Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (12): 2385-2398.doi: 10.3864/j.issn.0578-1752.2020.12.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Nozzle Type on the Spray Performance of Plant Protection Unmanned Aerial Vehicle (UAV)

GONG ChangWei1,MA Yu1,YANG Rui1,RUAN YanWei1,WANG XueGui1(),LIU Yue2   

  1. 1 College of Agriculture, Sichuan Agricultural University/Biorational Pesticide Research Laboratory/National Demonstration Center for Experimental Crop Science Education, Chengdu 611130;
    2 Anyang Quanfeng Biotechnology Co. Ltd./Key Laboratory of Aviation Plant Protection, Ministry of Agriculture and Rural Affairs, Anyang 455000, Henan
  • Received:2019-11-22 Online:2020-06-16 Published:2020-06-25
  • Contact: XueGui WANG E-mail:wangxuegui@sicau.edu.cn

Abstract:

【Objective】 Plant protection unmanned aerial vehicle (UAV) has the characteristics of high spray efficiency, good applicability, small crop damage and high safety to the operator. However, drift seriously restricts its popularization and application. As the core component, the nozzle is a key factor affecting droplet drift. The objective of this study is to clarify the atomization performance of different types of nozzles and their effect on spray drift, and to provide theoretical basis for selecting suitable nozzles. 【Method】 In this paper, 20 kinds of common fan-shaped, air suction and conical nozzles were selected, and the distribution span, volume diameter (D50) and percentage of the total volume of fog particles smaller than 150 μm (ΦVol<150 μm) of different types of nozzles were detected by laser particle size analyzer. In an open wind tunnel, the flow rate of different nozzles at 0.3 MPa was firstly measured, then the influence of different types of nozzles on spray drift and particle size characteristics of deposition droplet was evaluated by photo paper and mylar card method. 【Result】 The atomization performance of different nozzles was measured under 0.3 MPa spray pressure. It showed that in common fan-shaped nozzle such as F110-01, F110-015, F110-02 and F110-03, the distribution span and D50 increased significantly with the increase of the model, while ΦVol<150 μm decreased significantly. The air fan nozzle from AFC-01 to AFC-05 and the conical nozzle from HCC80-0075 to HCC80-025 had the same rule. The ΦVol<150 μm of air fan nozzle with the same aperture was smaller than that of fan-shaped nozzle and conical nozzle, while the distribution span and D50 were larger than those of fan-shaped nozzle and conical nozzle. The distribution span and D50 of AFC-01 and IDK120-015 were significantly smaller than those of other types of air fan nozzle. The ΦVol<150 μm of IDK120-015 was significantly lower than that of HCC80-02, F110-015 and F110-03, while the distribution span and D50 were significantly higher than those of HCC80-02 and F110-015. There was no significant difference between the flow of HCC80-02 and IDK120-015, F110-015, which were all significantly lower than that of F110-03. Furthermore, the particle size characteristics and drift amount of drift deposition droplets on the ground were evaluated by using mylar card and photo paper. The effects of nozzle type and drift distance on the D50 and distribution span of drift deposition droplets were extremely significant. The D50 and distribution span of drift distance 3 m were significantly lower than those of 1 m and 2 m. The trend of predicted drift amount calculated by Depositscan software was consistent with the measured drift amount, both of which were HCC80-02>F110-015>F110-03>IDK120-015. After the calculation of anti-drift effect of different nozzles, IDK120-015 had the best anti-drift effect (72.02%), F110-03 was the second, and HCC80-02 was the worst. 【Conclusion】 It is a feasible method to evaluate the drift of droplets through mylar card and photo paper to collect the ground drift. The reasonable selection of nozzle can significantly reduce the percentage of small droplets and expand the relative droplet size, and result in the decreased droplets drift during the operation of UAV.

Key words: plant protection unmanned aerial vehicle (UAV), atomization performance, distribution span, volume diameter (D50), nozzle, surface drift deposition

Fig. 1

Schematic diagram of open wind tunnel A square wind tunnel with a length of 7.5 m, a width of 1 m and a height of 1 m. One end of the air inlet is guided by the comb grid, and the other end has an axial-flow fan with a diameter of 0.9 m. The fan can form a stable one-way 0-8 m·s-1 stepless adjustable wind speed in the working space After the wind speed is measured by anemometer, the wind speed value will be displayed on the screen of microcomputer"

Table 1

The spray droplet distribution span of different types of nozzles at 0.3 MPa"

喷嘴类型
Nozzle type
喷射角
Spray angle
均值±标准误
Mean±SE
95%置信区间95% Confidence interval 差异显著性Significance
下限Lower 上限Upper 0.05 0.01
常规扇形喷嘴
Fan-shaped
F110-01 110°






1.012±0.008 0.978 1.046 l L
F110-015 1.046±0.007 1.015 1.076 kl L
F110-02 1.063±0.001 1.058 1.069 kl KL
F110-03 2.946±0.016 2.878 3.014 a A
双向3D扇形喷嘴3D-fan-shaped GAT110-03 2.692±0.035 2.539 2.844 b B
气吸型扇形喷嘴
Air fan nozzle
AFC-01 1.556±0.005 1.534 1.578 g G
AFC-015 1.878±0.009 1.840 1.916 f EF
AFC-02 2.522±0.017 2.448 2.597 c C
AFC-05 2.923±0.044 2.735 3.111 a A
KZ80-08 2.290±0.021 2.021 2.560 d D
KZ80-12 1.905±0.010 1.862 1.948 ef EF
KZ80-16 1.860±0.016 1.791 1.928 f F
气吸型扇形喷嘴
Air fan nozzle
IDK120-015 120° 1.425±0.003 1.410 1.440 h H
IDK120-03 1.958±0.007 1.929 1.987 e E
常规扇形喷嘴Fan-shaped ULD120-02 1.142±0.004 1.125 1.159 j JK
圆锥形喷嘴
Conical nozzle
HCC80-0075 80° 0.760±0.045 0.568 0.953 m N
HCC80-01 1.079±0.009 1.039 1.119 k KL
HCC80-015 1.170±0.029 1.047 1.293 j J
HCC80-02 1.297±0.024 1.194 1.400 i I
HCC80-025 1.383±0.009 1.344 1.422 h H

Table 2

The spray droplet ΦVol<150 μm of different types of nozzles at 0.3 MPa"

喷嘴类型
Nozzle type
喷射角
Spray angle
均值±标准误
Mean±SE (%)
95%置信区间95% Confidence interval 差异显著性Significance
下限Lower 上限Upper 0.05 0.01
常规扇形喷嘴
Fan-shaped
F110-01 110° 65.357±0.476 63.308 67.405 a A
F110-015 48.993±0.292 47.738 50.248 d C
F110-02 41.633±0.035 41.482 41.785 e D
F110-03 25.910±0.289 24.668 27.152 g F
双向3D扇形喷嘴
3D-fan-shaped
GAT110-03 14.633±0.098 14.213 15.054 h G
气吸型扇形喷嘴
Air fan nozzle
AFC-01 15.720±0.110 15.247 16.193 h G
AFC-015 15.107±0.105 14.654 15.560 h G
AFC-02 8.010±0.095 7.600 8.420 kl I
AFC-05 7.740±0.006 7.715 7.765 l I
KZ80-08 11.337±0.068 11.042 11.631 i H
KZ80-12 15.203±0.084 14.843 15.564 h G
KZ80-16 10.317±0.103 9.875 10.758 ij H
气吸型扇形喷嘴
Air fan nozzle
IDK120-015 120° 9.447±0.073 9.132 9.761 jk HI
IDK120-03 7.527±0.124 6.991 8.062 l I
常规扇形喷嘴
Fan-shaped
ULD120-02 47.973±0.178 47.206 48.741 d C
圆锥形喷嘴
Conical nozzle
HCC80-0075 80° 63.570±0.557 61.172 65.968 b A
HCC80-01 51.773±1.927 43.483 60.064 c B
HCC80-015 48.647±0.673 45.751 51.543 d C
HCC80-02 42.327±0.491 40.215 44.438 e D
HCC80-025 30.740±1.027 26.323 35.157 f E

Table 3

The spray droplet D50 of different types of nozzles at 0.3 MPa"

喷嘴类型
Nozzle type
喷射角
Spray angle
均值±标准误
Mean±SE (μm)
95%置信区间95% Confidence interval 差异显著性Significance
下限Lower 上限Upper 0.05 0.01
常规扇形喷嘴
Fan-shaped
F110-01 110° 125.807±0.833 122.223 129.390 n N
F110-015 149.363±0.538 147.049 151.678 l LM
F110-02 162.290±0.050 162.073 162.507 k K
F110-03 214.587±1.217 209.350 219.823 i I
双向3D扇形喷嘴
3D-fan-shaped
GAT110-03 301.163±0.810 297.679 304.648 g G
气吸型扇形喷嘴
Air fan nozzle
AFC-01 271.560±1.020 267.171 275.949 h H
AFC-015 274.507±0.870 270.762 278.252 h H
AFC-02 379.917±1.010 375.572 384.262 c C
AFC-05 414.727±0.807 411.256 418.198 a A
KZ80-08 326.770±1.329 321.052 332.488 f F
KZ80-12 272.733±0.602 270.145 275.322 h H
KZ80-16 354.593±1.356 348.758 360.429 d D
气吸型扇形喷嘴
Air fan nozzle
IDK120-015 120° 346.990±1.080 342.343 351.637 e E
IDK120-03 386.517±3.247 372.545 400.488 b B
常规扇形喷嘴
Fan-shaped
ULD120-02 151.433±0.342 149.963 152.903 l L
圆锥形喷嘴
Conical nozzle
HCC80-0075 80° 128.590±0.944 124.526 132.654 n N
HCC80-01 144.563±3.278 130.460 158.666 m M
HCC80-015 150.233±1.303 144.627 155.840 l L
HCC80-02 163.640±1.223 158.380 168.900 k K
HCC80-025 169.953±0.235 168.944 170.963 j J

Fig. 2

Flow statistics of different types of nozzles at 0.3 MPa The same letters on the bars indicate no significant difference (P>0.05, ANOVA). The same as Fig. 4"

Fig. 3

Performance parameters of deposition droplets of different nozzle types at different drift distances"

Table 4

Multiple comparison of D50 of droplet granule"

处理
Treatment (A)
体积中径
D50 (μm)
标准差
Standard deviation
差异显著性
Significance
处理
Treatment (B)
体积中径
D50 (μm)
标准差
Standard deviation
差异显著性
Significance
IDK120-015 298.67 121.14 cC 1 m 651.33 229.80 aA
F110-015 408.22 243.36 bB 2 m 542.00 323.19 aA
F110-03 493.67 247.85 bcBC 3 m 243.67 58.83 bB
HCC80-02 715.44 337.47 aA

Table 5

Variance analysis of D50 of droplet granule"

变异来源Source of variation 平方和Sum of squares 自由度Freedom 均方Mean square F值F value PP value
区组Area group 2373967.33 11 215815.21 11.198 0
842856.22 3 280952.07 14.578 0
1068594.67 2 534297.33 27.723 0
A×B× 462516.44 6 77086.07 4.000 0.006
误差Error 462548.67 24 19272.86
总和Sum of error 11096392.00 36

Table 6

Multiple comparison of span distribution of droplet granule"

处理
Treatment (A)
分布跨度
Span distribution
标准差
Standard deviation
差异显著性
Significance
处理
Treatment (B)
分布跨度
Span distribution
标准差
Standard deviation
差异显著性
Significance
IDK120-015 0.74 0.39 bB 1 m 1.12 0.24 aA
F110-015 1.10 0.17 aA 2 m 1.04 0.36 aA
F110-03 1.01 0.21 aA 3 m 0.83 0.22 bB
HCC80-02 1.13 0.23 aA

Table 7

Variance analysis of span distribution of droplet granule"

变异来源Source of variation 平方和Sum of squares 自由度Freedom 均方Mean square F值F value PP value
区组Area group 2.16 11 0.20 5.044 0
0.87 3 0.29 7.414 0.001
0.51 2 0.25 6.494 0.006
A×B× 0.79 6 0.13 3.377 0.015
误差Error 38.82 36 0.04
总和Sum of error 38.82 36

Table 8

Multiple comparison of estimated drift deposition"

处理
Treatment (A)
飘移量
Drift deposition (μL·cm-2)
标准差
Standard
deviation
差异显著性
Significance
处理
Treatment (B)
飘移量
Drift deposition (μL·cm-2)
标准差
Standard
deviation
差异显著性
Significance
IDK120-015 0.56 0.49 cC 1 m 2.79 1.60 aA
F110-015 2.27 1.60 bB 2 m 2.73 2.25 aA
F110-03 1.94 1.60 bB 3 m 0.75 0.49 bB
HCC80-02 3.60 2.06 aA

Table 9

Variance analysis of estimated drift deposition"

变异来源Source of variation 平方和Sum of squares 自由度Freedom 均方Mean square F值F value PP value
区组Area group 99.70 11 9.06 11.404 0
42.14 3 14.05 17.673 0
32.50 2 16.25 20.445 0
A×B× 25.06 6 4.18 5.255 0.001
误差Error 19.07 24 0.79
总和Sum of error 276.26 36

Table 10

Multiple comparison of drift deposition percentage"

处理
Treatment (A)
飘移沉积量百分比
Percentage of drift deposition (%)
标准差
Standard
deviation
差异显著性
Significance
处理
Treatment (B)
飘移沉积量百分比
Percentage of drift deposition (%)
标准差
Standard
deviation
差异显著性
Significance
IDK120-015 0.030 0.019 dD 1 m 0.153 0.090 aA
F110-015 0.124 0.053 bB 2 m 0.094 0.055 bB
F110-03 0.063 0.033 cC 3 m 0.047 0.032 cC
HCC80-02 0.174 0.083 aA

Table 11

Variance analysis of drift deposition percentage"

变异来源Source of variation 平方和Sum of squares 自由度Freedom 均方Mean square F值F value PP value
区组Area group 0.197 11 0.018 131.999 0
0.111 3 0.037 272.477 0
0.067 2 0.034 247.818 0
A×B× 0.019 6 0.003 23.153 0
误差Error 0.003 24 0.000
总和Sum of Error 0.544 36

Fig. 4

Comparison of anti-drift effect of different nozzles"

[1] 娄尚易, 薛新宇, 顾伟, 崔龙飞, 周晴晴, 王昕. 农用植保无人机的研究现状及趋势. 农机化研究, 2017,39(12):1-6, 31.
LOU S Y, XUE X Y, GU W, CUI L F, ZHOU Q Q, WANG X. Current status and trends of agricultural plant protection unmanned aerial vehicle. Journal of Agricultural Mechanization Research, 2017,39(12):1-6, 31. (in Chinese)
[2] 王玲, 兰玉彬, HOFFMANN W, KFRITZ B, 陈度, 王书茂. 微型无人机低空变量喷药系统设计与雾滴沉积规律研究. 农业机械学报, 2016,47(1):15-22.
WANG L, LAN Y B, HOFFMANN W, KFRITZ B, CHEN D, WANG S M. Design of variable spraying system and influencing factors on droplets deposition of small UAV. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(1):15-22. (in Chinese)
[3] 亓文哲, 王菲菲, 孟臻, 张典利, 王红艳, 王开运, 乔康. 我国植保无人机应用现状. 农药, 2018,57(4):247-254.
QI W Z, WANG F F, MENG Z, ZHANG D L, WANG H Y, WANG K Y, QIAO K. Application status of unmanned aerial vehicle for plant protection in China. Agrochemicals, 2018,57(4):247-254. (in Chinese)
[4] 王昌陵, 何雄奎, 王潇楠, 王志翀, 王士林, 李龙龙, BONDS J, HERBST A, 王志国, 梅水发. 基于空间质量平衡法的植保无人机施药雾滴沉积分布特性测试. 农业工程学报, 2016,32(24):89-97.
WANG C L, HE X K, WANG X N, WANG Z C, WANG S L, LI L L, BONDS J, HERBST A, WANG Z G, MEI S F. Distribution characteristics of pesticide application droplets deposition of unmanned aerial vehicle based on testing method of spatial quality balance. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(24):89-97. (in Chinese)
[5] 航空植保年作业面积超1.4亿亩次. 农药, 2018,57(8):616.
The annual operating area of aviation plant protection exceeds 140 million mu. Agrochemicals, 2018,57(8):616. (in Chinese)
[6] 刘鹤. 农用植保无人机的研究现状及趋势. 农业与技术, 2019,39(5):54-55.
LIU H. Current status and trends of agricultural plant protection unmanned aerial vehicle. Agriculture and Technology, 2019,39(5):54-55. (in Chinese)
[7] 范庆妮. 小型无人直升机农药雾化系统的研究[D]. 南京: 南京林业大学, 2011.
FAN Q N. The research on the pesticide spray system using for the mini unmanned helicopter[D]. Nanjing: Nanjing Forestry University, 2011. (in Chinese)
[8] 文晟, 兰玉彬, 张建桃, 李晟华, 张海艳, 邢航. 农用无人机超低容量旋流喷嘴的雾化特性分析与试验. 农业工程学报, 2016,32(20):85-93.
WEN S, LAN Y B, ZHANG J T, LI S H, ZHANG H Y, XING H. Analysis and experiment on atomization characteristics of ultra-low- volume swirl nozzle for agricultural unmanned aviation vehicle. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(20):85-93. (in Chinese)
[9] 何勇, 肖舒裴, 方慧, 董涛, 唐宇, 聂鹏程, 吴剑坚, 骆少明. 植保无人机施药喷嘴的发展现状及其施药决策. 农业工程学报, 2018,34(13):113-124.
HE Y, XIAO S P, FANG H, DONG T, TANG Y, NIE P C, WU J J, LUO S M. Development situation and spraying decision of spray nozzle for plant protection UAV. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(13):113-124. (in Chinese)
[10] ANTUNIASSI U R, CARBONARI C A, VELINI E D, OLIVEIRA R B, OLIVEIRA M A, MOTA A A. Spray drift from aerial application on sugarcane in Brazil. Phytopathology, 2011,101(6):8.
[11] 周晴晴, 薛新宇, 钱生越, 秦维彩. 航空喷嘴的使用现状及研究方向. 中国农机化学报, 2016,37(10):234-237.
ZHOU Q Q, XUE X Y, QIAN S Y, QIN W C. Application status and research direction of nozzles in aviation spray. Journal of Chinese Agricultural Mechanization, 2016,37(10):234-237. (in Chinese)
[12] 张慧春, GARY D, 郑加强, 周宏平. 扇形喷头雾滴粒径分布风洞试验. 农业机械学报, 2012,43(6):53-57.
ZHANG H C, GARY D, ZHENG J Q, ZHOU H P. Wind tunnel experiment of influence on droplet size distribution of fat fan nozzles. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(6):53-57. (in Chinese)
[13] VALLET A, TINET C. Characteristics of droplets from single and twin jet air induction nozzles: A preliminary investigation. Crop Protection, 2013,48:63-68.
[14] BUTLER ELLIS M C, SWAN T, MILLER P C H, WADDELOW S, BRADLEY A, TUCK C R. Design factors affecting spray characteristics and drift performance of air induction nozzles. Biosystems Engineering, 2002,82(3):289-296.
[15] 杨希娃, 周继中, 何雄奎, HERBST A. 喷头类型对药液沉积和麦蚜防效的影响. 农业工程学报, 2012,28(7):46-50.
YANG X W, ZHOU J Z, HE X K, HERBST A. Influences of nozzle types on pesticide deposition and insecticidal effect to wheat aphids. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(7):46-50. (in Chinese)
[16] 王潇楠, 何雄奎, HERBST A, LANGENAKENS J, 郑建秋, 李云龙. 喷杆式喷雾机雾滴飘移测试系统研制及性能试验. 农业工程学报, 2014,30(18):55-62.
WANG X N, HE X K, HERBST A, LANGENAKENS J, ZHENG J Q, LI Y L. Development and performance test of spray drift test system for sprayer with bar. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(18):55-62. (in Chinese)
[17] 谢晨, 何雄奎, 宋坚利, HERBST A. 两类扇形雾喷头雾化过程比较研究. 农业工程学报, 2013,29(5):25-30.
XIE C, HE X K, SONG J L, HERBST A. Comparative research of two kinds of flat fan nozzle atomization process. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(5):25-30. (in Chinese)
[18] FLACK S L, LEDSON T M, RAMANARAYANAN T S. Particle size characterization of agricultural sprays collected on personal air monitoring samplers. Journal of Agricultural Safety and Health, 2019,25(2):91-103.
doi: 10.13031/jash.13065 pmid: 32429610
[19] GARCERÁ C, MOLTÓ E, CHUECA P. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses. Science of the Total Environment, 2017,599/600:1344-1362.
[20] 王潇楠, 何雄奎, 王昌陵, 王志翀, 李龙龙, 王士林, BONDS J, HERBST A, 王志国. 油动单旋翼植保无人机雾滴飘移分布特性. 农业工程学报, 2017,33(1):117-123.
WANG X N, HE X K, WANG C L, WANG Z C, LI L L, WANG S L, BONDS J, HERBST A, WANG Z G. Spray drift characteristics of fuel powered single-rotor UAV for plant protection. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(1):117-123. (in Chinese)
[21] SMITH D B, BODE L E, GERARD P D. Predicting ground boom spray drift. Transactions of the ASAE, 2000,43(3):547-553.
[22] AL HEIDARY M, DOUZALS J P, SINFORT C, VALLET A. Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Protection, 2014,63:120-130.
[23] 张宋超, 薛新宇, 秦维彩, 孙竹, 丁素明, 周立新. N-3型农用无人直升机航空施药飘移模拟与试验. 农业工程学报, 2015,3l(3):87-93.
ZHANG S C, XUE X Y, QIN W C, SUN Z, DING S M, ZHOU L X. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter. Transactions of the Chinese Society of Agricultural Engineering, 2015,3l(3):87-93. (in Chinese)
[24] 邱占奎, 袁会珠, 楼少巍, 纪明山, 于娟娟, 宋晓宇. 水溶性染色剂诱惑红和丽春红-G作为农药沉积分布的示踪剂研究. 农药, 2007,46(5):323-325.
QIU Z K, YUAN H Z, LOU S W, JI M S, YU J J, SONG X Y. The research of water soluble dyes of allura red and ponceau-G as tracers for determing pesticide spray distribution. Agrochemicals, 2007,46(5):323-325. (in Chinese)
[25] 王娟, 兰玉彬, 姚伟祥, 陈鹏超, 林晋立, 燕颖斌. 单旋翼无人机作业高度对槟榔雾滴沉积分布与飘移影响. 农业机械学报, 2019,50(7):109-119.
WANG J, LAN Y B, YAO W X, CHEN P C, LIN J L, YAN Y B. Effects of working height of single-rotor unmanned aerial vehicle on drift and droplets deposition distribution of areca tree. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(7):109-119. (in Chinese)
[26] 王潇楠. 农药雾滴飘移及减飘方法研究[D]. 北京: 中国农业大学, 2017.
WANG X N. Study on spray drift and anti-drift method[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[27] 卢佳节. 植保无人机静电喷雾系统关键技术研究[D]. 贵阳: 贵州大学, 2019.
LU J J. Research on key technologies of electrostatic spraying system for plant protection UAV[D]. Guiyang: Guizhou University, 2019. (in Chinese)
[28] FERGUSON J C, O’DONNELL C C, CHAUHAN B S, ADKINS S W, KRUGER G R, WANG R B, FERREIRA P H U, HEWITT A J. Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel. Crop Protection, 2015,76:1-6.
[29] 唐青, 陈立平, 张瑞瑞, 徐旻, 徐刚, 张斌. IEA-Ⅰ型航空植保高速风洞的设计与校测. 农业工程学报, 2016,32(6):73-81.
TANG Q, CHEN L P, ZHANG R R, XU M, XU G, ZHANG B. Design and test of IEA-Ⅰ high speed wind tunnel for aerial plant protection. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(6):73-81. (in Chinese)
[30] FRITZ B K, HOFFMANN W C. Update to the USDA-ARS fixed-wing spray nozzle models. Transactions of the ASABE, 2015,58(2):281-295.
[31] MARTIN D E, CARLTON J B. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications. Applied Engineering in Agriculture, 2013,29(1):5-10.
[32] LAD N, AROUSSI A, MUHAMAD S M F. Droplet size measurement for liquid spray using digital image analysis technique. Journal of Applied Sciences, 2011,11(11):1966-1972.
[33] 曾爱军, 何雄奎, 陈青云, HERBST A, 刘亚佳. 典型液力喷头在风洞环境中的飘移特性试验与评价. 农业工程学报, 2005,21(10):78-81.
ZENG A J, HE X K, CHEN Q Y, HERBST A, LIU Y J. Spray drift potential evaluation of typical nozzles under wind tunnel conditions. Transactions of the Chinese Society of Agricultural Engineering, 2005,21(10):78-81. (in Chinese)
[34] 吴罗罗, 李秉礼, 何雄奎, KIENZLE J. 雾滴飘移试验与几种喷头抗飘失能力的比较. 农业机械学报, 1996,27(增刊):120-124.
WU L L, LI B L, HE X K, KIENZLE J. The nature of drift loss and the anti-drifting ability of different nozzles. Transactions of the Chinese Society of Agricultural Machinery, 1996,27(Suppl.):120-124. (in Chinese)
[35] 王潇楠, 何雄奎, 宋坚利, HERBST A. 助剂类型及浓度对不同喷头雾滴飘移的影响. 农业工程学报, 2015,31(22):49-55.
WANG X N, HE X K, SONG J L, HERBST A. Effect of adjuvant types and concentration on spray drift potential of different nozzles. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(22):49-55. (in Chinese)
[36] CREECH C F, HENRY R S, HEWITT A J, KRUGER G R. Herbicide spray penetration into corn and soybean canopies using air-induction nozzles and a drift control adjuvant. Weed Technology, 2018,32(1):72-79.
[37] JÚNIOR J D G, RUAS R A A, REIS M R, FILHO A C, FARIA V R. Reduction in the spray drift of 2,4-D in tomato using hydraulic nozzles with air induction and LI-700 adjuvant. Pesquisa Agropecuária Tropical, 2018,48(2):134-139.
[38] FRANCA J A L, CUNHA J P A R, ANTUNIASSI U R. Spectrum, velocity and drift of droplets sprayed by nozzles with and without air induction and mineral oil. Engenharia Agricola, 2017,37(3):502-509.
[39] 袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系. 植物保护, 2015,41(6):9-16.
YUAN H Z, WANG G B. Effects of droplet size and deposition density on field efficacy of pesticides. Plant Protection, 2015,41(6):9-16. (in Chinese)
[40] AKESSON N B, YATES W E. Development of drop size-frequency analysis of sprays used for pesticide application//SPICER L, KANEKO T. Pesticide Formulations and Application Systems: Fifth Volume. West Conshohocken, PA: ASTM International, 1986: 83-93.
[41] 朱玉坤, 郑岩明, 王杰, 夏晓明, 王开运. 喷雾方式及喷液量对吡蚜酮和啶虫脒在棉田的沉积分布及棉蚜防治效果的影响. 昆虫学报, 2013,56(5):530-536.
ZHU Y K, ZHENG Y M, WANG J, XIAO X M, WANG K Y. Influences of spray method and volume on the deposition of acetamiprid and pymetrozine and their efficacy against cotton aphids in cotton fields. Acta Entomologica Sinica, 2013,56(5):530-536. (in Chinese)
[42] FORNASIERO D, MORI N, TIRELLO P, POZZEBON A, DUSO C, TESCARI E, BRADASCIO R, OTTO S. Effect of spray drift reduction techniques on pests and predatory mites in orchards and vineyards. Crop Protection, 2017,98:283-292.
[43] DOUGLAS G. The influence of size of spray droplets on the herbicidal activity of diquat and paraquat. Weed Research, 1968,8(3):205-212.
[44] FENG P C, CHIU T, SAMMONS R D, RYERSE J S. Droplet size affects glyphosate retention, absorption, and translocation in corn. Weed Science, 2003,51(3):443-448.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!