiles of Tainong No.1 Mango of Different Ripeness by Non-Targeted Metabolomics Based on Gas Chromatography-Mass Spectrometry [J]. Scientia Agricultura Sinica, 2025, 58(3): 564-581.
[4] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[5] QI XiaoYu, KONG XiaoPing, ZHOU HongWei, YAN XiangPing. Crucial Factors Impacting Carrot Flavor Analysis Based on Broad Target Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(16): 3250-3263.
[6] GUO RongKun, DONG NingGuang, NONG HuiLan, WANG Han, TENG WeiChao, MENG JiaXin. Targeted Metabolomics-Based Analysis of Peel Color Differences Between Yellow and Red Hawthorn [J]. Scientia Agricultura Sinica, 2024, 57(12): 2439-2453.
[7] GAO ChengAn, WAN HongJian, YE QingJing, CHENG Yuan, LIU ChenXu, HE Yong. Identification and Comparative Analysis of Processed/Fresh-Eating Chili Pepper Fruits at Different Maturation Stages by Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(12): 2424-2438.
[8] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[9] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[10] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[11] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[12] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[13] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[14] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[15] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!