Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4659-4676.doi: 10.3864/j.issn.0578-1752.2018.24.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Influence of Sub-Region Priority Modeling Constructed by Random Forest and Stochastic Gradient Treeboost on the Accuracy of Soil Salinity Prediction in Oasis Scale

WANG Fei1,2,3(),YANG ShengTian2,WEI Yang2,YANG XiaoDong2,3,DING JianLi1,2,3()   

  1. 1 Xinjiang Common University Key Laboratory of Smart City and Environmental Stimulation, Xinjiang University, Urumqi 830046
    2 College of Resource and Environmental Sciences, Xinjiang University, Urumqi 830046
    3 Laboratory for Oasis Ecosystem, Ministry of Education, Urumqi 830046
  • Received:2018-05-14 Accepted:2018-07-20 Online:2018-12-16 Published:2018-12-16

Abstract:

【Objective】 This study attempts to improve the prediction accuracy of soil salinity in arid oasis by building models preferentially in the sub-area of oasis. At the same time, the difference and uncertainty of accuracy between global model and sub-region model are quantified. 【Method】 Therefore, to investigate the above differences, this study used two machine learning methods (Random Forest, RF and Stochastic Gradient Treeboost, SGT) to quantify the above effects and to prove the necessity of the building model in the sub-region compared with the full-sample model with respect to the simulation precision under the complex background of an arid region. Twenty-seven environmental scenarios (twelve original and fifteen derivatives) were designed based on the driving factors (land use and landform) and response factors (Normalized Difference Vegetation Index, NDVI and electrical conductivity, EC), which reflected variety of variabilities in soil salinity. After analyzing the results, the following preliminary conclusions were drawn. 【Result】 The simulation results from 70.37% (19/27) of the scenarios showed that the predicted value of soil salinity from SGT was closer to the observed value from RF. Ten original sub-regions were modeled individually and compared with the full-sample model under the oasis scale (according to the 10 partition rules to reclassify the simulated values), and the result showed that the prediction accuracy of the former 70% scenario was higher than that of the latter. In particular, the regions of EC≤4 dS·m -1 and 2 ddS·m -1<EC<16 dS·m -1 should be modeled separately to predict the spatial variability of regional salinity. By combining the predictions of sub-regions and comparing them with the predicted values of the full-sample model, the former (all four different combination modes) showed a higher prediction accuracy than the latter. In addition, this result also indicated that the preferred medium for partitioning the sub-regions was soil electrical conductivity, followed by landform and land use. 【Conclusion】 The study proposes to establish a soil salinity model based on SGT preferentially on different landscape scales within the oasis, and then combine the predicted values of each landscape scale to improve the prediction accuracy of oasis soil salinity.

Key words: soil salinity, machine learning, arid regions, Landsat OLI, spatial heterogeneity, Random Forest, Stochastic Gradient Treeboost

Fig. 1

Distribution of the field sampling plots at Weigan-kuqa river oasis"

Fig. 2

Schematic diagram of the interactions of hydrothermal and energy exchange between oasis and desert areas as well as the relative coverage of each scenario (modified from LI et al[10])"

Fig. 3

Statistical histogram of the land use types of the samples in the 12 scenarios"

Table 1

Environmental covariates derived from a 30 m spatial resolution DEM and 30 m Landsat imagery"

变量组 Environment variable group 指数 Index
波段及其衍生变量
Band & derivatives
全波段;缨帽变换(亮度(TC1),绿度(TC2),湿度(TC3),主成分分析(前三个波段)
Bands;Tasseled Cap (brightness,TC1;Greenness,TC2; Wetness,TC3 ), Principal Component Analysis(PC1,PC2,PC3)
植被指数
Vegetation
indices
归一化植被指数;土壤调节植被指数;增强植被指数;广义植被指数;冠层响应盐度指数[3];比值植被指数;两波段增强植被指数[30];扩展的归一化植被指数[31];扩展的增强植被指数[31]
Normalized Difference Vegetation Index, NDVI; Soil Adjusted Vegetation Index, SAVI; Enhanced Vegetation Index, EVI; Generalized Difference Vegetation Index, GDVI[5]; Canopy Response Salinity Index, CRSI[3]; Simple Ratio Vegetation Index, SR; Two-Band Enhanced Vegetation Index, EVI2[30]; Extended NDVI, ENDVI[31]; Extended EVI, EEVI[31]
土壤相关指数
Soil-related indices
盐度指数(Salinity Index, SIT)[1];盐度指数(Salinity Index, SI)[1];盐度指数(Salinity Index(SI1)[1];盐度指数(Salinity Index, SI2)[1];盐度指数(Salinity Index, SI3)[1];盐度指数(Salinity Index, SIA)[1];盐度指数(Salinity Index, SIB);盐度比值指数(Salinity Ratio, SAIO)[32];黏土指数(Clay Index, CLEX)[4] ;石膏指数(Gypsum Index, GYEX)[4];亮度指数(Brightness Index, BREX)[4];碳酸盐指数(Carbonate Index, CAEX)[4];FSEN= (B5-B7)/(B5+B7)[33];颜色指数(Color Indices -色相Hue, 饱和度 Saturation, 色调Value);归一化热感指数(Normalized Difference Infrared Index, NDII)[4];全球植被湿度指数(Global Vegetation Moisture Index, GVMI)[34];地表温度(Temperature)
DEM衍生因子
Dem derivatives
河道相关:谷深(Valley Depth ,VD);与河网的垂直距离(Vertical Distance To Channel Network ,VDCN);水文学相关:坡长因子(LS-Factor, LSF);地形指数指数(Topographic Wetness Index, TWI);坡长(Slope Length, SL);通视度(Sky View Factor, SVF);地形位置指数(Topographic Position Index, TPI);多尺度谷底平整度(Multiresolution Index Of Valley Bottom Flatness(MRVBF And MRRTF)),坡高(Slope Height, SH),归一化高度(Normalized Height, NH),标准化高度(Standardized Height, STH),坡度中值位置Mid-Slope Position(MSP),地表纹理(Terrain Surface Texture, TEX),汇流累积量(Flow Accumulation, FA);形态:截面曲率(Cross-Section Curvature, CSC),纵向曲率(Longitudinal Curvature, LC),相对坡度位置(Relative Slope Position, RSP),流域坡度(Catchment Slope, CS)(SAGA Development Team, 2011)

Fig. 4

Comparison of combined and regrouped scenarios on predictions of soil salinity in method one at oasis scale"

Fig. 5

Comparison of combined and regrouped scenarios on the prediction of soil salinity in method two at the oasis scale"

Fig. 6

The effects of the mtry set in RF on RMSE in different scenarios"

Fig. 7

The effects of the maximum nodes per tree set in SGT on RMSE in different scenarios"

Table 2

Summary statistics of salinity (dS·m-1) for the 12 scenarios used in this study"

情景
Scenario
最小值
Min
最大值
Max
平均值
Average
变异系数
CV
Q25 Q50 Q75
S1 0.14 184.5 31.32 1.29 1.42 13.11 48.00
S2 0.14 128.50 11.25 2.02 0.42 1.50 9.90
S3 0.15 184.50 47.14 0.95 11.84 26.00 79.95
S4 0.15 103.9 5.57 2.97 0.38 0.90 3.36
S5 0.14 184.50 47.33 0.95 11.59 26.00 88.00
S6 0.23 150.50 34.38 1.10 6.76 17.33 60.90
S7 0.27 184.50 50.40 0.92 11.77 35.40 78.82
S8 0.14 147.40 28.20 1.37 1.34 10.69 33.89
S9 0.14 3.99 0.99 0.95 0.33 0.55 1.41
S10 2.01 15.92 8.47 0.50 4.54 7.97 12.04
S11 4.06 184.50 46.43 0.90 13.11 25.70 75.60
S12 16.28 184.5 64.10 0.63 24.85 61.10 94.15

Table 3

Validation statistics for RF and SGT to predict surface soil salinity for different independent scenario in Fig. 4a"

情景
Scenario
随机森林 Random Forest 随机梯度增进算法 Stochastic Gradient Treeboost
R2 RMSE RPD R2 RMSE RPD
S2 0.33** 18.52 1.23 0.35** 18.11 1.26
S3 0.34** 36.487 1.23 0.34** 36.485 1.23
S4 0.39** 35.36 1.28 0.41** 34.84 1.30
S5 0.47** 27.36 1.39 0.58** 24.15 1.58
S6 0.50** 33.15 1.17 0.48** 27.80 1.39
S7 0.33** 37.88 1.23 0.50** 33.15 1.40
S8 0.29** 0.79 1.20 0.23** 0.83 1.14
S9 0.51** 2.94 1.44 0.38** 3.31 1.28
S10 0.32** 34.57 1.22 0.38** 33.26 1.27
S11 0.30** 34.08 1.20 0.35** 32.99 1.24

Table 4

Validation statistics of RF and SGT to predict surface soil salinity for different scenarios originating at the oasis scale according to Method 1 in Section 1.2.7 in Fig. 4-b"

情景
Scenario
随机森林 Random Forest 随机梯度增进算法 Stochastic Gradient Treeboost
R2 RMSE RPD R2 RMSE RPD
S1 0.46** 29.65 1.37 0.48** 29.17 1.39
S2 0.30** 19.20 1.18 0.44** 16.97 1.34
S3 0.38** 35.50 1.27 0.37** 35.71 1.26
S4 0.35** 36.46 1.24 0.34** 36.67 1.24
S5 0.51** 27.94 1.36 0.54** 26.06 1.46
S6 0.46** 28.42 1.36 0.50** 27.31 1.42
S7 0.39** 36.78 1.26 0.36** 37.09 1.25
S8 ns 15.19 0.06 ns 18.52 0.05
S9 0.20** 21.68 0.20 0.18** 21.68 0.20
S10 0.37** 33.73 1.25 0.39** 27.17 1.27
S11 0.28** 37.88 1.08 0.31** 37.12 1.10

Table 5

Comparison of combined and regrouped scenarios for soil salinity prediction accuracy according to Method 2 in Section 1.2.7 (Fig.5)"

情景合并
Scenario combination
随机森林 Random Forest 随机梯度增进算法 Stochastic Gradient Treeboost
R2 RMSE RPD R2 RMSE RPD
S2 & S 3 0.49** 29.73 1.37 0.47** 29.54 1.38
S9 & S11 0.51** 28.25 1.43 0.55** 27.23 1.48
S5 & S6 0.43** 32.86 1.32 0.47** 31.63 1.37
S5 & S6 (RSOSM) 0.40** 33.77 1.29 0.40** 33.47 1.30
S7 & S8 0.43** 32.25 1.32 0.51** 30.01 1.43
S7 & S8 (RSOSM) 0.46** 31.55 1.36 0.47** 31.03 1.38

Fig. 8

Scatterplot of the residuals predicted by RF versus the measured soil salinity in each scenario"

Fig. 9

Scatterplot of the residuals predicted by SGT versus the measured soil salinity in each scenario"

Fig. 10

Important variables iteratively obtained based on the methods described in Section 1.2.6 in different scenarios"

Fig. 11

Spatial distribution of soil salinity (dS·m-1) predicted by SGT and RF for three combined modes and the full sample model (Table 5) in the study area"

[1] ALLBED A, KUMAR L, ALDAKHEEL Y Y . Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 2014,230:1-8.
doi: 10.1016/j.geoderma.2014.03.025
[2] SCUDIERO E, SKAGGS T H, CORWIN D L . Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA.Geoderma Regional, 2014(2/3):82-90.
doi: 10.1016/j.geodrs.2014.10.004
[3] SCUDIERO E, SKAGGS T H, CORWIN D L . Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance. Remote Sensing of Environment, 2015,169:335-343.
doi: 10.1016/j.rse.2015.08.026
[4] TAGHIZADEH-MEHRJARDI R, MINASNY B, SARMADIAN F, MALONE B P . Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 2014,213:15-28.
doi: 10.1016/j.geoderma.2013.07.020
[5] WU W, MHAIMEED A S , AL-SHAFIE W M,ZIADAT F,DHEHIBI B,NANGIA V,PAUW E D.Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Regional, 2014(2/3):21-31.
doi: 10.1016/j.geodrs.2014.09.002
[6] YAHIAOUI I, DOUAOUI A, QIANG Z, ZIANE A . Soil salinity prediction in the Lower Cheliff plain(Algeria) based on remote sensing and topographic feature analysis. Journal of Arid Land, 2015,7(6):794-805.
doi: 10.1007/s40333-015-0053-9
[7] ZHANG T T, QI J G, GAO Y, OUYANG Z T, ZENG S L, ZHAO B . Detecting soil salinity with MODIS time series VI data. Ecological Indicators, 2015,52:480-489.
doi: 10.1016/j.ecolind.2015.01.004
[8] ZHANG T-T, ZENG S-L, GAO Y, OUYANG Z-T, LI B, FANG C-M, ZHAO B . Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators, 2011,11(6):1552-1562.
doi: 10.1016/j.ecolind.2011.03.025
[9] GARCíA M, OYONARTE C, VILLAGARCíA L, CONTRERAS S, DOMINGO F, PUIGDEFáBREGAS J . Monitoring land degradation risk using ASTER data: The non-evaporative fraction as an indicator of ecosystem function. Remote Sensing of Environment, 2008,112(9):3720-3736.
doi: 10.1016/j.rse.2008.05.011
[10] LI X, YANG K, ZHOU Y. Progress in the study of oasis-desert interactions.Agricultural and Forest Meteorology 2016,230-231:1-7. DOI: 10.1016/j.agrformet.2016.08.022
doi: 10.1016/j.agrformet.2016.08.022
[11] GONG L, RAN Q, HE G, TIYIP T . A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang, China. Soil and Tillage Research, 2015,146:223-229.
doi: 10.1016/j.still.2014.11.001
[12] TUTEJA N K, BEALE G, DAWES W, VAZE J . Predicting the effects of landuse change on water and salt balance-a case study of a catchment affected by dryland salinity in NSW, Australia. Journal of Hydrology, 2003,283(1):67-90.
doi: 10.1016/S0022-1694(03)00236-1
[13] WANG Y, LI Y . Land exploitation resulting in soil salinization in a desert-oasis ecotone. Catena, 2013,100:50-56.
doi: 10.1016/j.catena.2012.08.005
[14] HENGL T , MENDES D J J, HEUVELINK G B, RUIPEREZ G M, KILIBARDA M, BLAGOTIĆ A, SHANGGUAN W, WRIGHT M N, GENG X, BAUERMARSCHALLINGER B. SoilGrids250m: Global gridded soil information based on machine learning. Plos One, 2017,12(2):e0169748.
doi: 10.1371/journal.pone.0169748 pmid: 5313206
[15] SCHILLACI C, LOMBARDO L, SAIA S, FANTAPPIè M ,MäRKER M,ACUTIS M. Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region. Geoderma, 2017,286:35-45.
doi: 10.1016/j.geoderma.2016.10.019
[16] HASTIE T, TIBSHIRANI R, FRIEDMAN J H, FRANKLIN J . The elements of statistical learning, second edition: data mining, inference, and prediction. Mathematical Intelligencer, 2009,27(2):83-85.
[17] ANGILERI S E, CONOSCENTI C, HOCHSCHILD V ,MäRKER M, ROTIGLIANO E, AGNESI V. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology, 2016,262:61-76.
doi: 10.1016/j.geomorph.2016.03.018
[18] HEUNG B, BULMER C E, SCHMIDT M G . Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma, 2014,214:141-154.
doi: 10.1016/j.geoderma.2013.09.016
[19] HEUNG B, HO H C, ZHANG J, KNUDBY A, BULMER C E, SCHMIDT M G . An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, 2016,265:62-77.
doi: 10.1016/j.geoderma.2015.11.014
[20] LIEß M, GLASER B, HUWE B . Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and Random Forest models. Geoderma, 2012,170:70-79.
doi: 10.1016/j.geoderma.2011.10.010
[21] BREIMAN L. . Random Forests Machine Learning, 2001,45(1):5-32.
[22] FRIEDMAN J H. Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 2002,38(4):367-378.
[23] DING J, YU D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis,China,using remote sensing and electromagnetic induction instruments.. Geoderma ,2014,235 236:316-322.
doi: 10.1016/j.geoderma.2014.07.028
[24] BENNETT S J, BARRETTLENNARD E G, COLMER T D . Salinity and waterlogging as constraints to saltland pasture production: a review. Agriculture Ecosystems & Environment, 2009,129(4):349-360.
doi: 10.1016/j.agee.2008.10.013
[25] WANG F, CHEN X, LUO G, HAN Q . Mapping of regional soil salinities in Xinjiang and strategies for amelioration and management. Chinese Geographical Science, 2015,25(3):321-336.
doi: 10.1007/s11769-014-0718-x
[26] MINASNY B, MCBRATNEY A B . A conditioned Latin hypercube method for sampling in the presence of ancillary information Computers & Geosciences, 2006,32(9):1378-1388.
doi: 10.1016/j.cageo.2005.12.009
[27] 鲁如坤 . 土壤农业化学分析方法.北京: 中国农业科技出版社, 1999.
LU R K. Methods for Soil Agrochemistry Analysis. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese).
[28] SONG W, MU X, RUAN G, GAO Z, LI L, YAN G . Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. International Journal of Applied Earth Observations & Geoinformation, 2017,58:168-176.
doi: 10.1016/j.jag.2017.01.015
[29] RICHARDS L A . Diagnosis and Improvement of Saline and Alkali Soils. Usda Agriculture Handbook, 1954,60(3):290.
[30] MONDAL P . Quantifying surface gradients with a 2-band Enhanced Vegetation Index (EVI2). Ecological Indicators, 2011,11(3):918-924.
doi: 10.1016/j.ecolind.2010.10.006
[31] 陈红艳, 赵庚星, 陈敬春, 王瑞燕, 高明秀 . 基于改进植被指数的黄河口区盐渍土盐分遥感反演. 农业工程学报, 2015,31(5):107-114.
CHEN H Y, ZHAO G X, CHEN J C, WANG R Y, GAO M X . Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):107-114. (in Chinese)
[32] METTERNICHT G I, ZINCK J A . Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 2003,85(1):1-20.
doi: 10.1016/S0034-4257(02)00188-8
[33] YU R, LIU T, XU Y, ZHU C, ZHANG Q, QU Z, LIU X, LI C . Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China. Agricultural Water Management, 2010,97(12):1952-1960.
doi: 10.1016/j.agwat.2010.03.009
[34] CECCATO P, GOBRON N, FLASSE S, PINTY B, TARANTOLA S . Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sensing of Environment, 2002,82(2):188-197.
doi: 10.1016/S0034-4257(02)00037-8
[35] LIAW A, WIENER M . Classification and Regression by RandomForest.R News, 2002(2/3):18-22.
[36] ELITH J, LEATHWICK J R, HASTIE T . A working guide to boosted regression trees. Journal of Animal Ecology, 2008,77(4):802-813.
doi: 10.1111/j.1365-2656.2008.01390.x pmid: 18397250
[37] SVETNIK V, LIAW A, TONG C, CULBERSON J C, SHERIDAN R P, FEUSTON B P . Random Forest:A Classification and Regression Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Computer Sciences, 2003,43(6):1947-1958.
doi: 10.1021/ci034160g pmid: 14632445
[38] NAGHIBI S A, POURGHASEMI H R, DIXON B . GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring & Assessment, 2016,188(1):44.
doi: 10.1007/s10661-015-5049-6 pmid: 26687087
[39] YOUSSEF A M, POURGHASEMI H R, POURTAGHI Z S ,AL-KATHEERI M M.Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 2016,13(5):839-856.
[40] YANG R M, ZHANG G L, LIU F, LU Y Y, YANG F, YANG F, YANG M, ZHAO Y G, LI D C . Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 2016,60:870-878.
doi: 10.1016/j.ecolind.2015.08.036
[41] BLANCO C M G, GOMEZ V M B, CRESPO P, LIEß M . Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest. Geoderma, 2018,316:100-114.
[42] MULDER V L, LACOSTE M , RICHER-DE-FORGES A C, MARTIN M P, ARROUAYS D . National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma, 2016,263:16-34.
doi: 10.1016/j.geoderma.2015.08.035
[43] 王玉刚, 李彦, 肖笃宁 . 土地利用对天山北麓土壤盐渍化的影响. 水土保持学报, 2009,23(5):179-183.
WANG Y G, LI Y, XIAO D N . Effects of land use type on soil salinization at Northern Slope of Tianshan Mountain. Journal of Soil and Water Conservation, 2009,23(5):179-183. (in Chinese)
[1] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[2] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[3] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[4] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[5] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[6] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
[7] ZHOU Ke,LIU Le,ZHANG YanNa,MIAO Ru,YANG Yang. Area Extraction and Growth Monitoring of Winter Wheat in Henan Province Supported by Google Earth Engine [J]. Scientia Agricultura Sinica, 2021, 54(11): 2302-2318.
[8] ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003.
[9] ZHANG ZhenHua,DING JianLi,WANG JingZhe,GE XiangYu,WANG JinJie,TIAN MeiLing,ZHAO QiDong. Digital Soil Properties Mapping by Ensembling Soil-Environment Relationship and Machine Learning in Arid Regions [J]. Scientia Agricultura Sinica, 2020, 53(3): 563-573.
[10] XIA ShuFeng,WANG Fan,WANG LongJun,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,DAI TingBo,JIANG Dong. Study on the Adaptability of Wheat Reaching the Protein Content Standard of Soft Wheat in Jiangsu Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 4992-5004.
[11] XI Xue,ZHAO GengXing,GAO Peng,CUI Kun,LI Tao. Inversion of Soil Salinity in Coastal Winter Wheat Growing Area Based on Sentinel Satellite and Unmanned Aerial Vehicle Multi-Spectrum— A Case Study in Kenli District of the Yellow River Delta [J]. Scientia Agricultura Sinica, 2020, 53(24): 5005-5016.
[12] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,WANG Zhuan,ZHU GuoLong,SHI QianXiong,YU KeFan,XU AiGuo. Research on Spatial Distribution of Soil Particle Size Distribution in Loess Region Based on Three Spatial Prediction Methods—Taking Haiyuan County in Ningxia as an Example [J]. Scientia Agricultura Sinica, 2020, 53(18): 3716-3728.
[13] QIU MengLong,CAO XiaoShu,ZHOU Jian,FENG XiaoLong,GAO XingChuan. Spatial Differentiation and Impact Factors of Grain Yield Per Hectare in Weibei Plateau Based on GWR Model: A Case Study of Binxian County, Shannxi [J]. Scientia Agricultura Sinica, 2019, 52(2): 273-284.
[14] LIU HuiFang,HE Zheng,JIA Biao,LIU Zhi,LI ZhenZhou,FU JiangPeng,MU RuiRui,KANG JianHong. Photosynthetic Response Characteristics of Maize Under Drip Irrigation Based on Machine Learning [J]. Scientia Agricultura Sinica, 2019, 52(17): 2939-2950.
[15] ZHANG ChunLan, YANG GuiJun, LI HeLi, TANG FuQuan, LIU Chang, ZHANG LiYan. Remote Sensing Inversion of Leaf Area Index of Winter Wheat Based on Random Forest Algorithm [J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!