Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 508-518.doi: 10.3864/j.issn.0578-1752.2023.03.009
• HORTICULTURE • Previous Articles Next Articles
WANG ZhuangZhuang1,2(), DONG ShaoYun1(
), ZHOU Qi1, MIAO Han1, LIU XiaoPing1, XU KuiPeng2, GU XingFang1(
), ZHANG ShengPing1(
)
[1] |
FOYER C H, KYNDT T, HANCOCK R D. Vitamin C in plants: Novel concepts, new perspectives, and outstanding issues. Antioxid Redox Signal, 2020, 32(7): 463-485.
doi: 10.1089/ars.2019.7819 |
[2] |
ALVES R C, ROSSATTO D R, SILVA J S, CHECCHIO M V, OLIVEIRA K R, OLIVEIRA F D A, DE QUEIROZ S F, DA CRUZ M A P, GRATAO P L. Seed priming with ascorbic acid enhances salt tolerance in micro-tom tomato plants by modifying the antioxidant defense system components. Biocatalysis and Agricultural Biotechnology, 2021, 31: 101927.
doi: 10.1016/j.bcab.2021.101927 |
[3] |
KHAZAEI Z, ESTAJI A. Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiologiae Plantarum, 2020, 42(7): 118.
doi: 10.1007/s11738-020-03106-z |
[4] | LUKATKIN A S, ANJUM N A. Control of cucumber (Cucumis sativus L.) tolerance to chilling stress - Evaluating the role of ascorbic acid and glutathione. Frontiers in Environmental Science, 2014, 2. https://doi.org/10.3389/fcns.2014.00062. |
[5] |
LYKKESFELDT J. On the effect of vitamin C intake on human health: How to (mis)interprete the clinical evidence. Redox Biology, 2020, 34: 101532.
doi: 10.1016/j.redox.2020.101532 |
[6] | RIVELLI A R, CARUSO M C, MARIA S D, GALGANO F. Vitamin C content in leaves and roots of horseradish (Armoracia rusticana): Seasonal variation in fresh tissues and retention as affected by storage conditions. Emirates Journal of Food and Agriculture, 2017, 29(10): 799-806. |
[7] |
孙小娟, 刘庆帅, 员盎然, 张妍, 霍俊伟, 秦栋, 姜婷. 黑穗醋栗果实生长发育过程中抗坏血酸含量及相关酶活性的变化. 中国农业科学, 2019, 52(1): 98-110. doi: 10.3864/j.issn.0578-1752.2019.01.010.
doi: 10.3864/j.issn.0578-1752.2019.01.010 |
SUN X J, LIU Q S, YUAN A R, ZHANG Y, HUO J W, QIN D, JIANG T. The changes in the contents of ascorbic acid and the activities of related enzymes in black currant fruits during the process of its growth and development. Scientia Agricultura Sinica, 2019, 52(1): 98-110. doi: 10.3864/j.issn.0578-1752.2019.01.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.010 |
|
[8] | KINYI H W, TIRWOMWE M, NINSIIMA H I, MIRUKA C O, ADADI P, PARISE A. Effect of cooking method on vitamin C loses and antioxidant activity of indigenous green leafy vegetables consumed in western Uganda. International Journal of Food Science, 2022, 2022: 2088034. |
[9] | https://www.fao.org/faostat/zh/#data. |
[10] |
SMIRNOFF N, WHEELER G L, JONES M A. The biosynthetic pathway of vitamin C in higher plants. Nature, 1998, 393(6683): 365-369.
doi: 10.1038/30728 |
[11] |
LORENCE A, CHEVONE B I, MENDES P, NESSLER C L. Myo- inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology, 2004, 134(3): 1200-1205. doi: 10.1104/pp.103.033936.
doi: 10.1104/pp.103.033936 |
[12] |
DAVEY M W, GILOT C, PERSIAU G, STERGAARD J, HAN Y, BAUW G C, VAN MONTAGU M C. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiology, 1999, 121(2): 535-543.
doi: 10.1104/pp.121.2.535 |
[13] | WAGNER C, SEFKOW M, KOPKA J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry, 2003, 62(6): 887-900. |
[14] | SMIRNOFF N, DOWDLE J, ISHIKAWA T. The role of VTC2 in vitamin C biosynthesis in Arabidopsis thaliana. Comparative Biochemistry and Physiology. Part A. Molecular & Integrative Physiology, 2007, 146(4): S250. |
[15] |
DOWDLE J, ISHIKAWA T, GATZEK S, ROLINSKI S, SMIRNOFF N. Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant Journal, 2007, 52(4): 673-689.
doi: 10.1111/j.1365-313X.2007.03266.x |
[16] | TAO J J, HAO Z, HUANG C H. Molecular evolution of GDP-L- galactose phosphorylase, a key regulatory gene in plant ascorbate biosynthesis. AoB Plants, 2020, 12(6): 55. |
[17] |
YOSHIMURA K, NAKANE T, KUME S, SHIOMI Y, MARUTA T, ISHIKAWA T, SHIGEOKA S. Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 2014, 78(1): 60-66. doi: 10.1080/09168451.2014.877831.
doi: 10.1080/09168451.2014.877831 |
[18] |
BULLEY S M, RASSAM M, HOSER D, OTTO W, SCHÜNEMANN N, WRIGHT M, MACRAE E, GLEAVE A, LAING W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 2009, 60(3): 765-778. doi: 10.1093/jxb/ern327.
doi: 10.1093/jxb/ern327 |
[19] | 苑志明, 劳杉杉, 秦智伟, 周秀艳. 黄瓜L-半乳糖-1,4-内酯脱氢酶cDNA全长的克隆和遗传转化. 东北农业大学学报, 2012, 43(7): 100-103. |
YUAN Z M, LAO S S, QIN Z W, ZHOU X Y. Cloning and genetic transformation of cDNA full-length of L-galactono-1,4-lactone dehydrogenase from Cucumis sativus. Journal of Northeast Agricultural University, 2012, 43(7): 100-103. (in Chinese) | |
[20] |
LIU P, LI Q, GAO Y N, WANG H, CHAI L, YU H J, JIANG W J. A new perspective on the effect of UV-B on l-ascorbic acid metabolism in cucumber seedlings. Journal of Agricultural and Food Chemistry, 2019, 67(16): 4444-4452.
doi: 10.1021/acs.jafc.9b00327 pmid: 30939238 |
[21] |
ZHANG X, YU H J, ZHANG X M, YANG X Y, ZHAO W C, LI Q, JIANG W J. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Plant Physiology and Biochemistry, 2016, 108(7): 222-230.
doi: 10.1016/j.plaphy.2016.07.012 |
[22] |
BULLEY S, LAING W. The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology, 2016, 33: 15-22.
doi: S1369-5266(16)30067-X pmid: 27179323 |
[23] |
高海荣, 赵爱娟, 王睿颖, 穆兵. 紫外法快速测定中原地区12种蔬菜VC含量. 湖北农业科学, 2017, 56(6): 1131-1133, 1136. doi: 10.14088/j.cnki.issn0439-8114.2017.06.035.
doi: 10.14088/j.cnki.issn0439-8114.2017.06.035 |
GAO H R, ZHAO A J, WANG R Y, MU B. The rapid determination of vitamin C content in 12 kinds of central plains vegetables by UV spectrophotometry. Hubei Agricultural Sciences, 2017, 56(6): 1131-1133, 1136. doi: 10.14088/j.cnki.issn0439-8114.2017.06.035. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2017.06.035 |
|
[24] |
JAROSOVA J, KUNDU J K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real- time RT-PCR. BMC Plant Biology, 2010, 10(1): 146.
doi: 10.1186/1471-2229-10-146 |
[25] |
TORABINEJAD J, DONAHUE J L, GUNESEKERA B N, ALLEN- DANIELS M J, GILLASPY G E. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiology, 2009, 150(2): 951-961. doi: 10.1104/pp.108.135129.
doi: 10.1104/pp.108.135129 pmid: 19339506 |
[26] |
苗田田, 李强, 余宏军, 刘鹏, 郝佳, 蒋卫杰. 外施肌醇对黄瓜幼苗低温抗性的影响. 中国蔬菜, 2021(2): 72-79. doi: 10.19928/j.cnki.1000-6346.2021.1001.
doi: 10.19928/j.cnki.1000-6346.2021.1001 |
MIAO T T, LI Q, YU H J, LIU P, HAO J, JIANG W J. Effects of exogenous myo-inositol on low temperature resistance of cucumber seedlings. China Vegetables, 2021(2): 72-79. doi: 10.19928/j.cnki.1000-6346.2021.1001. (in Chinese)
doi: 10.19928/j.cnki.1000-6346.2021.1001 |
|
[27] |
MUNIR S, MUMTAZ M A, AHIAKPA J K, LIU G Z, CHEN W F, ZHOU G L, ZHENG W, YE Z B, ZHANG Y Y. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics, 2020, 21(1): 284.
doi: 10.1186/s12864-020-6708-8 pmid: 32252624 |
[28] |
WOLUCKA B A, VAN MONTAGU M. GDP-mannose 3',5'- epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. The Journal of Biological Chemistry, 2003, 278(48): 47483-47490.
doi: 10.1074/jbc.M309135200 |
[29] |
STEVENS R, BURET M, DUFFÉ P, GARCHERY C, BALDET P, ROTHAN C, CAUSSE M. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiology, 2007, 143(4): 1943-1953. doi: 10.1104/pp.106.091413.
doi: 10.1104/pp.106.091413 pmid: 17277090 |
[30] |
WOLUCKA B A, VAN MONTAGU M, The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion. Phytochemistry, 2007, 68(21): 2602-2613.
pmid: 17950389 |
[31] |
ALEGRE M L, STEELHEART C, BALDET P, ROTHAN C, JUST D, OKABE Y, EZURA H, SMIRNOFF N, GERGOFF GROZEFF G E, BARTOLI C G. Deficiency of GDP-l-galactose phosphorylase, an enzyme required for ascorbic acid synthesis, reduces tomato fruit yield. Planta, 2020, 251(2): 54.
doi: 10.1007/s00425-020-03345-x pmid: 31970534 |
[32] |
BULLEY S, WRIGHT M, ROMMENS C, YAN H, RASSAM M, LIN-WANG K, ANDRE C, BREWSTER D, KARUNAIRETNAM S, ALLAN A C, LAING W A. Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l- galactose phosphorylase. Plant Biotechnology Journal, 2012, 10(4): 390-397.
doi: 10.1111/j.1467-7652.2011.00668.x |
[33] |
ZHANG G Y, LIU R R, ZHANG C Q, TANG K X, SUN M F, YAN G H, LIU Q Q. Manipulation of the rice L-galactose pathway: Evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS ONE, 2015, 10(5): e0125870.
doi: 10.1371/journal.pone.0125870 |
[34] |
LI J, LIANG D, LI M J, MA F W. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. Planta, 2013, 238(3): 535-547.
doi: 10.1007/s00425-013-1915-z pmid: 23775440 |
[35] |
YABUTA Y, MIEDA T, RAPOLU M, NAKAMURA A, MOTOKI T, MARUTA T, YOSHIMURA K, ISHIKAWA T, SHIGEOKA S. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. Journal of Experimental Botany, 2007, 58(10): 2661-2671. doi: 10.1093/jxb/erm124.
doi: 10.1093/jxb/erm124 |
[1] | ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728. |
[2] | LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629. |
[3] | LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212. |
[4] | KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766. |
[5] | CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683. |
[6] | WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087. |
[7] | HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112. |
[8] | LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94. |
[9] | LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964. |
[10] | LU BaoShun,ZHU YongJing,ZHANG ShuTing,LÜ YuMeng,LI XiaoFei,SONG YuYang,LAI ZhongXiong,LIN YuLing. Whole-Genome Identification and Expression Analysis of SPL Gene Family in Dimocarpus Longan [J]. Scientia Agricultura Sinica, 2020, 53(20): 4259-4270. |
[11] | ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776. |
[12] | LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019. |
[13] | HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132. |
[14] | Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI. Genome-Wide Identification of Cucumber ERF Gene Family and Expression Analysis in Female Bud Differentiation [J]. Scientia Agricultura Sinica, 2020, 53(1): 133-147. |
[15] | WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG. Cloning and Functional Analysis of CsRPL1/2 in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 148-159. |
|