Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4286-4298.doi: 10.3864/j.issn.0578-1752.2021.20.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton

NIE JunJun1(),DAI JianLong1,DU MingWei2,ZHANG YanJun1,TIAN XiaoLi2,LI ZhaoHu2(),DONG HeZhong1()   

  1. 1Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100
    2College of Agronomy, China Agricultural University, Beijing 100193
  • Received:2020-12-26 Accepted:2021-04-09 Online:2021-10-16 Published:2021-10-25
  • Contact: ZhaoHu LI,HeZhong DONG E-mail:niejunjun521@126.com;lizhaohu@cau.edu.cn;donghezhong@163.com

Abstract:

Concentrated maturation is the basic requirement of cotton mechanical harvesting, referring to the phenomenon that bolls of the whole cotton plant complete opening in a relatively short period of time. Concentrated maturation cultivation refers to the cultivation management technique and measure for achieving optimized fruiting and grouped maturation in cotton. After many years of research and practice, the theory and technology of centralized maturation cultivation of cotton in China have been established, becoming an important approach of modern cotton farming theory and technology. The concept and connotation, key regulatory technologies and the eco-physiological mechanisms of cotton concentrated maturation were innovatively highlighted and reviewed in this paper. The cultivation and regulation for cotton concentrated maturation should start from sowing. The precision monoseeding technology assured well-established strong seedlings, which created a solid basic population for realization of concentrated maturation. Based on good stand establishment, irrigation, fertilization and plant growth regulators were comprehensively used to regulate the growth and development of plant individuals and populations to construct the ideal plant type and the efficient population structure according to local ecological conditions and production conditions, and finally realize the optimized spatiotemporal distribution and concentrated opening of cotton bolls. Precision monoseeding created a suitable soil pressure to seedlings during emergence and a dark environment before emergence, and induced expression of apical hook formation- and hypocotyl elongation-related genes, which promoted hook formation and hypocotyl growth and seedling emergence. The seedlings under monoseeding had independent growth space after emergence, which had little mutual influence and were easy to establish strong seedlings. Close-planting and chemical control inhibited the photosynthesis of leaves sourced from vegetative branches, and altered the content and distribution of endogenous hormones through changing the expression of key genes of hormone metabolism, which regulated the vegetative branching and apical growth of main stems, and finally realized non-pruning and promoted concentrated boll-setting. Leaf-derived jasmonic acid induced by partial root-zone irrigation, as a long-distance signal transported through the phloem to the irrigated root side, promoted the expression of aquaporin gene, and then improved the capacity of water absorption and water use efficiency. The partitioning of assimilates to cotton bolls and the defoliation rate were significantly improved by fertigation under partial root-zone drip irrigation. In this case, reduced inputs of water and fertilizer as well as significant reduction in heterozygosity in machine harvested seed cotton have been achieved without yield loss. The theory and technology of cotton concentrated maturation cultivation was a new achievement of cotton cultivation research in the new era, and an important scientific and technological support for the development of modern cotton industry. In order to provide a more powerful theoretical and technical support for light and efficient cultivation of cotton in the future, on the one hand, in-depth study is required to reveal the physiological and ecological mechanisms of concentrated maturation. On the other hand, it is necessary to innovate the key cultivation techniques, and to develop the well-matched varieties and agricultural mechanic equipment for their better integration. It is also necessary to strengthen the combination of agronomic technologies with smart agricultural technology, so as to provide a more powerful theoretical and technical support for concentrated maturation cultivation of cotton.

Key words: cotton, concentrated maturation, high-efficiency population, optimization of boll-setting, high-efficiency defoliation, cultivation technology

Fig. 1

Cotton cultivation mode for centralized maturity"

[1] 毛树春. 中国棉花栽培学. 上海: 上海科技出版社, 2019.
MAO S C. China Cotton Plant Cultivation. Shanghai: Shanghai Science and Technology Press, 2019. (in Chinese)
[2] 董合忠, 李维江, 张旺锋, 李雪源. 轻简化植棉. 北京: 中国农业出版社, 2018.
DONG H Z, LI W J, ZHANG W F, LI X Y. Light and Simplified Cotton Planting. Beijing: China Agricultural Press, 2018. (in Chinese)
[3] 董合忠, 杨国正, 田立文, 郑署峰. 棉花轻简化栽培. 北京: 科学出版社, 2016.
DONG H Z, YANG G Z, TIAN L W, ZHENG S F. Light and Simplified Cultivation of Cotton. Beijing: Science Press, 2016. (in Chinese)
[4] 董合忠. 棉花集中成熟轻简高效栽培. 北京: 科学出版社, 2019.
DONG H Z. Light and Efficient Cultivation with Concentrated Maturation in Cotton. Beijing: Science Press, 2019. (in Chinese)
[5] 王韶斌, 刘宪坤, 侯胜同, 窦志鹏. 在籽棉管道上增加排棉秆装置的可行性. 中国棉花加工, 2019(5):4-6.
WANG S B, LIU X K, HOU S T, DOU Z P. Feasibility of adding cotton stalk discharging device on seed-cotton pipeline. China Cotton Processing, 2019(5):4-6. (in Chinese)
[6] 余春林. 机采棉与人工采摘棉花效益分析. 新疆农垦科技, 2009, 32(3):13-14.
YU C L. Benefit analysis of mechanical cotton-picking and manual cotton-picking. Xinjiang Farmland Reclamation Science & Technology, 2009, 32(3):13-14. (in Chinese)
[7] 董建军, 代建龙, 李霞, 李维江, 董合忠. 黄河流域棉花轻简化栽培技术评述. 中国农业科学, 2017, 50(22):4290-4298.
DONG J J, DAI J L, LI X, LI W J, DONG H Z. Review of light and simplified cotton cultivation technology in the Yellow River valley. Scientia Agricultura Sinica, 2017, 50(22):4290-4298. (in Chinese)
[8] LU H Q, DAI J L, LI W J, TANG W, ZHANG D M, ENEJI A E, DONG H Z. Yield and economic benefits of late planted short-season cotton versus full-season cotton relayed with garlic. Field Crops Research, 2017, 200:80-87.
doi: 10.1016/j.fcr.2016.10.006
[9] 董合忠, 毛树春, 张旺锋, 陈德华. 棉花优化成铃栽培理论及其新发展. 中国农业科学, 2014, 47(3):441-451.
DONG H Z, MAO S C, ZHANG W F, CHEN D H. On boll-setting optimization theory for cotton cultivation and its new development. Scientia Agricultura Sinica, 2014, 47(3):441-451. (in Chinese)
[10] 董合忠, 李振怀, 罗振, 卢合全, 唐薇, 张冬梅, 李维江, 辛承松. 密度和留叶枝对棉株产量的空间分布和熟相的影响. 中国生态农业学报, 2010, 18(4):792-798.
DONG H Z, LI Z H, LUO Z, LU H Q, TANG W, ZHANG D M, LI W J, XIN C S. Effect of plant density and vegetative branch retention on within-plant yield distribution and maturity performance of cotton. Chinese Journal of Eco-Agriculture, 2010, 18(4):792-798. (in Chinese)
[11] 谈春松. 棉花优质高产栽培. 北京: 中国农业出版社, 1992.
TAN C S. High Quality and High Yield Cultivation of Cotton. Beijing: China Agriculture Press, 1992. (in Chinese)
[12] 谈春松. 棉花株型栽培研究. 中国农业科学, 1993, 26(4):36-43.
Tan C S. On ideotype cultivation of cotton. Scientia Agricultura Sinica, 1993, 26(4):36-43. (in Chinese)
[13] 中国农业科学院棉花研究所. 棉花优质高产的理论与技术. 北京: 中国农业出版社, 1999: 128-281.
Cotton Research Institute, Chinese Academy of Agricultural Sciences. Theory and technology for fine quality and high yield of cotton production. Beijing: China Agriculture Press, 1999: 128-281. (in Chinese)
[14] BOMAN R K, KELLEY M, MORGAN G. High plains and northern rolling plains cotton harvest-aid guide. Texas A&M AgriLife Extension Service, 2009: 1-17.
[15] DU M W, REN X M, TIAN X L, DUAN L S, ZHANG M C, TAN W M, LI Z H. Evaluation of harvest aid chemicals for the cotton-winter wheat double cropping system. Journal of Integrative Agriculture, 2013, 12(2):273-282.
doi: 10.1016/S2095-3119(13)60226-9
[16] 白岩, 毛树春, 田立文, 李莉, 董合忠. 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017, 50(1):38-50.
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017, 50(1):38-50. (in Chinese)
[17] 董合忠, 张艳军, 张冬梅, 代建龙, 张旺锋. 基于集中收获的新型棉花群体结构. 中国农业科学, 2018, 51(24):4615-4624.
DONG H Z, ZHANG Y J, ZHANG D M, DAI J L, ZHANG W F. New grouped harvesting-based population structures of cotton. Scientia Agricultura Sinica, 2018, 51(24):4615-4624. (in Chinese)
[18] 董合忠. 棉花重要生物学特性及其在丰产简化栽培中的应用. 中国棉花, 2013, 40(9):1-4.
DONG H Z. Major biological characteristics of cotton and their application in extensive high-yield cultivation. China Cotton, 2013, 40(9):1-4. (in Chinese)
[19] 代建龙, 李振怀, 罗振, 卢合全, 唐薇, 张冬梅, 李维江, 辛承松, 董合忠. 精量播种减免间定苗对棉花产量和构成因素的影响. 作物学报, 2014, 40(11):2040-2945.
DAI J L, LI Z H, LUO Z, LU H Q, TANG W, ZHANG D M, LI W J, XIN C S, DONG H Z. Effects of precision seeding without thinning process on yield and yield components of cotton. Acta Agronomica Sinica, 2014, 40(11):2040-2045. (in Chinese)
[20] KONG X Q, LI X, LU H Q, LI Z H, XU S Z, LI W J, ZHANG Y J, ZHANG H, DONG H Z. Monoseeding improves stand establishment through regulation of apical hook formation and hypocotyl elongation in cotton. Field Crops Research, 2018, 222:50-58.
doi: 10.1016/j.fcr.2018.03.014
[21] 杨国正. 棉花免耕夏直播的栽培方法: CN201410273847.7. 2016-06-15 [2020-11-01]. https://www.zhangqiaokeyan.com/patent-detail/061202075973.html.
YANG G Z. Cultivation method of cotton direct seeding in summer without tillage: CN201410273847.7. 2016-06-15 [2020-11-01]. https://www.zhangqiaokeyan.com/patent-detail/061202075973.html.(in Chinese)
[22] 田立文, 崔建平, 郭仁松, 徐海江, 林涛, 刘素娟, 朱家辉, 张银宝, 刘志清, 曾鹏明, 柏超华, 欧州, 张黎, 王海波. 新疆棉花精量播种棉田保苗方法: CN201310373743.9. 2015-08-26 [2020-11-01]. https://wenku.baidu.com/view/62cd7b02122de2bd960590c69ec3d5bbfc0adab7?fr=xueshu.
TIAN L W, CUI J P, GUO R S, XU H J, LIN T, LIU S J, ZHU J H, ZHANG Y B, LIU Z Q, ZENG P M, BAI C H, OU Z, ZHANG L, WANG H B. Methods of cotton seedling establishment by precision sowing in Xinjiang: CN2013103743.9. 2015-08-26 [2020-11-01]. https://wenku.baidu.com/view/62cd7b02122de2bd960590c69ec3d5bbfc0adab7?fr=xueshu.(in Chinese)
[23] DAI J L, LI W J, ZHANG D M, TANG W, LI Z H, LU H Q, KONG X Q, LUO Z, XU S Z, DONG H Z. Competitive yield and economic benefits of cotton achieved through a combination of extensive pruning and a reduced nitrogen rate at high plant density. Field Crops Researchs, 2017, 209:65-72.
[24] LUO Z, LIU H, LI W P, ZHAO Q, DAI J L, TIAN L W, DONG H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research, 2018, 218:150-157.
doi: 10.1016/j.fcr.2018.01.003
[25] 罗振, 辛承松, 李维江, 张冬梅, 董合忠. 部分根区灌溉与合理密植对旱区棉花产量和水分生产率的影响. 应用生态学报, 2019, 30(9):3137-3144.
LUO Z, XIN C S, LI W J, ZHANG D M, DONG H Z. Effects of partial root-zone irrigation and rational close planting on yield and water productivity of cotton in arid area. Chinese Journal of Applied Ecology, 2019, 30(9):3137-3144. (in Chinese)
[26] 李存东, 孙红春, 刘连涛, 张永江. 一种棉花缓释肥及其施用方法: CN201110431055.4. 2014-07-16 [2020-11-01]. https://wenku.baidu.com/view/b2457df857270722192e453610661ed9ac51557e?fr=xueshu.
LI C D, SUN H C, LIU L T, ZHANG Y J. A cotton slow-release fertilizer and its application method: CN201110431055.4. 2014-07-16 [2020-11-01]. https://wenku.baidu.com/view/b2457df857270722192e453610661ed9ac51557e?fr=xueshu.(in Chinese)
[27] 郭景红, 赵海, 李玉国, 姚炎帝. 石河子垦区早熟棉两种株行距配置对产量及脱叶效果的影响. 棉花科学, 2021, 43(4):5.
GUO J H, ZHAO H, LI Y G, YAO Y D. The effect of two arrangements of plant-row spacing of early maturity cotton on cotton yield and defoliation in Shihezi reclamation area. Cotton Sciences, 2021, 43(4):5. (in Chinese)
[28] 田景山, 张煦怡, 张丽娜, 徐守振, 祁炳琴, 随龙龙, 张鹏鹏, 杨延龙, 张旺峰, 勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件. 作物学报, 2019, 45(4):613-620.
doi: 10.3724/SP.J.1006.2019.84068
TIAN J S, ZHANG X Y, ZHANG L N, XU S Z, QI B Q, SUI L L, ZHANG P P, YANG Y L, ZHANG W F, GOU L. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region. Acta Agronomica Sinica, 2019, 45(4):613-620. (in Chinese)
doi: 10.3724/SP.J.1006.2019.84068
[29] 代建龙, 董合忠, 李维江, 卢合全, 李振怀, 罗振, 唐薇, 张冬梅, 辛承松, 孔祥强. 一种棉花脱叶催熟悬浮剂及其施用方法: CN201410062858.0. 2014-05-21 [2020-11-01]. https://wenku.baidu.com/view/6b1bc187cdc789eb172ded630b1c59eef8c79a98?fr=xueshu.
DAI J L, DONG H Z, LI W J, LU H Q, LI Z H, LUO Z, TANG W, ZHANG D M, XIN C S, KONG X Q. A cotton defoliating and ripening suspending agent and its application method: CN201410062858.0. 2014-05-21 [2020-11-01]. https://wenku.baidu.com/view/6b1bc187cdc789eb172ded630b1c59eef8c79a98?fr=xueshu.(in Chinese)
[30] SUTTLE J C. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. Plant Physiology, 1988, 86(1):241-245.
doi: 10.1104/pp.86.1.241
[31] GROSSMANN K, MULDER C E G, WUERZER B. Use of derivatives of N-phenyl-3,4,5,6- tetrahydrophthalimide for the desiccation and abscission of plant organs. United States Patent 5045105, 1991.
[32] GWATHMEY C O, BANGE M P, BRODRICK R. Cotton crop maturity: A compendium of measures and predictors. Field Crops Research, 2016, 191:41-53.
doi: 10.1016/j.fcr.2016.01.002
[33] 段留生, 谭伟明, 李召虎, 田晓莉, 杜明伟, 高飞, 何钟佩. 植物生长调节剂的水悬浮剂及制备方法与应用: CN201110241231. 2014-02-07 [2020-11-01]. https://wenku.baidu.com/view/4978bb6486868762caaedd3383c4bb4cf7ecb7bf?fr=xueshu.
DUAN L S, TAN W M, LI Z H, TIAN X L, DU M W, GAO F, HE Z P. Water suspension concentrate of plant growth regulator and its preparation method and application: CN201110241231. 2014-02-07 [2020-11-01]. https://wenku.baidu.com/view/4978bb6486868762caaedd3383c4bb4cf7ecb7bf?fr=xueshu.(in Chinese)
[34] 赵强, 张巨松, 周春江, 恽友兰, 李松林, 田晓莉. 化学打顶对棉花群体容量的拓展效应. 棉花学报, 2011, 23(5):401-407.
ZHAO Q, ZHANG J S, ZHOU C J, YUN Y L, LI S L, TIAN X L. Chemical detopping increases the optimum plant density in cotton (Gossypium hirsutum L.). Cotton Science, 2011, 23(5):401-407. (in Chinese)
[35] 蒙艳华, 兰玉彬, 梁自静, 马艳, 胡红岩. 无人机施药液量对棉花脱叶效果的影响. 中国棉花, 2019, 46(6):10-15.
MENG Y H, LAN Y B, LIANG Z J, MA Y, HU H Y. Impact of spraying volume on defoliation efficacy by unmanned aerial vehicle. China Cotton, 2019, 46(6):10-15. (in Chinese)
[36] 徐金虹. 无人机、拖拉机喷施棉花脱叶剂效果对比试验. 农村科技, 2019(2):26-27.
XU J H. Comparative experiment on the effect of spraying cotton defoliant by drone and tractor. Rural Science & Technology, 2019 (2):26-27. (in Chinese)
[37] SNIPES C E, BASKIN C C. Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Research, 1994, 37(2):137-143.
doi: 10.1016/0378-4290(94)90042-6
[38] VIGIL E L, ROWLANG R, ERBE E, CHRISTIANSEN N M. Effect of defoliation stress on protein body development in cotton seed radicles: Impact on seed quality and seedling growth. Acta Histochemica Et Cytochemica, 1986, 19(3):416-416.
[39] GWATHMEY C O, CRAIG JR C C. Defoliants for cotton. Encyclopedia of Pest Management, 2006, 1:1-3.
[40] TIAN J S, ZHANG X Y, YANG Y L, YANG C X, XU S Z, ZUO W Q, ZHANG W F, DONG H Y, JIU X L, YU Y C, ZHAO Z. How to reduce cotton fiber damage in the Xinjiang China. Industrial Crops & Products, 2017, 109:803-811.
[41] DU M W, LI Y, TIAN X L, DUAN L S, ZHANG M C, TAN W M, XU D Y, LI Z H. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS ONE, 2014, 9(5):e97652.
doi: 10.1371/journal.pone.0097652
[42] 代建龙, 李维江, 辛承松, 董合忠. 黄河流域棉区机采棉栽培技术. 中国棉花, 2013, 40(1):35-36.
DAI J L, LI W J, XIN C S, DONG H Z. Cultivation techniques of machine-harvested cotton in the Yellow River Basin. China Cotton, 2013, 40(1):35-36. (in Chinese)
[43] LI T, DAI J L, ZHANG Y J, KONG X Q, LI C D, DONG H Z. Topical shading substantially inhibits vegetative branching by altering leaf photosynthesis and hormone contents of cotton plants. Field Crops Research, 2019, 238:18-26.
doi: 10.1016/j.fcr.2019.04.019
[44] LI T, ZHANG Y J, DAI J L, DONG H Z, KONG X Q. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crops Research, 2019, 230:121-131.
doi: 10.1016/j.fcr.2018.10.016
[45] WANG L, MU C, DU M W, CHEN Y, TIAN X L. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Science, 2014, 225:15-23.
doi: 10.1016/j.plantsci.2014.05.005
[46] 安静, 黎芳, 周春江, 田晓莉, 李召虎. 增效缩节安化学封顶对棉花主茎生长的影响及其相关机制. 作物学报, 2018, 44(12):1837-1843.
AN J, LI F, ZHOU C J, TIAN X L, LI Z H. Morpho-physiological responses of cotton shoot apex to the chemical topping with fortified mepiquat chloride. Acta Agronomica Sinica, 2018, 44(12):1837-1843. (in Chinese)
[47] 侯晓梦, 刘连涛, 李梦, 孙红春, 张永江, 杜欢, 李存东. 基于iTRAQ技术对棉花叶片响应化学打顶的差异蛋白质组学分析. 中国农业科学, 2017, 50(19):3665-3677.
HOU X M, LIU L T, LI M, SUN H C, ZHANG Y J, DU H, LI C D. Differential proteomics analysis of cotton leaf response to chemical topping based on iTRAQ technique. Scientia Agricultura Sinica, 2017, 50(19):3665-3677. (in Chinese)
[48] LUO Z, KONG X Q, ZHANG Y J, LI W J, ZHANG D M, DAI J L, FANG S, CHU J F, DONG H Z. Leaf-derived jasmonate mediates water uptake from hydrated cotton roots under partial root-zone irrigation. Plant Physiology, 2019, 180(3):1660-1676.
doi: 10.1104/pp.19.00315
[49] YANG G Z, TANG H Y, NIE Y C, ZHANG X L. Response of cotton growth, yield, and biomass to nitrogen split application ratio. European Journal Agronomy, 2011, 35:164-170.
doi: 10.1016/j.eja.2011.06.001
[50] YANG G Z, TANG H Y, NIE Y C, ZHANG X L. Effect of fertilizer frequency on cotton yield and biomass accumulation. Field Crops Research, 2012, 125:161-166.
doi: 10.1016/j.fcr.2011.08.008
[51] 杨国正, 王德鹏, 聂以春, 张献龙. 钾肥用量对棉花生物量和产量的影响. 作物学报, 2013, 39(5):905-911.
YANG G Z, WANG D P, NIE Y C, ZHANG X L. Effect of potassium application rate on cotton biomass and yield. Acta Agronomica Sinica, 2013, 39(5):905-911. (in Chinese)
[52] ZHAN D X, ZHANG C, YANG Y, LUO H H, ZHANG Y L, ZHANG W F. Water deficit alters cotton canopy structure and increase photosynthesis in the mid-canopy layer. Agronomy Journal, 2015, 107:1947-1957.
doi: 10.2134/agronj14.0426
[53] HU Y Y, ZANG Y L, LUO H H, LI W, OGUCHI R, FAN D Y, CHOW W S, ZANG W F. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 2012, 235:325-336.
doi: 10.1007/s00425-011-1511-z
[54] MISHRA A, KHARE S, TRIVEDI P K, NATH P. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulose and polygalacturonase activities during cotton leaf abscission. South African Journal of Botany, 2008, 74(2):282-287.
doi: 10.1016/j.sajb.2007.12.001
[55] 田晓莉, 段留生, 李召虎, 王保民, 何钟佩. 棉花化学催熟与脱叶的生理基础. 植物生理学通讯, 2004(6):116-120.
TIAN X L, DUAN L S, LI Z H, WANG B M, HE Z P. Physiological base of chemical accelerated boll maturation and defoliation in cotton. Plant Physiology Communications, 2004(6):116-120. (in Chinese)
[56] 王爱玉, 高明伟, 王志伟, 张晓洁. 棉花化学脱叶催熟技术应用研究进展. 农学学报, 2015, 5(4):20-23.
WANG A Y, GAO M W, WANG Z W, ZHANG X J. Research progress on the technology of chemical defoliation and ripening in cotton. Journal of Agriculture, 2015, 5(4):20-23. (in Chinese)
[57] 廖宝鹏, 王崧嫚, 杜明伟, 李芳军, 田晓莉, 李召虎. 棉花不同部位主茎叶对脱叶剂噻苯隆的响应及机理. 棉花学报, 2020, 32(5):418-424.
LIAO B P, WANG S M, DU M W, LI F J, TIAN X L, LI Z H. Responses and underlying mechanisms of different main stem leaves on cotton to defoliant thidiazuron. Cotton Science, 2020, 32(5):418-424. (in Chinese)
[58] 宋兴虎, 徐东永, 孙璐, 赵文超, 曹龙龙, 张祥, 唐纪元, 韩焕勇, 王洪这, 陈洪章, 王林, 赵冰梅, 杜明伟, 田晓莉, 李召虎. 在不同棉区噻苯隆和乙烯利用量及配比对脱叶催熟效果影响. 棉花学报, 2020, 32(3):247-257.
SONG X H, XU D Y, SUN L, ZHAO W C, CAO L L, ZHANG X, TANG J Y, HAN H Y, WANG H Z, CHEN H Z, WANG L, ZHAO B M, DU M W, TIAN X L, LI Z H. Effect of thidiazuron and ethylene use and ratio on defoliation ripening in different cotton area. Cotton Science, 2020, 32(3):247-257. (in Chinese)
[59] DAI J L, KONG X Q, ZHANG D M, LI W J, DONG H Z. Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Research, 2017, 214:142-148.
doi: 10.1016/j.fcr.2017.09.005
[60] 董合忠, 杨国正, 李亚兵, 田立文, 代建龙, 孔祥强. 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017, 43(5):631-639.
DONG H Z, YANG G Z, LI Y B, TIAN L W, DAI J L, KONG X Q. Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms. Acta Agronomica Sinica, 2017, 43(5):631-639. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[9] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[10] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[11] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[12] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[13] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[14] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
[15] ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology [J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!