Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4274-4285.doi: 10.3864/j.issn.0578-1752.2021.20.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean

XUE RenFeng1(),FENG Ming1,HUANG YuNing1,Matthew BLAIR2,Walter MESSIER3(),GE WeiDe1()   

  1. 1Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
    2Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN USA
    3Evolutionary Genomics, Inc., Lafayette 80501, LA USA
  • Received:2021-04-06 Accepted:2021-05-27 Online:2021-10-16 Published:2021-10-25
  • Contact: MESSIER Walter,WeiDe GE E-mail:xuerf82@163.com;wmessier@evolgen.com;snowweide@163.com

Abstract:

【Objective】By analyzing the sequence and expression pattern characteristics of PvEG261 from common beans, and studying its resistance to Fusarium wilt and drought, the foundation was laid for the signal regulation network analysis of Fusarium wilt and drought-resistance and molecular breeding in common beans. 【Method】 Bioinformatics analysis was performed on the open reading frame (ORF) of PvEG261 to predict the physical and chemical properties, secondary structure, signal peptide sequence of the protein encoded by the PvEG261, and search for highly homologous protein sequence in NCBI database through Blastp tool online for sequence alignment and phylogenetic tree construction; the tissue expression specificity of PvEG261 and the expression pattern in response to Fusarium wilt pathogen and drought stress were analyzed by qRT-PCR; PvEG261 overexpression vector was constructed and transformed into Agrobacterium rhizogenes K599 to induce the generation of hairy transgenic roots in common beans. Meanwhile, the PvEG261 silencing vector was constructed, and the transcription product in vitro was inoculated on the seedlings of common bean to interfere with PvEG261 expression. Through inoculation with the pathogen and drought treatment, the phenotypes of control, PvEG261-overexpressed and silenced plants were observed, disease and drought-resistance were both identified, and hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activity as physiological and biochemical indicators were all assayed. 【Result】 The cDNA sequence of PvEG261 was 471 bp, which encodes a protein composed of 156 amino acids. The structure prediction indicated that it contained 10 strand structures, the predicted molecular mass of the encoding product was 38.89 kD, and the theoretical pI was 5.21. PvEG261 belonged to the members of dirigent gene superfamily, it contained a signal peptide sequence of 10 amino acids, and belonged to a secreted protein. The relationship between PvEG261 and cowpea DIR22 protein is the closest, which reached 91.61%. The results of qRT-PCR showed that the expression in the root tissues increased significantly after inoculation with Fusarium wilt pathogen and drought treatment, and the gene has obvious tissue expression specificity, with the highest expression level in the roots. After inoculation with pathogen and drought treatment, the disease and drought-resistance of the overexpressed plants were significantly improved in comparison with the control, the plant disease scores and the wilting degree caused by water shortage were significantly reduced, and the H2O2 content, POD and SOD activity in the roots were all significantly higher than the control plant, while the MDA content was dramatically lower than the control plant. The disease and wilting degree of the gene silenced plants were significantly increased. The H2O2 content, POD and SOD activity in the roots were significantly lower than the control plant, and the MDA content was significantly higher than the control plants. 【Conclusion】 PvEG261 responded to Fusarium wilt pathogen infection and drought stress, and positively regulated the Fusarium wilt and drought-resistance in common beans.

Key words: common bean, PvEG261, Fusarium wilt, drought stress, response mechanism

Table 1

Primers used in this research"

引物名称 Primer name 引物序列 Primer sequence (5′-3′)
EG261-F GTTGTGGGAAGTGCTGAA
EG261-R CCCTGGCAAATCTGAATA
ACT-F GAAGTTCTCTTCCAACCATCC
ACT-R TTTCCTTGCTCATTCTGTCCG
OE-F GCTCTAGAATGTCCTTAAGCTACAAGAA
OE-R GCGAGCTCTTAGTGGTAAACGTAGACGT
GS-F GCGGATCCCTTAGCCACTTCAGGTTCT
GS-R GCATCGATTCGTGTTGTTCCTCGTTT

Fig. 1

Sequence analysis of PvEG261 A: Sequence analysis of PvEG261 protein; B: Multiple sequence alignment of PvEG261 and the dirigent proteins from other plants. Green box indicated no less than 50% in the sequence identity; Pink box indicated no less than 75% in the sequence identity; Black box indicated 100% in the sequence identity; C: Phylogenetic analysis of PvEG261 and the dirigent proteins from other plants. CaDIR22: Coffea arabica, XP_027102329.1; LaDIR22: Lupinus angustifolius, XP_019462472.1; MpDIR3: Mucuna pruriens, RDX73385.1; ApDIR22: Abrus precatorius, XP_027337739.1; GmDIR22: Glycine max, XP_006576480.1; GsDIR: Glycine soja, KHN26491.1; VaDIR22: Vigna angularis, XP_017441835.1; VrDIR22: Vigna radiata, XP_014492698.1; VuDIR22: Vigna unguiculata, XP_027906892.1"

Fig. 2

Expression analysis of PvEG261 A: Tissue specific expression analysis of PvEG261; B: PvEG261 expression analysis induced by FOP-DM01; C: PvEG261 expression analysis induced by PEG6000. Different lowercase letters indicate significant difference at the 0.05 probability level. The same as below"

Fig. 3

qRT-PCR identify of the PvEG261 overexpressed and silenced plants A: qRT-PCR identify of the PvEG261 overexpressed plants; B: qRT-PCR identify of the PvEG261 silenced plants"

Fig. 4

Disease assessment of the PvEG261 overexpressed and silenced plants A: Disease characteristics of the PvEG261 overexpressed plants at 2 weeks post inoculation; B: Disease scores of the PvEG261 overexpressed plants; C: Disease characteristics of the PvEG261 silenced plants at 2 weeks post inoculation; D: Disease scores of the PvEG261 silenced plants. NT: Non-transformed plants; EV: Empty vector plants; OE: PvEG261 hair-root transgenic plants; GS: PvEG261 gene silencing plants. The same as below"

Fig. 5

Drought resistance of the PvEG261 overexpressed and silenced plants A: Phenotypic characteristics of the PvEG261 overexpressed plants at 2 weeks under drought stress; B: Root length of the PvEG261 overexpressed plants under drought stress; C: Root fresh weight of the PvEG261 overexpressed plants under drought stress; D: Phenotypic characteristics of the PvEG261 silenced plants at 2 weeks under drought stress; E: Root length of the PvEG261 silenced plants under drought stress; F: Root fresh weight of the PvEG261 silenced plants under drought stress"

Fig. 6

Analysis of H2O2 contents, SOD activity, POD activity and MDA contents in roots of common beans induced by F. oxysporum f. sp. phaseoli and drought stress A: H2O2 contents of PvEG261 overexpressed plants; B: SOD activity of PvEG261 overexpressed plants; C: POD activity of PvEG261 overexpressed plants; D: MDA contents of PvEG261 overexpressed plants;E: H2O2 contents of PvEG261 silenced plants; F: SOD activity of PvEG261 silenced plants; G: POD activity of PvEG261 silenced plants; H: MDA contents of PvEG261 silenced plants"

[1] 张赤红, 曹永生, 宗绪晓, 王志刚, 王述民. 普通菜豆种质资源形态多样性鉴定与分类研究. 中国农业科学, 2005, 38(1):27-32.
ZHANG C H, CAO Y S, ZONG X X, WANG Z G, WANG S M. Morphological diversity and classification of common bean (Phaseolus vulgaris L.) germplasm resource in China. Scientia Agricultura Sinica, 2005, 38(1):27-32. (in Chinese)
[44] CUI M M, MA L, ZHANG J J, WANG X, PANG Y Z, WANG X M. Gene expression and salt-tolerance analysis of MsDWF4 gene from Alfalfa. Scientia Agricultura Sinica, 2020, 53(18):27-41. (in Chinese)
[45] DAVIN L B, LEWIS N G. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiology, 2000, 123:453-462.
doi: 10.1104/pp.123.2.453
[2] PEREZ-VEGA E, PAEDA A, RODRIGUEZ-SUAREZ C, CAMPA A, GIRALDEZ R, FERREIRA J J. Mapping of QTLs for morpho- agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2010, 120:1367-1380.
doi: 10.1007/s00122-010-1261-5
[3] SCHMUTZ J, MCCLEAN P E, MAMIDI S, WU G A, CANNON S B, GRIMWOOD J, JENKINS J, SHU S Q, SONG Q J, CHAVARRO C, TORRES-TORRES M, GEFFROY V, MOGHADDAM S M, GAO D Y, ABERNATHY B, BARRY K, BLAIR M, BRICK M A, CHOVATIA M, GEPTS P, GOODSTEIN D M, GONZALES M, HELLSTEN U, HYTEN D L, JIA G F, KELLY J D, KUDRNA D, LEE R RICHARD M M S, MIKLAS P N, OSORNO J M, RODRIGUES J, THAREAU V, URREA C A, WANG M, YU Y, ZHANG M, WING R A, CREGAN P B, ROKHSAR D S, JACKSON S A. A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46:707-713.
doi: 10.1038/ng.3008
[4] HARTER L L. A Fusarium disease of beans. (Abstr.). Phytopathology, 1929, 19:82.
[5] RALPH S, PARK J Y, BOHLMANN J, MANSFIELD S D. Dirigent proteins in conifer defense: Gene discovery, phylogeny and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.), Plant Molecular Biology, 2006, 60:21-40.
doi: 10.1007/s11103-005-2226-y
[6] BURLAT V, KWON M, DEVIN L B, LEWIS N G. Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry, 2001, 57:883-897.
doi: 10.1016/S0031-9422(01)00117-0
[7] DAVIN L B, WANG H B, CROWELL A L, BEDGAR D L, MARTIN D M, SARKANEN S, LEWIS N G. Stereoselective biomolecular phenoxy radical coupling by an auxiliary (Dirigent) protein without an active center. Science, 1997, 275:362-366.
doi: 10.1126/science.275.5298.362
[8] LIU J, STIPANOVIC R D, BELL A A, PUCKHABER L S, MAGILL C W. Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein. Phytochemistry, 2008, 69:3038-3042.
doi: 10.1016/j.phytochem.2008.06.007
[9] PICKEL B, CONSTANTIN M A, PFANNSTIEL J, CONRAD J, BEIFUSS U, SCHALLER A. An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angewandte Chemie-International Edition, 2010, 49:202-204.
doi: 10.1002/anie.200904622
[10] DALISAY D S, KIM K W, LEE C, YANG H, RÜBEL O, BOWEN B P, DAVIN L B, LEWIS N G. Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging. Journal of Natural Products, 2015, 78:1231-1242.
doi: 10.1021/acs.jnatprod.5b00023
[11] EFFENBERGER I, ZHANG B, LI L, WANG Q, LIU Y, KLAIBER I, PFANNSTIEL J, WANG Q M, SCHALLER A. Dirigent proteins from cotton(Gossypium sp.) for the atropselective synthesis of gossypol. Angewandte Chemie-International Edition, 2015, 54:14660-14663.
doi: 10.1002/anie.v54.49
[12] LEWIS N G, DAVIN L B. Evolution of lignin and neolignan biochemical pathways//NES W D, (Ed.). Isopentenoids and Other Natural Products Evolution, Function. Washington DC: ACS Symposium Series, 1994, 562:202-246.
[13] LEWIS N G, DAVIN L B. Lignans: Biosynthesis and function// BARTON D H R, NAKANISHI K, METH-COHN O, (Eds.). Comprehensive Natural Products Chemistry. London: Elsevier, 1999: 639-712.
[14] BOUDET A M. Lignins and lignification selected issues. Plant Physiology and Biochemistry, 2000, 38:81-96.
doi: 10.1016/S0981-9428(00)00166-2
[15] ZHOU J, LEE C, ZHONG R, YE Z H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. The Plant Cell, 2009, 21:248-266.
doi: 10.1105/tpc.108.063321
[16] RALPH S G, JANCSIK S, BOHLMANN J. Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp). Phytochemistry, 2007, 68:1975-1991.
doi: 10.1016/j.phytochem.2007.04.042
[17] WU R H, WANG L L, WANG Z, SHANG H H, LIU X, ZHU Y, QI D D, DENG X. Cloning and expression analysis of a dirigent protein gene from the resurrection plant Boea hygrometrica. Progress in Natural Science, 2009, 19:347-352.
doi: 10.1016/j.pnsc.2008.07.010
[18] MOURA J C M S, BONINE C, VIANA J, DORNELAS M C, MAZZAFERA P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 2010, 52:360-376.
doi: 10.1111/jipb.2010.52.issue-4
[19] ZHU L, ZHANG X, TU L, ZENG F, NIE Y, GUO X. Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae. Journal of Plant Pathology, 2007, 89:41-45.
[20] REBOLEDO G, DEL CAMPO R, ALVAREZ A, MONTESANO M, MARA H, PONCE DE LEÓN I. Physcomitrella patens activates defense responses against the pathogen Colletotrichum gloeosporioides. International Journal of Molecular Sciences, 2015, 16:22280-22298.
doi: 10.3390/ijms160922280
[21] FRANCESCHI V R, KROKENE P, KREKLING T, CHRISTIANSEN E. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or barkbeetle attack in Norway spruce (Pinaceae). American Journal of Botany, 2000, 87:314-326.
doi: 10.2307/2656627
[22] NAGY N E, FRANCESCHI V R, SOLHEIM H, KREKLING T, CHRISTIANSEN E. Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits. American Journal of Botany, 2000, 87:302-313.
doi: 10.2307/2656626
[23] WANG Y, FRISTENSKY B. Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani. Molecular Breeding, 2001, 8:263-271.
doi: 10.1023/A:1013706400168
[24] MESSIER W. Dirigent gene EG261 and its orthologs and paralogs and their uses for pathogen resistance in plants, US, US 9834783B2, 2017.
[25] XUE R F, WU X B, WANG Y J, ZHUANG Y, CHEN J, WU J, GE W D, WANG L F, WANG S M, BLAIR M W. Hairy root transgene expression analysis of a secretory peroxidase(PvPOX1)from common bean infected by Fusarium wilt. Plant Science, 2017, 260:1-7.
doi: 10.1016/j.plantsci.2017.03.011
[26] CHEN J B, WANG S M, JING R L, MAO X G. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. Journal of Plant Physiology, 2009, 166(1):12-19.
doi: 10.1016/j.jplph.2008.02.010
[27] ESTRADA-NAVARRETE G, ALVARADO-AFFANTRANGER X, OLIVARES J E, GUILLÉN G, DÍAZ-CAMINO C, CAMPOS F, QUINTO C, GRESSHOFF P M, SANCHEZ F. Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nature Protocols, 2007, 2(7):1819-1824.
doi: 10.1038/nprot.2007.259
[28] DÍAZ-CAMINO C, ANNAMALAI P, SANCHEZ F, KACHROO A, GHABRIAL S A. An effective virus-based gene silencing method for functional genomics studies in common bean. Plant Methods, 2011, 7(1):16.
doi: 10.1186/1746-4811-7-16
[29] SAGISAKA S. The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiology, 1976, 57:308-309.
doi: 10.1104/pp.57.2.308
[30] ZHANG H, GAO X, ZHI Y, LI X, ZHANG Q, NIU J, WANG J, ZHAI H, ZHAO N, LI J, LIU Q, HE S. A non-tandem CCCH-type zinc finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytologist, 2019, 223:1918-1936.
doi: 10.1111/nph.v223.4
[31] DO H M, HONG J K, JUNG H W, KIM S H, HAM J H, HWANG B K. Expression of peroxidaselike genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. Vesicatoria in Capsicum annuum. Molecular Plant Microbe Interaction, 2003, 16:196-205.
doi: 10.1094/MPMI.2003.16.3.196
[32] BROUGHTON W J, HERNANDEZ G, BLAIR M, BEEBE S, GEPTS P, VANDERLEYDEN J. Bean (Phaseolus spp.)-model food legumes. Plant Soil, 2003, 252:55-128.
doi: 10.1023/A:1024146710611
[33] DAVIN L B, WANG H B, CROWELL A L, BEDGAR D L, MARTIN D M, SARKANEN S, LEWIS N G. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science, 1997, 275:362-366.
doi: 10.1126/science.275.5298.362
[34] KIM M K, JEON J H, FUJITA M, DAVIN L B, LEWIS N G. The western red cedar (Thuja plicata) 8-8’ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Molecular Biology, 2002, 49:199-214.
doi: 10.1023/A:1014940930703
[35] LI N, ZHAO M, LIU T, DONG L, CHENG Q, WU J, WANG L, CHEN X, ZHANG C, LU W, XU P, ZHANG S. A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Frontier in Plant Science, 2017, 8:1185.
[36] MA Q H, LIU Y C. TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance. Plant Molecular Biology Reporter, 2015, 33(1):143-152.
doi: 10.1007/s11105-014-0737-x
[37] 关瑞攀. Dirigent基因参与三七——茄腐镰刀菌互作的分子机理研究[D]. 昆明: 昆明理工大学, 2018.
GUAN R P. Molecular mechanism of dirigent genes involved in the interaction of Panax notoginseng―Fusarium solani[D]. Kunming: Kunming University of Science and Technology, 2018. (in Chinese)
[38] 张洪伟, 李继刚, 郑建坡, 曲占良. 马铃薯晚疫病抗性相关基因StDIR1的克隆与表达. 华北农学报, 2012(2):23-29.
ZHANG H W, LI J G, ZHENG J P, QU Z L. Cloning and expression of a potato dirigent-like gene(StDIR1) responsive to infection by Phytophthora infestans. Acta Agriculturae Boreali-Sinica, 2012(2):23-29. (in Chinese)
[39] 郭宝生, 师恭曜, 王凯辉, 刘素恩, 赵存鹏, 王兆晓, 耿军义, 华金平. 黄萎病菌侵染下陆地棉Dirigent-like蛋白基因表达差异分析. 中国农业科学, 2014, 47(22):4349-4359.
GUO B S, SHI G Y, WANG K H, LIU S E, ZHAO C P, WANG Z X, GENG J Y, HUA J P. Expression differences of dirigent-Like protein genes in upland cotton responsed to infection by Verticillium dahlia. Scientia Agricultura Sinica, 2014, 47(22):4349-4359. (in Chinese)
[40] THAMIL ARASAN S K, PARK J I, AHMED N U, JUNG H J, HUR Y, KANG K K, LIM Y P, NOU I S. Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiology and Biochemstry, 2013, 67:144-153.
[41] GUO J L, XU L P, FANG J P, SU Y C, FU H Y, QUE Y X, XU J S. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Reports, 2012, 31(10):1801-1812.
doi: 10.1007/s00299-012-1293-1
[42] LIU G, SHENG X, GREENSHIELDS D L, OGIEGLO A, KAMINSKYJ S, SELVARAJ G, WEI Y. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Molecular Plant Microbe Interaction, 2005, 18(7):730-741.
doi: 10.1094/MPMI-18-0730
[43] MAJID M, AKBAR M, TOMOAKI H, MAKI K. Drought stress alters water relations and expression of pip-type aquaporin genes in Nicotiana tabacum plants. Plant & Cell Physiology, 2008(5):801-813.
[44] 崔苗苗, 马琳, 张锦锦, 王筱, 庞永珍, 王学敏. 紫花苜蓿MsDWF4的表达特性及耐盐性效应. 中国农业科学, 2020, 53(18):27-41.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[8] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[9] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[10] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[11] LIU WenJuan,CHANG LiJuan,YUE LiJie,SONG Jun,ZHANG FuLi,WANG Dong,WU JiaWei,GUO LingAn,LEI ShaoRong. Response of Non-Photochemical Quenching in Bundle Sheath Chloroplasts of Two Maize Hybrids to Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544.
[12] HaiYan ZHANG,BeiTao XIE,BaoQing WANG,ShunXu DONG,WenXue DUAN,LiMing ZHANG. Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato [J]. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139.
[13] ZHAO Juan,YIN YiZhen,WANG XiaoLu,MA ChunYing,YIN MeiQiang,WEN YinYuan,SONG XiE,DONG ShuQi,YANG XueFang,YUAN XiangYang. Physiological Response of Millet Callus with Different Herbicide-Resistance to Sethoxydim Stress [J]. Scientia Agricultura Sinica, 2020, 53(5): 917-928.
[14] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[15] WANG JinQiang,LI SiPing,LIU Qing,LI Huan. Mechanism of Spraying Growth Regulators to Alleviate Drought Stress of Sweet Potato [J]. Scientia Agricultura Sinica, 2020, 53(3): 500-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!