Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (5): 866-878.doi: 10.3864/j.issn.0578-1752.2023.05.005

• PLANT PROTECTION • Previous Articles     Next Articles

Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici

WANG JianFeng(), CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei()   

  1. College of Plant Protection, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2022-10-31 Accepted:2022-12-19 Online:2023-03-01 Published:2023-03-13

Abstract:

【Background】Wheat stripe rust is a serious disease on wheat, which is caused by Puccinia striiformis f. sp. tritici (Pst). Pst is an obligate biotrophic fungus, which can form haustorium during infection and absorb nutrients from the host plants via haustorium. Moreover, Pst secretes effectors through haustorium to regulate host immunity and promotes the infection process.【Objective】The objective of this study is to clarify the function and mechanism of Pst effectors, and to reveal the pathogenicity mechanism of Pst.【Method】By comparing the transcriptome of Pst urediospore, germinated tube and haustorium, Hasp83 encoding secreted protein was identified to be significantly induced in haustorium, and whether it could inhibit the cell death caused by BAX on Nicotiana benthamiana leaves was observed through Agrobacterium-mediated transient expression. qRT-PCR was used to detect the expression level of Hasp83 during different Pst infection stages in wheat. The type Ⅲ secretion system (T3SS) of Pseudomonas fluorescens EtHan and host induced gene silencing (HIGS) were carried out to investigate the function of Hasp83 during Pst infection. The yeast two-hybrid (Y2H) system was used to screen the proteins interacting with Hasp83 in wheat, and co-inmunoprecipitation (Co-IP) assay was used to further verify the interaction by co-expressing Hasp83 and its candidate target proteins in N. benthamiana cells.【Result】The open reading frame (ORF) of Hasp83 is 522 bp, encoding 173 amino acids. Hasp83 contains no conserved domain, and the N-terminal 1-29 amino acids encode a signal peptide, which could inhibit the cell death caused by BAX on N. benthamiana leaves through Agrobacterium-mediated transient expression. qRT-PCR analysis revealed that Hasp83 was up-regulated during Pst infection in wheat. Transient expression of Hasp83 in wheat via T3SS could inhibit callose accumulation caused by P. fluorescens, and lead to 19.35%-38.62% decrease of reactive oxygen species (ROS) accumulation area and necrotic cell area caused by the avirulent Pst race CYR23 in wheat. Silencing of Hasp83 by HIGS in Suwon11 wheat leaves infected with the virulent Pst race CYR31 significantly reduced pathogenicity of Pst compared to controls, resulting in less urediospore sporulation, shorter infection hyphal length, smaller infection area, and decreased haustorium number. Y2H result showed that the effector Hasp83 interacted with wheat hypersensitive-induced reaction (HIR) protein, Tahir1. The interaction between Hasp83 and Tahir1 was further confirmed by Co-IP assay in N. benthamiana.【Conclusion】Pst effector Hasp83 can suppress wheat immunity caused by the non-pathogenic bacteria and avirulent Pst, and enhance the pathogenicity of Pst.

Key words: wheat stripe rust, haustorium, effector, transcriptome analysis, identification of target protein

Table 1

Primer sequences used in this study"

用途
Use
引物名称
Primer name
引物序列 F
Primer sequence F (5′-3′)
引物序列 R
Primer sequence R (5′-3′)
分泌系统载体构建
Construction of secretion system vector
pEDV6-Hasp83∆sp GGGGACAAGTTTGTACAAAAAAGCAGG
CTTCATGCATAAAGCCCTGAACC
GGGGACCACTTTGTACAAGAAAGCTGGGTC
TCCTCGATGTGAAATACC
沉默载体构建
Construction of silent vector
γ-Hasp 83-1 TTAATTAACGGAAACTCATCTGTCAATCA GCGGCCGCGAGGAAAGGGAAAATGGAGA
γ-Hasp 83-2 TTAATTAATCCATTACCTTGTCGTTCTCA GCGGCCGCATACCGCCAGTCGTCCTTA
酵母载体构建
Construction of yeast-expression vector
pGBKT7-Hasp83∆sp CGGAATTCATGCATAAAGCCCTGAACC CGGGATCCTTATCCTCGATGTGAAATACC
pGADT7-Tahir1 CGGAATTCATGGGTGGGGTACTTGGT CGGGATCCTCAAACCATCCTGCCCT
瞬时表达载体构建
Construction of transient overexpression vector
pGR106-Hasp83∆sp GGCATCGATATGCATAAAGCCCTGAACC CATGCTGACTTATCCTCGATG
pBinGFP2-Hasp83∆sp GACGAGCTGTACAAGGGTACCATGCATAAA
GCCCTGAACC
TCTAGTTCATCTAGAGGATCCTCCTCGATGTGAAATACC
pICH86988-Tahir1-HA TTACAATTATCGATACAATGTACCCATACGA
CGTCCCAGACTACGCTATGGGTGGGGTACTTGGT
CTCATTAAAGCAGGACAAGCAACCATCCTGCCCTGGA
实时荧光定量PCR
qRT-PCR
qHasp83-1 CGGAAACTCATCTGTCAATCA GAGGAAAGGGAAAATGGAGA
qHasp83-2 TCCATTACCTTGTCGTTCTCA ATACCGCCAGTCGTCCTTA
Pst EF TTCGCCGTCCGTGATATGAGACAA ATGCGTATCATGGTGGTGGAGTGA
Ta EF TGGTGTCATCAAGCCTGGTATGGT ACTCATGGTGCATCTCAACGGACT

Fig. 1

Expression level of Hasp83 detected in the transcriptome of Pst haustorium, germinated tube and urediospore"

Fig. 2

Expression level of Hasp83 during different Pst infection stages"

Fig. 3

Transient expression of Hasp83 through Agrobacterium infiltration suppresses Bax-triggered cell death in N. benthamiana"

Fig. 4

Transient expression of Hasp83 in wheat inhibits callose deposition induced by P. fluorescens EtHan"

Fig. 5

Transient expression of Hasp83 in wheat inhibits reactive oxygen species (ROS) accumulation and hypersensitive response (HR) occurrence caused by avirulent Pst CYR23"

Fig. 6

Transient expression of Hasp83 in wheat leaves promotes Pst growth"

Fig. 7

Transient silencing of Hasp83 using HIGS reduces Pst CYR31 pathogenicity"

Fig. 8

Verification of the interaction between Hasp83 and Tahir1 by yeast two-hybrid"

Fig. 9

Verification of the interaction between Hasp83 and targeted protein Tahir1 by Co-IP in vitro"

[1]
陈万权, 徐世昌, 吴立人. 中国小麦条锈病流行体系与持续治理研究回顾与展望. 中国农业科学, 2007, 40(增刊1): 177-183.
CHEN W Q, XU S C, WU L R. Epidemiology and sustainable management of wheat stripe rust caused by Puccinia striiformis West. in China: A historical retrospect and prospect. Scientia Agricultura Sinica, 2007, 40 (Suppl. 1): 177-183.(in Chinese)
[2]
陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46(20): 4254-4262.

doi: 10.3864/j.issn.0578-1752.2013.20.008
CHEN W Q, KANG Z S, MA Z H, XU S C, JIN S L, JIANG Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254-4262.(in Chinese)
[3]
WAN A M, ZHAO Z H, CHEN X M, HE Z H, JIN S L, JIA Q Z, YAO G, YANG J X, WANG B T, LI G B, BI Y Q, YUAN Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 2004, 88(8): 896-904.

doi: 10.1094/PDIS.2004.88.8.896
[4]
CHEN W Q, WU L R, LIU T G, XU S C, JIN S L, PENG Y L, WANG B T. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Disease, 2009, 93(11): 1093-1101.

doi: 10.1094/PDIS-93-11-1093
[5]
WAN A M, CHEN X M, HE Z H. Wheat stripe rust in China. Australian Journal of Agricultural Research, 2007, 58(6): 605-619.

doi: 10.1071/AR06142
[6]
LINE R F. Stripe rust of wheat and barley in North America: A retrospective historical review. Annual Review of Phytopathology, 2002, 40: 75-118.

pmid: 12147755
[7]
FISHER M C, HENK D A, BRIGGS C J, BROWNSTEIN J S, MADOFF L C, MCCRAW S L, GURR S J. Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012, 484(7393): 186-194.

doi: 10.1038/nature10947
[8]
JONES J D G, DANGL J L. The plant immune system. Nature, 2006, 444(7117): 323-329.

doi: 10.1038/nature05286
[9]
YU X, FENG B M, HE P, SHAN L B. From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annual Review of Phytopathology, 2017, 55: 109-137.

doi: 10.1146/annurev-phyto-080516-035649 pmid: 28525309
[10]
HE Q, MCLELLAN H, BOEVINK P C, BIRCH P R J. All roads lead to susceptibility: The many modes of action of fungal and oomycete intracellular effectors. Plant Communications, 2020, 1(4): 100050.

doi: 10.1016/j.xplc.2020.100050
[11]
STAPLES R C. Nutrients for a rust fungus: The role of haustoria. Trends in Plant Science, 2001, 6(11): 496-498.

pmid: 11701352
[12]
GIRALDO M C, VALENT B. Filamentous plant pathogen effectors in action. Nature Reviews. Microbiology, 2013, 11(11): 800-814.
[13]
CATANZARITI A M, DODDS P N, ELLIS J G. Avirulence proteins from haustoria-forming pathogens. FEMS Microbiology Letters, 2007, 269(2): 181-188.

pmid: 17343675
[14]
GARNICA D P, NEMRI A, UPADHYAYA N M, RATHJEN J P, DODDS P N. The ins and outs of rust haustoria. PLoS Pathogens, 2014, 10(9): e1004329.
[15]
ZHENG W M, HUANG L L, HUANG J Q, WANG X J, CHEN X M, ZHAO J, GUO J, ZHUANG H, QIU C Z, LIU J, et al. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communications, 2013, 4: 2673.

doi: 10.1038/ncomms3673 pmid: 24150273
[16]
XU Q, TANG C L, WANG L K, ZHAO C C, KANG Z S, WANG X J. Haustoria-arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 2020, 21(1): 83-94.

doi: 10.1111/mpp.v21.1
[17]
XU Q, WANG J F, ZHAO J R, XU J H, SUN S T, ZHANG H F, WU J J, TANG C L, KANG Z S, WANG X J. A polysaccharide deacetylase from Puccinia striiformis f. sp. tritici is an important pathogenicity gene that suppresses plant immunity. Plant Biotechnology Journal, 2020, 18(8): 1830-1842.

doi: 10.1111/pbi.v18.8
[18]
XU Q, TANG C L, WANG X D, SUN S T, ZHAO J R, KANG Z S, WANG X J. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nature Communications, 2019, 10(1): 5571.

doi: 10.1038/s41467-019-13487-6 pmid: 31804478
[19]
WANG X D, ZHAI T, ZHANG X M, TANG C L, ZHUANG R, ZHAO H B, XU Q, CHENG Y L, WANG J F, DUPLESSIS S, KANG Z S, WANG X J. Two stripe rust effectors impair wheat resistance by suppressing import of host Fe-S protein into chloroplasts. Plant Physiology, 2021, 187(4): 2530-2543.

doi: 10.1093/plphys/kiab434 pmid: 34890460
[20]
许强. 小麦条锈菌效应蛋白Pst_A23调控植物pre-mRNA可变剪切抑制植物免疫[D]. 杨凌: 西北农林科技大学, 2020.
XU Q. Pre-mRNA regulation mediated by Puccinia striiformis effector Pst_A23 suppresses plant immunity[D]. Yangling: Northwest A&F University, 2020.(in Chinese)
[21]
WEI J P, WANG X D, HU Z Y, WANG X J, WANG J L, WANG J F, HUANG X L, KANG Z S, TANG C L. The Puccinia striiformis effector Hasp98 facilitates pathogenicity by blocking the kinase activity of wheat TaMAPK4. Journal of Integrative Plant Biology, 2023, 65(1): 249-264.

doi: 10.1111/jipb.v65.1
[22]
WANG N, TANG C L, FAN X, HE M Y, GAN P F, ZHANG S, HU Z Y, WANG X D, YAN T, SHU W X, et al. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185(16): 2961-2974.

doi: 10.1016/j.cell.2022.06.027
[23]
WAN C P, LIU Y, TIAN S X, GUO J, BAI X X, ZHU H C, KANG Z S, GUO J. A serine-rich effector from the stripe rust pathogen targets a Raf-like kinase to suppress host immunity. Plant Physiology, 2022, 190(1): 762-778.

doi: 10.1093/plphys/kiac218
[24]
PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001, 29(9): 2002-2007.
[25]
HOLZBERG S, BROSIO P, GROSS C, POGUE G P. Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal, 2002, 30(3): 315-327.

doi: 10.1046/j.1365-313X.2002.01291.x
[26]
LACOMME C, CRUZ S S. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(14): 7956-7961.
[27]
ABRAMOVITCH R B, KIM Y J, CHEN S R, DICKMAN M B, MARTIN G B. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. The EMBO Journal, 2003, 22(1): 60-69.

doi: 10.1093/emboj/cdg006
[28]
JAMIR Y, GUO M, OH H S, PETNICKI-OCWIEJA T, CHEN S R, TANG X Y, DICKMAN M B, COLLMER A, ALFANO J R. Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. The Plant Journal, 2004, 37(4): 554-565.

doi: 10.1046/j.1365-313X.2003.01982.x
[29]
YIN C T, HULBERT S. Prospects for functional analysis of effectors from cereal rust fungi. Euphytica, 2011, 179(1): 57-67.

doi: 10.1007/s10681-010-0285-x
[30]
XIN X F, HE S Y. Pseudomonas syringae pv. tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annual Review of Phytopathology, 2013, 51: 473-498.

doi: 10.1146/phyto.2013.51.issue-1
[31]
QI T, GUO J, PENG H, LIU P, KANG Z S, GUO J. Host-induced gene silencing: A powerful strategy to control diseases of wheat and barley. International Journal of Molecular Sciences, 2019, 20(1): 206.

doi: 10.3390/ijms20010206
[32]
KOCH A, WASSENEGGER M. Host-induced gene silencing— Mechanisms and applications. New Phytologist, 2021, 231(1): 54-59.

doi: 10.1111/nph.v231.1
[33]
NOWARA D, GAY A, LACOMME C, SHAW J, RIDOUT C, DOUCHKOV D, HENSEL G, KUMLEHN J, SCHWEIZER P. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 2010, 22(9): 3130-3141.

doi: 10.1105/tpc.110.077040
[34]
於立刚, 齐晓晚, 魏晋萍, 王婷, 王晓杰, 康振生, 汤春蕾. 条形柄锈菌吸器特异效应蛋白Hasp68抑制寄主免疫并与小麦组织蛋白酶B互作. 菌物学报, 2020, 39(10): 1905-1919.
YU L G, QI X W, WEI J P, WANG T, WANG X J, KANG Z S, TANG C L. A haustorium-specific effector protein Hasp68 of Puccinia striiformis suppresses wheat immunity by targeting wheat cathepsin B TaCTSB. Mycosystema, 2020, 39(10): 1905-1919.(in Chinese)
[35]
季森, 赵梦鑫, 徐静华, 汤春蕾, 康振生, 王晓杰. 小麦条锈菌效应蛋白HASP2抑制寄主免疫反应. 植物病理学报, 2019, 49(3): 326-333.
JI S, ZHAO M X, XU J H, TANG C L, KANG Z S, WANG X J. Wheat stripe rust effector HASP2 inhibits host immune response. Acta Phytopathologica Sinica, 2019, 49(3): 326-333.(in Chinese)
[36]
赵聪聪, 盛丽梅, 许强, 汤春蕾, 康振生, 王晓杰. 小麦条锈菌细胞质效应子Hasp8抑制植物基础免疫. 植物保护学报, 2020, 47(3): 537-545.
ZHAO C C, SHENG L M, XU Q, TANG C L, KANG Z S, WANG X J. Cytoplasmic effector Hasp8 of Puccinia striiformis f. sp. tritici inhibits plant immunity. Journal of Plant Protection, 2020, 47(3): 537-545.(in Chinese)
[37]
QI T, GUO J, LIU P, HE F X, WAN C P, ISLAM M A, TYLER B M, KANG Z S, GUO J. Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat. Molecular Plant, 2019, 12(12): 1624-1638.

doi: 10.1016/j.molp.2019.09.010
[38]
YANG Q, HUAI B Y, LU Y X, CAI K Y, GUO J, ZHU X G, KANG Z S, GUO J. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease. New Phytologist, 2020, 225(2): 880-895.

doi: 10.1111/nph.16199 pmid: 31529497
[39]
LIU C, WANG Y Q, WANG Y F, DU Y Y, SONG C, SONG P, YANG Q, HE F X, BAI X X, HUANG L L, GUO J, KANG Z S, GUO J. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici inhibits the activity of copper zinc superoxide dismutase to modulate immunity in wheat. PLoS Pathogens, 2022, 18(7): e1010702.
[40]
NADIMPALLI R, YALPANI N, JOHAL G S, SIMMONS C R. Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death. The Journal of Biological Chemistry, 2000, 275(38): 29579-29586.

doi: 10.1074/jbc.M002339200
[41]
ROSTOKS N, SCHMIERER D, KUDRNA D, KLEINHOFS A. Barley putative hypersensitive induced reaction genes: Genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. Theoretical and Applied Genetics, 2003, 107(6): 1094-1101.

doi: 10.1007/s00122-003-1351-8 pmid: 12928776
[42]
QI Y P, TSUDA K, NGUYEN L V, WANG X, LIN J S, MURPHY A S, GLAZEBROOK J, THORDAL-CHRISTENSEN H, KATAGIRI F. Physical association of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. The Journal of Biological Chemistry, 2011, 286(36): 31297-31307.

doi: 10.1074/jbc.M110.211615
[43]
ZHOU L, CHEUNG M Y, LI M W, FU Y P, SUN Z X, SUN S M, LAM H M. Rice hypersensitive induced reaction protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. BMC Plant Biology, 2010, 10: 290.

doi: 10.1186/1471-2229-10-290 pmid: 21192820
[1] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[2] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[3] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[4] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[5] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[6] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[7] YU AiLi,ZHAO JinFeng,CHENG Kai,WANG ZhenHua,ZHANG Peng,LIU Xin,TIAN Gang,ZHAO TaiCun,WANG YuWen. Screening and Analysis of Key Metabolic Pathways in Foxtail Millet During Different Water Uptake Phases of Germination [J]. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019.
[8] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
[9] SUN Kai, LI DongXiu, YANG Jing, DONG JiChi, YAN XianCheng, LUO LiXin, LIU YongZhu, XIAO WuMing, WANG Hui, CHEN ZhiQiang, GUO Tao. Genome-Wide Association Analysis for Rice Submergence Seedling Rate [J]. Scientia Agricultura Sinica, 2019, 52(3): 385-398.
[10] LIU XiQiang, ZHANG Han, GONG Pan, GONG WenLong, WANG Zan.  Transcriptome Analysis of Secondary Cell Wall Synthesis Regulation at Different Developmental Stages in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(11): 2049-2059.
[11] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[12] WANG Yu-qiu, LI Guo-bang, YANG Juan, LI Liang, ZHAO Zhi-xue, FAN Jing, WANG Wen-ming. Construction and Application of a Yeast Two-Hybrid cDNA Library from Rice Spikelets Infected with Ustilaginoidea virens [J]. Scientia Agricultura Sinica, 2016, 49(5): 865-873.
[13] ZHOU Xin-li, ZHAN Gang-ming, HUANG Li-li, HAN De-jun, KANG Zhen-sheng. Evaluation of Resistance to Stripe Rust in Eighty Abroad Spring Wheat Germplasms [J]. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526.
[14] WANG Tu-hong, GUO Qing-yun, LIN Rui-ming, YAO Qiang, FENG Jing, WANG Feng-tao, CHEN Wan-quan, XU Shi-chang. Postulation of Stripe Rust Resistance Genes in Chinese 40 Wheat Landraces and 40 Commercial Cultivars in the Southern Region of Gansu Province [J]. Scientia Agricultura Sinica, 2015, 48(19): 3834-3847.
[15] LI Zheng, XIONG Li, JI Zhi-Yuan, ZOU Li-Fang, ZOU Hua-Song, CHEN Gong-You. Mechanisms of Rice Resistance (Susceptibility) Manipulated by Diverse TALEs of Xanthomonas oryzae pv. oryzae and pv. oryzicola and Potential Utilization in Rice Breeding [J]. Scientia Agricultura Sinica, 2013, 46(14): 2894-2901.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!