Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (5): 850-865.doi: 10.3864/j.issn.0578-1752.2023.05.004
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY · AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
GUO Yan1,2,3(), JING YuHang1,4, WANG LaiGang1,2,3, HUANG JingYi5, HE Jia1,2,3, FENG Wei4, ZHENG GuoQing1,2,3(
)
[1] |
United States Department of Agriculture USDA, World Agricultural Production. Circular Series WAP. 2022: 27-42. https://apps.fas.usda.gov/psdonline/circulars/production.pdf.
|
[2] |
doi: 10.1016/j.fcr.2012.06.003 |
[3] |
doi: 10.3389/fpls.2019.01601 pmid: 31921250 |
[4] |
郭燕, 井宇航, 贺佳, 王来刚, 冯伟, 刘海礁. 小麦冠层氮素含量光谱估算研究进展. 麦类作物学报, 2021, 41(11): 1425-1431.
|
|
|
[5] |
|
[6] |
杨宝华, 陈建林, 陈林海, 曹卫星, 姚霞, 朱艳. 基于敏感波段的小麦冠层氮含量估测模型. 农业工程学报, 2015, 31(22): 176-182.
|
|
|
[7] |
王玉娜, 李粉玲, 王伟东, 陈晓凯, 常庆瑞. 基于无人机高光谱的冬小麦氮素营养监测. 农业工程学报, 2020, 36(22): 31-39.
|
|
|
[8] |
doi: 10.3390/rs13040739 |
[9] |
doi: 10.1016/j.chemolab.2021.104404 |
[10] |
doi: 10.1016/j.compag.2020.105860 |
[11] |
井宇航, 郭燕, 张会芳, 戎亚思, 张少华, 冯伟, 王来刚, 贺佳, 刘海礁, 郑国清. 无人机飞行高度对冬小麦植株氮积累量预测模型的影响. 河南农业科学, 2022, 51(2):147-158.
|
|
|
[12] |
张潇元, 张立福, 张霞, 王树东, 田静国, 翟涌光. 不同光谱植被指数反演冬小麦叶氮含量的敏感性研究. 中国农业科学, 2017, 50(3): 474-485.
doi: 10.3864/j.issn.0578-1752.2017.03.006 |
doi: 10.3864/j.issn.0578-1752.2017.03.006 |
|
[13] |
doi: 10.1016/j.compag.2019.04.005 |
[14] |
魏鹏飞, 徐新刚, 李中元, 杨贵军, 李振海, 冯海宽, 陈帼, 范玲玲, 王玉龙, 刘帅兵. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测. 农业工程学报, 2019, 35(8):126-133.
|
|
|
[15] |
贾丹, 陈鹏飞. 低空无人机影像分辨率对冬小麦氮浓度反演的影响. 农业机械学报, 2020, 51(7): 164-169.
|
|
|
[16] |
doi: 10.1016/j.ijleo.2021.168241 |
[17] |
doi: 10.4236/ars.2018.72006 |
[18] |
杨福芹, 冯海宽, 肖天豪, 李天驰, 郭向前. 融合无人机影像光谱与纹理特征的冬小麦氮营养指数估算. 农业现代化研究, 2020, 41(4): 718-726.
|
|
|
[19] |
doi: 10.1016/j.fcr.2017.05.005 |
[20] |
doi: 10.1016/j.compag.2018.05.012 |
[21] |
doi: 10.1016/j.jag.2020.102174 |
[22] |
黄芬, 高帅, 姚霞, 张小虎, 朱艳. 基于机器学习和多颜色空间的冬小麦叶片氮含量估算方法研究. 南京农业大学学报, 2020, 43(2): 364-371.
|
|
|
[23] |
李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究. 作物学报, 2021, 47(7): 1342-1350.
doi: 10.3724/SP.J.1006.2021.02060 |
|
|
[24] |
doi: 10.1016/j.compag.2021.106421 |
[25] |
李美炫, 朱西存, 白雪源, 彭玉凤, 田中宇, 姜远茂. 基于无人机影像阴影去除的苹果树冠层氮素含量遥感反演. 中国农业科学, 2021, 54(10): 2084-2094.
doi: 10.3864/j.issn.0578-1752.2021.10.005 |
doi: 10.3864/j.issn.0578-1752.2021.10.005 |
|
[26] |
doi: 10.3390/drones5030061 |
[27] |
doi: 10.1016/0034-4257(92)90059-S |
[28] |
doi: 10.1080/01431160110115799 |
[29] |
doi: 10.1016/j.agwat.2021.107076 |
[30] |
于丰华, 邢思敏, 郭忠辉, 白驹驰, 许童羽. 基于特征转移植被指数的水稻叶片氮素含量定量估算. 农业工程学报, 2022, 38(2): 175-182.
|
|
|
[31] |
牛亚晓, 张立元, 韩文霆, 邵国敏. 基于无人机遥感与植被指数的冬小麦覆盖度提取方法. 农业机械学报, 2018, 49(4): 212-221.
|
|
|
[32] |
奚雪, 赵庚星. 基于无人机多光谱遥感的冬小麦叶绿素含量反演及监测. 中国农学通报, 2020, 36(20): 119-126.
doi: 10.11924/j.issn.1000-6850.casb20190400050 |
doi: 10.11924/j.issn.1000-6850.casb20190400050 |
|
[33] |
doi: 10.3390/rs10091484 |
[34] |
万亮, 岑海燕, 朱姜蓬, 张佳菲, 杜晓月, 何勇. 基于纹理特征与植被指数融合的水稻含水量无人机遥感监测. 智慧农业, 2020, 2(1): 58-67.
|
|
|
[35] |
于利峰, 乌兰吐雅, 乌云德吉, 许洪滔, 包珺玮, 任婷婷. 基于纹理特征与MODIS-NDVI时间序列的耕地面积提取研究. 中国农业资源与区划, 2018, 39(11): 169-177.
|
|
|
[36] |
王镕. 基于光谱和纹理特征综合的农作物种植结构提取方法研究. 兰州: 兰州交通大学, 2019.
|
|
|
[37] |
doi: 10.1016/j.aej.2021.08.018 |
[38] |
doi: 10.1007/s11042-021-10634-4 |
[39] |
高苹, 徐敏, 孔维财, 张志薇. 基于最优化相关分析的油菜开花期预报模型研究. 海洋气象学报, 2021, 41(3): 77-83.
|
|
|
[40] |
崔承齐, 刘艳阳, 江晓林, 孙知雨, 杜振伟, 武轲, 梅鸿献, 郑永战. 芝麻产量相关性状的多位点全基因组关联分析及候选基因预测. 中国农业科学, 2022, 55(1): 219-232.
doi: 10.3864/j.issn.0578-1752.2022.01.018 |
|
|
[41] |
宋宇斐. 基于数字图像的小麦叶绿素和氮素营养检测研究. 保定: 河北农业大学, 2020.
|
|
|
[42] |
刘秀英, 余俊茹, 王世华. 光谱特征变量和BP神经网络构建油用牡丹种子含水率估算模型. 农业工程学报, 2020, 36(22): 308-315.
|
|
|
[43] |
doi: 10.1016/S0034-4257(96)00072-7 |
[44] |
doi: 10.1016/S0034-4257(02)00048-2 |
[45] |
|
[46] |
doi: 10.1080/07038992.1996.10855178 |
[47] |
doi: 10.1007/s11119-015-9412-y |
[48] |
doi: 10.1016/0034-4257(95)00186-7 |
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
doi: 10.1016/j.rse.2003.12.013 |
[55] |
doi: 10.1016/0034-4257(92)90074-T |
[56] |
doi: 10.2307/1936256 |
[57] |
doi: 10.1080/01431160600791650 |
[58] |
doi: 10.1016/j.seta.2021.101029 |
[59] |
王鑫梅, 张劲松, 孟平, 杨洪国, 孙圣. 基于无人机遥感影像的核桃冠层氮素含量估算. 农业机械学报, 2021, 52(2): 178-187.
|
|
|
[60] |
李航. 机器学习方法. 北京: 清华大学出版社, 2022.
|
|
|
[61] |
周志华. 机器学习. 北京: 清华大学出版社, 2016.
|
|
|
[62] |
doi: 10.1016/j.jhydrol.2019.05.079 |
[63] |
doi: 10.1016/j.compag.2021.106614 |
[64] |
|
[65] |
doi: 10.1016/j.ijforecast.2016.01.006 |
[66] |
|
[67] |
doi: 10.1016/j.cma.2021.114238 |
[68] |
|
[69] |
doi: 10.1016/j.jhydrol.2020.125033 |
[70] |
Scientific Platform Serving for Statistics Professional 2021. SPSSPRO. (Version 1.0.11) [Online Application Software]. https://www.spsspro.com.
|
[71] |
|
[72] |
doi: S0893-6080(19)30302-8 pmid: 31586856 |
[73] |
doi: 10.1016/j.renene.2021.05.045 |
[74] |
doi: 10.1016/j.ecolind.2021.107356 |
[75] |
doi: 10.1016/j.compag.2021.106634 |
[76] |
doi: 10.3390/e23010018 |
[77] |
申哲, 张认连, 龙怀玉, 徐爱国. 基于机器学习方法的宁夏南部土壤质地空间分布研究. 中国农业科学, 2022, 55(15): 2961-2972.
doi: 10.3864/j.issn.0578-1752.2022.15.008 |
doi: 10.3864/j.issn.0578-1752.2022.15.008 |
|
[78] |
王来刚, 郑国清, 郭燕, 贺佳, 程永政. 融合多源时空数据的冬小麦产量预测模型研究. 农业机械学报, 2022, 53(1): 198-204, 458.
|
|
|
[79] |
doi: 10.1007/s42979-021-00592-x |
[1] | FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906. |
[2] | WANG ShuTing,KONG YuGuang,ZHANG Zan,CHEN HongYan,LIU Peng. SPAD Value Inversion of Cotton Leaves Based on Satellite-UAV Spectral Fusion [J]. Scientia Agricultura Sinica, 2022, 55(24): 4823-4839. |
[3] | MA Xiao,CHEN PengFei. Improvement of Row Detection Method Before Wheat Canopy Closure Using Multispectral Images of UAV Image [J]. Scientia Agricultura Sinica, 2022, 55(20): 3926-3938. |
[4] | ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311. |
[5] | FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427. |
[6] | LI MeiXuan,ZHU XiCun,BAI XueYuan,PENG YuFeng,TIAN ZhongYu,JIANG YuanMao. Remote Sensing Inversion of Nitrogen Content in Apple Canopy Based on Shadow Removal in UAV Multi-Spectral Remote Sensing Images [J]. Scientia Agricultura Sinica, 2021, 54(10): 2084-2094. |
[7] | FengZhi SHI,RuiYan WANG,YuHuan LI,Hong YAN,XiaoXin ZHANG. LAI Estimation Based on Multi-Spectral Remote Sensing of UAV and Its Application in Saline Soil Improvement [J]. Scientia Agricultura Sinica, 2020, 53(9): 1795-1805. |
[8] | ZHAO Jing,LI ZhiMing,LU LiQun,JIA Peng,YANG HuanBo,LAN YuBin. Weed Identification in Maize Field Based on Multi-Spectral Remote Sensing of Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555. |
[9] | ZHANG ZhenHua,DING JianLi,WANG JingZhe,GE XiangYu,WANG JinJie,TIAN MeiLing,ZHAO QiDong. Digital Soil Properties Mapping by Ensembling Soil-Environment Relationship and Machine Learning in Arid Regions [J]. Scientia Agricultura Sinica, 2020, 53(3): 563-573. |
[10] | WANG KeJian,LI Li,LÜ Qiang,YI ShiLai,ZHENG YongQiang,XIE RangJin,MA YanYan,HE ShaoLan,DENG Lie. UAV Spray Technology for the Citrus Orchard: Taking Control of the Diaphorina citri and Phyllocnistis citrella as Examples [J]. Scientia Agricultura Sinica, 2020, 53(17): 3509-3517. |
[11] | GONG ChangWei,MA Yu,YANG Rui,RUAN YanWei,WANG XueGui,LIU Yue. Effect of Nozzle Type on the Spray Performance of Plant Protection Unmanned Aerial Vehicle (UAV) [J]. Scientia Agricultura Sinica, 2020, 53(12): 2385-2398. |
[12] | LIU HuiFang,HE Zheng,JIA Biao,LIU Zhi,LI ZhenZhou,FU JiangPeng,MU RuiRui,KANG JianHong. Photosynthetic Response Characteristics of Maize Under Drip Irrigation Based on Machine Learning [J]. Scientia Agricultura Sinica, 2019, 52(17): 2939-2950. |
[13] | CHEN PengFei, LIANG Fei. Cotton Nitrogen Nutrition Diagnosis Based on Spectrum and Texture Feature of Images from Low Altitude Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2019, 52(13): 2220-2229. |
[14] | ZHANG ChunLan, YANG GuiJun, LI HeLi, TANG FuQuan, LIU Chang, ZHANG LiYan. Remote Sensing Inversion of Leaf Area Index of Winter Wheat Based on Random Forest Algorithm [J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867. |
[15] | WANG Fei,YANG ShengTian,WEI Yang,YANG XiaoDong,DING JianLi. Influence of Sub-Region Priority Modeling Constructed by Random Forest and Stochastic Gradient Treeboost on the Accuracy of Soil Salinity Prediction in Oasis Scale [J]. Scientia Agricultura Sinica, 2018, 51(24): 4659-4676. |
|