Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (13): 2220-2229.doi: 10.3864/j.issn.0578-1752.2019.13.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Cotton Nitrogen Nutrition Diagnosis Based on Spectrum and Texture Feature of Images from Low Altitude Unmanned Aerial Vehicle

CHEN PengFei1,2,LIANG Fei3   

  1. 1 Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences/State Key Laboratory of Resources and Environmental Information System, Beijing 100101
    2 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023
    3 Institute of Farmland Water Conservancy and Soil Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang
  • Received:2019-02-25 Accepted:2019-03-14 Online:2019-07-01 Published:2019-07-11

Abstract:

【Objective】 Based on the high spatial resolution images of unmanned aerial vehicle (UAV), the effects of removing soil background information and increasing image texture information on the inversion of cotton plant nitrogen concentration were investigated, in order to provide new technology for accurate estimation of cotton nitrogen nutrition status. 【Method】 Cotton water and nitrogen coupling experiment was conducted, and UAV images and plant nitrogen concentration data were measured during different cotton growth stages. Based on the above data, the effect of soil background on cotton canopy spectrum was firstly investigated. Secondly, the correlations between image texture parameters and plant nitrogen concentration were analyzed. Finally, the obtained data was divided into calibration dataset and validation dataset. Different scenarios, including before and after removing the soil background, and adding texture features, were set. The inversion models of plant nitrogen concentration under various scenarios were designed by using the coupled method of spectral indexes and principal component regression, and the performances of the models were compared. 【Result】 The soil background had an effect on the cotton canopy spectrum, and the trends were not the same at different growth stages. There existed significant correlations between image texture parameters and plant nitrogen concentration. For the scenarios before removal soil background, the plant nitrogen concentration prediction model had determination coefficient (R 2) value of 0.33 and root mean square error (RMSE) value of 0.21% during model calibration, and R 2 value of 0.19 and RMSE value of 0.23% during validation. For the scenarios after removing soil background, the plant nitrogen concentration prediction model had R 2 value of 0.38 and RMSE value of 0.20% during model calibration, and R 2 value of 0.30 and RMSE value of 0.21% during validation. For the scenarios adding image texture information, the plant nitrogen concentration prediction model had R 2 value of 0.57 and RMSE value of 0.17% during model calibration, and R 2 value of 0.42 and RMSE value of 0.19% during validation. 【Conclusion】 Based on high spatial resolution images of low-altitude UAVs, both removing soil background and adding image texture information could improve the inversion accuracy of cotton plant nitrogen concentration. Image texture could be considered as important information to support prediction of crop nitrogen nutrition status using UAV images.

Key words: unmanned aerial vehicle (UAV), multi-spectra, image texture feature, nitrogen nutrition diagnosis, cotton

Table 1

Irrigation time of integrated irrigation of water and fertilizer and the proportion of each component applied to the total amount at each irrigation time"

项目
Item
施肥日期(月-日) Fertilization date (M-D)
6-23 7-04 7-12 7-22 8-02 8-11 8-27 9-05
氮肥施用比例 Nitrogen fertilizer ratio 10% 15% 20% 20% 15% 10% 10% 0
磷、钾肥施用比例 Phosphorus and potassium fertilizer ratio 5% 10% 10% 15% 20% 20% 15% 5%
灌水比例 Water ratio 10% 15% 15% 15% 15% 15% 10% 5%

Fig. 1

Used UAV in this study and one captured image"

Table 2

Used spectral indices in this study"

光谱指数 Spectral index 公式 Formula 发明者 Developed by
以归一化植被指数为构型的各光谱指数
Normalized Difference Vegetation Index Like Indices,NDVIs
(Ri-Rj)/(Ri+Rj)
ROUSE等[19]
比值植被指数 Ratio Vegetation Index,RVI Rnir /Rred PEARSON等[20]
增强植被指数 Enhanced Vegetation Index,EVI 2.5×(Rnir-Rred)/(Rnir+6×Rred-7.5×Rblue+1) HUETE等[21]
三角植被指数 Triangular Vegetation Index,TVI 0.5×(120×(Rnir-Rgreen) - 200×(Rred-Rgreen)) BROGE等[22]
改进土壤调整植被指数
Modified Soil-Adjusted Vegetation Index,MSAVI
(2×Rnir+1-sqrt((2×Rnir+1)2-8×(Rnir-Rred)))/2 QI等[23]
土壤调整植被指数
Optimization of Soil-Adjusted Vegetation Index,OSAVI
1.16×(Rnir -Rred)/(Rnir+Rred+0.16) RONDEAUX等[24]
修改三角植被指数
Modified Triangular Vegetation Index 2,MTVI2
1.5×(1.2×(Rnir-Rgreen)-2.5×(Rred - Rgeen))/sqrt((2×Rnir+1)2 - (6×Rnir-5×sqrt(Rred)) - 0.5) HABOUDANCE等[25]
红边模型 Red Model,R-M Rnir/Rred-edge-1 GITELSON等[26]
绿波段比值植被指数 Green Ratio Vegetation Index,RVIgreen Rnir /Rgreen XUE等[27]

Fig. 2

True color synthetic images of cotton during different growth stages and changes in reflectance before and after soil background removal in corresponding periods A, B: Bud; C, D: Early bloom; E, F: Peak bloom"

Fig. 3

Absolute value of correlation coefficient between different texture features and plant nitrogen concentration in different bands"

Fig. 4

Prediction results of cotton plant nitrogen concentration under different scenarios A: Calibration results before removing soil background; B: Validation results before removing soil background; C: Calibration results after removing soil background; D: Validation results after removing soil background; E: Calibration results after removing soil background and adding texture information; F: Validation results after removing soil background and adding texture information"

[1] 武维华 . 植物生理学. 北京: 科学出版社, 2004: 91.
WU W H . Plant Physiology. Beijing: Science Press, 2004: 91. (in Chinese)
[2] 薛利红, 罗卫红, 曹卫星, 田永超 . 作物水分和氮素光谱诊断研究进展. 遥感学报, 2003,7(1):73-80.
doi: 10.11834/jrs.20030113
XUE L H, LUO W H, CAO W X, TIAN Y C . Research progress on the water and nitrogen detection using spectral reflectance. Journal of Remote Sensing, 2003,7(1):73-80. (in Chinese)
doi: 10.11834/jrs.20030113
[3] JUNG J H, MAEDA M, CHANG A J, LANDIVAR J, YEOM J, MCGINTY J . Unmanned aerial system assisted framework for the selection of high yielding cotton genotypes. Computers and Electronics in Agriculture, 2018,152:74-81.
doi: 10.1016/j.compag.2018.06.051
[4] 肖晶晶, 霍治国, 姚益平, 张蕾, 李娜, 柏秦凤, 温泉沛 . 棉花节水灌溉气象等级指标. 生态学报, 2013,33(22):7288-7299.
XIAO J J, HUO Z G, YAO Y P, ZHANG L, LI N, BAI Q F, WEN Q P . Meteorogical grading indexs of water-saving irrigation for cotton. Acta Ecologica Sinica, 2013,33(22):7288-7299. (in Chinese)
[5] TREMBLAY N. Determining nitrogen requirements from crops characteristics. Benefits and challenges//PANDALAI S G. Recent Research Developments in Agronomy and Horticulture: vol 1. Kerala: India Research Signpost Press, 2004: 157-182.
[6] 陈鹏飞, 孙九林, 王纪华, 赵春江 . 基于遥感的作物氮素营养诊断技术: 现状与趋势. 中国科学(信息科学), 2010,40(增刊):21-37.
CHEN P F, SUN J L, WANG J H, ZHAO C J . Using remote sensing technology for crop nitrogen diagnosis: Status and trends. Scientia Sinica (Informationis), 2010,40(S1):21-37. (in Chinese)
[7] HANSEN P M, SCHJOERRING J K . Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 2003,86(4):542-553.
doi: 10.1016/S0034-4257(03)00131-7
[8] EITEL J U H, LONG D S, GESSLER P E, SMITH A M S . Using in-situ measurements to evaluate the new RapidEyeTM satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 2007,28(18):4183-4190.
doi: 10.1080/01431160701422213
[9] CHEN P F, DRISS H, TREMBLAY N, WANG J H, VIGNEAULT P, LI B G . New index for estimating crop nitrogen concentration using hyperspectral data. Remote Sensing of Environment, 2010,114(9):1987-1997.
doi: 10.1016/j.rse.2010.04.006
[10] HUANG S Y, MIAO Y X, YUAN F, GNYP M L, YAO Y K, CAO Q, WANG H Y , LENZ-WIEDEMANN V I S, BARETH G . Potential of rapidEye and worldView-2 satellite data for improving rice nitrogen status monitoring at different growth stages. Remote Sensing, 2017,9(3):227.
doi: 10.3390/rs9030227
[11] LIANG L, DI L P, HUANG T, WANG J H, LIN L, WANG L J, YANG M H . Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm. Remote Sensing, 2018,10(12):1940.
doi: 10.3390/rs10121940
[12] 田明璐, 班松涛, 常庆瑞, 由明明, 罗丹, 王力, 王烁 . 基于低空无人机成像光谱仪影像估算棉花叶面积指数. 农业工程学报, 2016,32(21):102-108.
TIAN M L, BAN S T, CHANG Q R, YOU M M, LUO D, WANG L, WANG S . Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(21):102-108. (in Chinese)
[13] 秦占飞, 常庆瑞, 谢宝妮, 申健 . 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测. 农业工程学报, 2016,32(23):77-85.
QIN Z F, CHANG Q R, XIE B N, SHEN J . Rice leaf nitrogen content estimation based on hysperspectral imagery of UAV in Yellow River diversion irrigation district. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(23):77-85. (in Chinese)
[14] LIU H Y, ZHU H C, WANG P . Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyper-spectral data. International Journal of Remote Sensing, 2017,38(8/10):2117-2134.
doi: 10.1080/01431161.2016.1253899
[15] NÄSI R, VILJANEN N, KAIVOSOJA J, ALHONOJA K, HAKALA T, MARKELIN L, HONKAVAARA E . Estimating biomass and nitrogen amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features. Remote Sensing, 2018,10(7):1082.
doi: 10.3390/rs10071082
[16] 张智韬, 边江, 韩文霆, 付秋萍, 陈硕博, 崔婷 . 剔除土壤背景的棉花水分胁迫无人机热红外遥感诊断. 农业机械学报, 2018,49(10):250-260.
ZHANG Z T, BIAN J, HAN W T, FU Q P, CHEN S B, CUI T . Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil background. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(10):250-260. (in Chinese)
[17] ZHU Y, YAO X, TIAN Y C, LIU X J, CAO W X . Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. International Journal of Applied Earth Observation and Geoinformation, 2008,10(1):1-10.
doi: 10.1016/j.jag.2007.02.006
[18] CHEN P F . A comparison of two approaches for estimating the wheat nitrogen nutrition index using remote sensing. Remote Sensing, 2015,7(4):4527-4548.
doi: 10.3390/rs70404527
[19] ROUSE J W, HAAS R W, SCHELL J A, DEERING D W, HARLAN J C . Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFCT Type III Final Report, USA: NASA, 1974.
[20] PEARSON R L, MILLER L D . Remote mapping of standing crop biomass for estimation of the productivity of the Shortgrass Prairie, Pawnee National Grasslands, Colorado//Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Ann Arbor, Michigan, USA, 1972: 1357-1381.
[21] HUETE A, JUSTICE C, LIU H . Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 1994,49(3):224-234.
doi: 10.1016/0034-4257(94)90018-3
[22] BROGE N H, LEBLANC E . Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001,76(2):156-172.
doi: 10.1016/S0034-4257(00)00197-8
[23] QI J, CHEHBOUNI A, HUETE A R, KERR Y H, SOROOSHIAN S . A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994,48(2):119-126.
doi: 10.1016/0034-4257(94)90134-1
[24] RONDEAUX G, STEVEN M, BARET F . Optimization of soil- adjusted vegetation indices. Remote Sensing of Environment, 1996,55(2):95-107.
doi: 10.1016/0034-4257(95)00186-7
[25] HABOUDANE D, MILLER J R, PATTEY E , ZARCO-TEJADA P J, STRACHAN I B . Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004,90(3):337-352.
doi: 10.1016/j.rse.2003.12.013
[26] GITELSON A A , VIÑA A, CIGANDA V, RUNDQUIST D C, ARKEBAUER T J . Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 2005,32(8):93-114.
[27] XUE L H, CAO W X, LUO W H, DAI T B, ZHU Y . Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 2004,96(1):135-142.
doi: 10.2134/agronj2004.0135
[28] YANG F, SUN J L, FANG H L, YAO Z F, ZHANG J H, ZHU Y Q, SONG K S, WANG Z M, HU M G . Comparison of different methods for corn LAI estimation over northeastern China. International Journal of Applied Earth Observation and Geoinformation, 2012,18:462-471.
doi: 10.1016/j.jag.2011.09.004
[29] LI J T, SHI Y Y , VEERANAMPALAYAM-SIVAKUMAR A N, SCHACHTMAN D P . Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and morphological traits derived from unmanned aircraft system. Frontiers in Plant Science, 2018,9:1406.
doi: 10.3389/fpls.2018.01406
[30] 张东彦 . 基于高光谱成像技术的作物叶绿素信息诊断机理及方法研究[D]. 杭州: 浙江大学, 2012.
ZHANG D Y . Diagnosis mechanism and methods of crop chlorophyll information based on hyperspectral imaging technology[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[9] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[10] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[11] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[12] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[15] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!