Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 190-202.doi: 10.3864/j.issn.0578-1752.2021.01.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Germination and Extrusion on Volatile Flavor Compounds in Brown Rice

CHEN YanFang(),ZHANG MingWei,ZHANG Yan(),DENG YuanYuan,WEI ZhenCheng,TANG XiaoJun,LIU Guang,LI Ping   

  1. Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610
  • Received:2020-05-08 Accepted:2020-08-31 Online:2021-01-01 Published:2021-01-13
  • Contact: Yan ZHANG E-mail:chen.y.f@foxmail.com;zhang__yan_@126.com

Abstract:

【Objective】The objective of this study was to investigate the effects of germination and extrusion process on volatile flavor compounds of brown rice by analyzing changes of the volatile flavor compounds of brown rice, so as to provide a reference for evaluating and improving the volatile flavor of brown rice. 【Method】The volatile flavor compounds of raw brown rice (RBR), extruded brown rice (EBR), germinated brown rice (GBR) and extruded germinated brown rice (EGBR) were analyzed by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The qualitative and relative quantitative analyses of the volatile flavor components were carried out by NIST14 database, retention index (RI), and internal standard. Gas chromatography olfactory (GC-O) was used to analyze the composition spectrums of the active odor compounds and their overall flavor profile as well as the volatile flavor characteristics of brown rice samples. 【Result】 A total of 28 volatile flavor compounds were identified, including aldehydes, alcohols, terpenes, esters, heterocycles and arenes. After extrusion, the contents of aldehydes, heterocycles and arenes in brown rice were increased significantly, while the contents of alcohols and terpenes decreased significantly; moreover, new esters were detected after extrusion. After germination treatment, the content of alcohols was increased, while the contents of aldehydes, terpenes, heterocycles and arenes decreased; however, esters were undetected after germination treatment. After extrusion, the content of aldehydes, terpenes, heterocycles and arenes in germinated brown rice were increased, furthermore, while the content of alcohols decreased; moreover, new esters were detected. What’s more, the contents of aldehydes, terpenes, esters and heterocyclic compounds in germinated brown rice were significantly higher than those in brown rice after extrusion. The principal component analysis showed that the increases of the contents of compounds, such as heptanal, nonanal, benzaldehyde, D-limonene, toluene and 2-AP, were highly correlated with extrusion, while the increases in contents of 2-ethyl-1-hexanol and 3-methylbutanol were highly correlated with germination, and the increases in contents of ethyl acetate, butyl acetate, dimethyl sulfide and pyridine were highly correlated with germination-extrusion treatment. GC-O results showed that 19 kinds of active odor compounds were detected, with the odor intensity value (OIV) of some compounds’ over ≥ 3, such as hexanal, heptanal, hexanol, 1-octene-3-ol, 2-acetyl-1-pyrroline and p-xylene. The flavor profile analysis showed that the odor intensity of wax was the highest in brown rice, followed by those of grass and nut, while those of floral and fruity odor were the lowest. After extrusion, the nutty, grassy and fruity odor intensities of brown rice were increased significantly, in contrast, the waxy odor intensity decreased significantly. After germination, the waxy, nutty, grassy and floral odor intensities of brown rice were decreased, however, the fruit odor intensity did not change. After extrusion, the nutty, waxy, grassy and fruity odor intensities of germinated brown rice were increased significantly. 【Conclusion】Germination could improve the production of alcohols in brown rice, while it could decrease the contents of other volatile compounds to some extent, resulting in the decline of overall flavor intensity. However, during the process of germination, brown rice could produce volatile flavor precursors through biochemical action, which could promote the formation of more volatile flavor compounds by extrusion in germinated brown rice. Extrusion could have a positive effect on the formation of aldehydes, terpenes, esters, heterocycles and arenes in brown rice as well as germinated brown rice. Moreover, the volatile flavor compounds content in extruded germinated brown rice were significantly higher than those in extruded brown rice. The overall flavor intensities of both raw brown rice and germinated brown rice were increased after extrusion, with the most significant increase in the nutty and fruity odor intensities.

Key words: brown rice, volatile flavor compounds, germination, extrusion, gas chromatography-mass spectrometry, gas chromatography-olfactory

Table 1

Volatile flavor compounds and their contents in different brown rice samples"

编号
Number
化合物
Compounds
保留指数
Retention index
含量
Content (μg/100 g DW)
鉴定依据
Identification
Ref. Cal. 糙米
Brown rice
挤压膨化糙米
Extruded
brown rice
发芽糙米
Germinated brown rice
挤压膨化发芽糙米
Extruded germinated brown rice
醛类 Aldehydes 235.42 783.82 201.57 1407.58
A1 3-甲基丁醛 Butanal, 3-methyl- 658 653 12.84±0.15a 47.1±1.04b MS, RI
A2 戊醛 Pentanal 697 705 13.61±2.49a MS, RI
A3 己醛 Hexanal 803 803 183.10±8.51a 612.88±26.20b 171.31±11.86a 1191.02±61.49c MS, RI
A4 庚醛 heptanal 903 906 10.81±0.27a 29.79±1.15c 7.39±0.78a 24.33±2.00b MS, RI
A5 苯甲醛 Benzaldehyde 960 966 8.38±1.19a 11.15±1.21a MS, RI
A6 壬醛 Nonanal 1106 1109 36.35±3.48b 119.93±6.24c 19.67±1.52a 114.43±1.18c MS, RI
A7 癸醛 Decanal 1206 1210 5.16±1.06ab 3.20±0.36a 5.94±0.24b MS, RI
醇类 Alcohols 133.75 11.11 144.22 73.60
B1 正丁醇 1-Butanol 676 667 16.14±1.6a 16.53±5.65a 65.22±10.86b MS, RI
B2 3-甲基丁醇 1-Butanol, 3-methyl- 736 737 2.11±0.29a MS, RI
B3 正己醇 1-Hexanol 870 873 108.37±4.54a 119.72±1.48b MS, RI
B4 1-辛烯-3-醇 1-Octen-3-ol 984 985 7.22±0.15a 11.11±0.87b 8.38±1.01a MS, RI
B5 2-乙基-1-己醇 1-Hexanol, 2-ethyl- 1031 1032 2.02±0.22a 5.86±0.16b MS, RI
萜烯类 Terpenes 59.45 13.09 6.07 190.98
C1 α-蒎烯 alpha-Pinene 935 937 3.59±0.21b 1.08±0.12a 8.35±0.69c MS, RI
C2 4-乙基己烯 1-Hexene, 4-ethyl- 947 3.22±0.44a MS
C3 β-蒎烯 beta-Pinene 987 980 1.60±0.03a MS, RI
C4 D-柠檬烯 D-Limonene 1029 1028 9.87±0.24b 5.00±1.43a MS, RI
C5 对薄荷-1(7),3-二烯 β-Terpinene 1056 1030 54.26±7.88a 182.63±9.57b MS
酯类 Esters 0.00 250.24 0.00 555.04
D1 乙酸乙酯 Ethyl acetate 621 625 245.44±1.02a 547.10±17.58b MS, RI
D2 乙酸丁酯 Acetic acid, butyl ester 815 820 4.80±0.78a 7.94±2.12a MS, RI
芳香烃Arenes 82.04 494.45 5.43 106.73
E1 甲苯 Toluene 760 765 33.50±5.17b 366.58±0.47c 3.99±1.08a 37.76±2.21b MS, RI
E2 乙苯 Ethylbenzene 858 863 8.26±1.29a 17.53±0.64b 8.12±0.16a MS, RI
E3 对二甲苯 p-Xylene 867 867 11.80±0.39ab 48.92±6.43c 1.44±0.61a 21.01±0.36b MS, RI
E4 邻二甲苯 o-Xylene 888 891 28.48±1.44a 61.41±0.27c 39.84±0.13b MS, RI
杂环化合物
Heterocyclic compounds
2.03 91.83 5.63 177.50
F1 吡啶 Pyridine 741 748 74.22±14.72a MS, RI
F2 2-乙酰-1-吡咯啉 2-Acetyl-1-pyrroline 918 921 2.03±0.4a 4.87±1.56b 0.59±0.2a MS, RI
F3 2-戊基呋喃 Furan, 2-pentyl- 992 994 80.97±1.94b 5.63±0.86a 97.79±2.97c MS, RI
其他Others 0.00 0.00 0.00 4.90
G1 二甲基硫醚 Dimethyl sulfide 521 528 4.90±0.61a MS, RI
G2 正丁醚 n-Butyl ether 987 5.99±0.11a MS
总计Total 512.70 1644.54 362.92 2511.43

Table 2

Eigenvalues and cumulative contribution rate of volatile flavor compounds"

化合物
Compounds
主成分
Principal component
特征值
Eigenvalues
贡献率
Contribution rate (%)
累积贡献率
Cumulative contribution rate (%)
醛类Aldehydes
1 5.083 72.620 72.620
2 1.821 26.013 98.632
醇类Alcohols 1 3.636 72.713 72.713
2 1.013 20.263 92.976
萜烯类与酯类
Terpenes and Esters
1 3.817 54.529 54.528
2 2.629 37.563 92.092
其他Others 1 5.909 65.661 65.661
2 2.823 31.367 97.028

Table 3

Principal component load factor"

编号 Number 化合物 Compounds 主成分1 Principal component 1 主成分2 Principal component 2
醛类 Aldehydes
A1 3-甲基丁醛 Butanal, 3-methyl- 0.762 0.642
A2 戊醛 Pentanal 0.557 0.825
A3 己醛 Hexanal 0.859 0.509
A4 庚醛 Heptanal 0.976 -0.171
A5 苯甲醛 Benzaldehyde 0.975 0.218
A6 壬醛 Nonanal 0.993 -0.006
A7 癸醛 Decanal -0.282 0.937
醇类 Alcohols
B1 正丁醇 1-Butanol -0.09 0.988
B2 3-甲基丁醇 1-Butanol, 3-methyl- 0.936 -0.06
B3 正己醇 1-Hexanol 0.827 -0.32
B4 1-辛烯-3-醇 1-Octen-3-ol -0.997 -0.071
B5 2-乙基-1-己醇 1-Hexanol, 2-ethyl- 0.983 -0.182
萜烯类与酯类Terpenes and Esters
C1 α-蒎烯 α-Pinene 0.636 0.772
C2 4-乙基己烯 1-Hexene, 4-ethyl- 0.148 -0.888
C3 β-蒎烯 β-Pinene -0.597 0.557
C4 D-柠檬烯 D-Limonene -0.072 -0.997
C5 对薄荷-1(7),3-二烯 β-Terpinene 0.742 0.668
D1 乙酸乙酯 Ethyl acetate 0.994 0.069
D2 乙酸丁酯 Acetic acid, butyl ester 0.986 -0.074
其他Others
E1 甲苯 Toluene 0.973 -0.149
E2 乙苯 Ethylbenzene 0.968 0.093
E3 对二甲苯 p-Xylene 0.989 0.143
E4 邻二甲苯 o-Xylene 0.922 0.315
F1 吡啶Pyridine 0.951 -0.271
F2 2-乙酰-1-吡咯啉 2-Acetyl-1-pyrroline 0.949 -0.202
F3 2-戊基呋喃 Furan, 2-pentyl- 0.951 -0.271
G1 二甲基硫醚 Dimethyl sulfide -0.135 0.991
G2 正丁醚 n-Butyl ether 0.596 0.775

Fig. 1

Loading plot of volatile flavor compounds PCA model from brown rice samples A: Loading plot of PC1 vs. PC2 corresponding to aldehydes PCA model from brown rice samples; B: Loading plot of PC1 vs. PC2 corresponding to alcohols PCA model from brown rice samples; C: Loading plot of PC1 vs. PC2 corresponding to terpenes and esters PCA model from brown rice samples; D: Loading plot of PC1 vs. PC2 corresponding to other compounds PCA model from brown rice samples. The meaning of numbers in the figure is the same as table 1 (e.g. “A1” stands for “Butanal, 3-methyl-”)"

Table 4

Odor intensity and classification of volatile flavor compounds in brown rice samples"

类别
Category
化合物
Compounds
气味
Odor
气味强度值 Odor intensity value
糙米
Brown rice
挤压膨化糙米
Extruded
brown rice
发芽糙米
Germinated brown rice
挤压膨化发芽糙米
Extruded germinated brown rice
坚果
Nutty
戊醛 Pentanal 杏仁 Almond 0 0 0 1
苯甲醛 Benzaldehyde 坚果 Nut 0 2 0 2
α-蒎烯 α-Pinene 坚果 Nut 0 0 0 1
2-乙酰-1-吡咯啉 2-Acetyl-1-pyrroline 爆米花 Popcorn 3 3 0 3
2-戊基呋喃 Furan, 2-pentyl- 杏仁 Almond 0 1 0 2
果香
Fruity
壬醛 Nonanal 柑橘 Orange 1 2 1 2
对薄荷-1(7),3-二烯 β-Terpinene 薄荷 Mint 0 0 0 1
乙酸乙酯 Ethyl acetate 水果 Fruit 0 1 0 2
对二甲苯 p-Xylene 甜香 Sweet 0 3 0 2
花香
Floral
甲苯 Toluene 花香 Flower 1 0 0 0
乙苯 Ethylbenzene 芳香 Fragrance 0 1 0 0
青草
Grassy
己醛 Hexanal 青味 Green 1 3 0 3
1-辛烯-3-醇 1-Octen-3-ol 蘑菇 Mushroom 3 3 0 2
2-乙基-1-己醇 1-Hexanol, 2-ethyl- 青味 Green 2 0 2 0
邻二甲苯 o-Xylene 青草 Grass 0 1 0 0
蜡质
Waxy
庚醛 Heptanal 脂肪 Lipid 2 3 0 3
癸醛 Decanal 肥皂 Soap 2 0 0 2
正丁醇 1-Butanol 西药 Medicine 2 0 1 1
正己醇 1-Oexanol 树脂 Resin 3 0 1 0

Fig. 2

The flavor profile of different brown rice samples"

[1] TI H H, LI Q, ZHANG R F, ZHANG M W, DENG Y Y, WEI Z C, CHI J W, ZHANG Y. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in Southern China. Food Chemistry, 2014,159:166-174.
doi: 10.1016/j.foodchem.2014.03.029
[2] 林永华. 糙米食疗米饭的工艺优化及其降血糖、降血脂机理的初步探究[D]. 杭州: 浙江大学, 2015.
LIN Y H. The optimization of brown rice processing technology and its mechanism of blood sugar and blood fat falling effects[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[3] 赵广河, 张瑞芬, 苏东晓, 董丽红, 刘磊, 魏振承, 张名位. 全谷物酚类物质及其抗氧化活性研究进展. 中国食品学报, 2017,17(8):183-196.
ZHAO G H, ZHANG R F, SU D X, DONG L H, LIU L, WEI Z C, ZHANG M W. The advances on polyphenols in whole grains and its antioxidant activity. Journal of Chinese Institute of Food Science and Technology, 2017,17(8):183-196. (in Chinese)
[4] ZHANG X W, ZHANG M W, DONG L H, JIA X C, LIU L, MA Y X, HUANG F, ZHANG R F. Phytochemical profile, bioactivity, and prebiotic potential of bound phenolics released from rice bran dietary fiber during in vitro gastrointestinal digestion and colonic fermentation. Journal of Agricultural and Food Chemistry, 2019,67:12796-12805.
pmid: 31659898
[5] XIAO J, ZHANG R F, WU Y J, WU C J, JIA X C, DONG L H, LIU L, CHEN Y X, BAI Y J, ZHANG M W. Rice bran phenolic extract protects against alcoholic liver injury in mice by alleviating intestinal microbiota dysbiosis, barrier dysfunction, and liver inflammation mediated by the endotoxin-TLR4-NF-κB pathway, Journal of Agricultural and Food Chemistry, 2020,68(5):1237-1247.
doi: 10.1021/acs.jafc.9b04961 pmid: 31722525
[6] 马文峰, 张虎. 2018年中国稻米市场分析回顾及2019~2030年展望. 粮食加工, 2019,44(6):1-6.
MA W F, ZHANG H. Analysis review of Chinese rice market in 2018 and prospect from 2019 to 2030. Grain Processing, 2019,44(6):1-6. (in Chinese)
[7] ZHOU Z, ROBARDS K, HELLIWELL S, BLANCHARD C. Composition and functional properties of rice. International Journal of Food Science & Technology, 2002,37:849-868.
[8] BERGMAN C J, DELGADO J T, BRYANT R, GRIMM C, CADWALLADER K R, WEBB B D. Rapid gas chromatographic technique for quantifying 2-acetyl-pyrroline and hexanal in rice (Oryza sativa L.). Cereal Chemistry, 2000,77(4):454-458.
[9] AKHOUNDZADEH H, GHOLAMI A, MASOUM S, MOAZENI- POURASIL R S. Headspace solid-phase microextraction GC-MS for rapid rice aroma analysis using optimization tools. Chromatographia, 2018,81(6):931-945.
[10] 李常钰. 发芽糙米工艺优化及理化特性研究[D]. 南京: 南京财经大学, 2010.
LI C Y. Study on brown rice processing optimization and physicochemical properties[D]. Nanjing: Nanjing University of Finance and Economics, 2010. (in Chinese)
[11] MOONGNGARM A, SAETUNG N. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chmeistry, 2010,122(3):782-788.
[12] PATIL S B, KHAN M K. Germinated brown rice as a value added rice product: A review. Journal of Food Science & Technology, 2011,48(6):661-667.
pmid: 23572802
[13] WU F F, YANG N, CHEN H Y, JIN Z Y, XU X M. Effect of germination on flavor volatiles of cooked brown rice. Cereal Chemistry, 2011,88(5):497-503.
doi: 10.1094/CCHEM-04-11-0057
[14] XIA Q, MEI J, YU W J, LI Y F. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods. Food Research International, 2017,91:103-114.
doi: 10.1016/j.foodres.2016.12.001 pmid: 28290313
[15] HE F, QIAN Y P, ZHANG Y, ZHANG M W. Aroma compounds generation in brown and polished rice during extrusion//Flavour Science, Proceedings of the XV Weurman Flavour Research Symposium, Graz, 2017: 103-106.
[16] VERMA D K, SRIVASTAV P P. Science and Technology of Aroma, Flavour and Fragrance in Rice. USA: Apple Academic Press, 2018: 207-277.
[17] 徐睿, 胡冰, 麻荣荣, 邱立忠, 田耀旗. 焙烤糯米粉的关键风味物质分析. 食品与发酵工业, 2019,45(14):203-208.
XU R, HU B, MA R R, QIU L Z, TIAN Y Q. Key flavor substances of baked glutinous rice powder. Food and Fermentation Industries, 2019,45(14):203-208. (in Chinese)
[18] TOLDRÁ F. Lawrie's Meat Science. Cambridge: Woodhead Publishing, 2017: 383-417.
[19] VAN BA H, RYU K S, LAN N T K, HWANG I. Influence of particular breed on meat quality parameters, sensory characteristics, and volatile components. Food Science and Biotechnology, 2013,22(3):651-658.
doi: 10.1007/s10068-013-0127-4
[20] 方勇, 王红盼, 裴斐, 马宁, 汤晓智, 杨文建, 胡秋辉. 挤压膨化对金针菇-发芽糙米复配粉的消化特性及挥发性物质的影响. 中国农业科学, 2016,49(4):727-738.
doi: 10.3864/j.issn.0578-1752.2016.04.012
FANG Y, WANG H P, PEI F, MA N, TANG X Z, YANG W J, HU Q H. Effect of extrusion on digestion properties and volatile compounds in germinated brown rice compound of flammulina velutipes flour. Scientia Agricultura Sinica, 2016,49(4):727-738. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.04.012
[21] 张冬媛, 邓媛元, 张名位, 马永轩, 张雁, 魏振承, 张瑞芬, 刘磊, 唐小俊, 遆慧慧. 发芽-挤压-淀粉酶协同处理对速食糙米粉品质特性的影响. 中国农业科学, 2015,48(4):759-768.
doi: 10.3864/j.issn.0578-1752.2015.04.13
ZHANG D Y, DENG Y Y, ZHANG M W, MA Y X, ZHANG Y, WEI Z C, ZHANG R F, LIU L, TANG X J, TI H H. Effect of germination- extrusion-amylase assisted processing on quality properties of brown rice powder. Scientia Agricultura Sinica, 2015,48(4):759-768. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.04.13
[22] 张名位, 陈恩成, 张雁, 张瑞芬, 池建伟, 魏振承, 唐小俊. 籼型黑米萌芽积累γ-氨基丁酸的工艺条件研究. 农业工程学报, 2007,23(3):213-218.
ZHANG M W, CHEN E C, ZHANG Y, ZHANG R F, CHI J W, WEI Z C, TANG X J. Effect of technological conditions on γ-aminobutyric acid accumulation in germinated indica black rice. Transactions of the Chinese Society of Agricultural Engineering, 2007,23(3):213-218. (in Chinese)
[23] VANDENDOOL H, KRATZ P D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 1963,11:463-471.
[24] YANG D S, LEE K S, JEONG O Y, KIM K J, KAYS S J. Characterization of volatile aroma compounds in cooked black rice. Journal of Agricultural and Food Chemistry, 2008,56(1):235-240.
pmid: 18081248
[25] 刘晔, 葛丽琴, 王远兴. 3个产地不同等级庐山云雾茶挥发性成分主成分分析. 食品科学, 2018,39(10):206-214.
LIU Y, GE L Q, WANG Y X. Principal component analysis of volatile compounds in different grades of Lu mountain clouds-mist tea from three regions. Food Science, 2018,39(10):206-214. (in Chinese)
[26] BUTTERY R G, TURNBAUGH J G, LING L C. Contribution of volatiles to rice aroma. Journal of Agricultural and Food Chemistry, 1988,36(5):1006-1009.
[27] 张卫斌. 食品感官分析标度域-基于味觉行为的实验及理论研究[D]. 杭州: 浙江工商大学, 2012.
ZHANG W B. Food sensory scale field analysis: An experimental and theoretical study of gustatory behavior[D]. Hangzhou: Zhejiang Gongshang University, 2012. (in Chinese)
[28] 肖作兵, 朱建才, 牛云蔚, 王品品, 孙小鑫, 王若琳. 香气成分的协同作用研究进展. 食品科学技术学报, 2019,36(4):1-7.
XIAO Z B, ZHU J C, NIU Y W, WANG P P, SUN X X, WANG R L. Synergistic effect of aromatic compounds. Journal of Food Science and Technology, 2019,36(4):1-7. (in Chinese)
[29] LIVERMORE A, HUMMEL T, KOBAL G. Chemosensory eventrelated potentials in the investigation of interactions between the olfactory and the somatosensory (trigeminal) system. Electroencephalography and Clinical Neurophysiology, 1992,83:201-210.
doi: 10.1016/0013-4694(92)90145-8 pmid: 1381671
[30] ITO Y, KUBOTA K. Sensory evaluation of the synergism among odorants presentin concentrations below their odorthreshold in a Chinese jasmine green tea infusion. Molecular Nutrition & Food Research, 2005,49:61-68.
doi: 10.1002/mnfr.200400021 pmid: 15580663
[31] PANG X L, CHEN D, HU X S, ZHANG Y, WU J H. Verification of aroma profiles of Jiashi muskmelon juice characterized by odor activity value and gas chromatography-olfactometry/detection frequency analysis: Aroma reconstitution experiments and omission tests. Journal of Agricultural and Food Chemistry, 2012,60(42):10426-10432.
pmid: 22970770
[32] FAHY E, SUBRAMANIAM S, BROWN H A, GLASS C K, JR A H M, MURPHY R C, RAETZ C R H, RUSSELL D W, SEYAMA Y, SHAW W, SHIMIZU T, SPENER F, MEER G V, VANNIEUWENHZE M S, WHITE S H, WITZTUM J L, DENNIS E A. A comprehensive classification system for lipids. European Journal of Lipid Science and Technology, 2005,46(5):839-861.
[33] RESCONI V C, ESCUDERO A, CAMPO M M. The development of aromas in ruminant meat. Molecules, 2013,18(6):6748-6781.
pmid: 23749162
[34] SHAHIDI F. Flavor of Meat and Meat Products. Boston: Springer, 1994: 1-3.
[35] ELMORE J S, CAMPO M M, ENSER M, MOTTRAM D S. Effect of lipid composition on meat-like model systems containing cysteine, ribose, and polyunsaturated fatty acids. Journal of Agricultural and Food Chemistry, 2002,50(5):1126-1132.
pmid: 11853493
[36] 王彦蓉. 沙琪玛储存过程中风味变化及品质改善的研究[D]. 广州: 华南理工大学, 2012.
WANG Y R. Study on the changes of volatile compounds of sachima during shelf life and improvements of quality[D]. Guangzhou: South China University of Technology, 2012. (in Chinese)
[37] 吴凤凤. 发芽对糙米主要营养成分、生理功效和加工特性的影响[D]. 无锡: 江南大学, 2013.
WU F F. Effect of germination on nutritional components, physiological functions and processing characteristics of brown rice[D]. Wuxi: Jiangnan University, 2013. (in Chinese)
[38] 周婷. 糙米发芽过程中养成分变化规律及新产品开发[D]. 长沙: 中南林业科技大学, 2014.
ZHOU T. Changes of nutrients in the germination of brown rice and development of new product[D]. Changsha: Central South University of Forestry and Technology, 2014. (in Chinese)
[39] MCGARVEY D J, CROTEAU R B. Terpenoid metabolism. The Plant Cell, 1995,7(7):1015-1026.
pmid: 7640522
[40] BOUVIER F, RAHIER A, CAMARA B. BIOGENESIS, Molecular regulation and function of plant isoprenoids. Progress in Lipid Research, 2005,44:357-429.
doi: 10.1016/j.plipres.2005.09.003 pmid: 16289312
[41] 刘军华. 桂花精油、浸膏在烟草风味改良中的应用研究[D]. 上海: 上海应用技术学院, 2015.
LIU J H. Research on improvement of tobacco flavor by Osmanthus essential oil and concrete[D]. Shanghai: Shanghai Institute of Technology, 2015. (in Chinese)
[42] MONSOOR M A, PROCTOR A. Volatile component analysis of commercially milled head and broken rice. Journal of Food Science, 2004,69:632-636.
[43] WANG Y, JULIANI H R, SIMON J E, HO C T. Amino acid- dependent formation pathways of 2-acetylfuran and 2,5-dimethyl-4- hydroxy-3[2H]-furanone in the Maillard reaction. Food Chemistry, 2009,115(1):233-237.
[44] 李楠. 水溶性风味前体物质对蒸制中华绒螯蟹体肉香气的作用[D]. 上海: 上海海洋大学, 2017.
LI N. Effect of water-soluble precursors on the formation of aroma compounds in steamed Chinese mitten crab (Eriocheir sinensis) abdominal meat[D]. Shanghai: Shanghai Ocean University, 2017. (in Chinese)
[45] WANG Y, JULIANI H R, SIMON J E, HO C T. Amino acid- dependent formation pathways of 2-acetylfuran and 2,5-dimethyl-4- hydroxy-3[2H]-furanone in the Maillard reaction. Food Chemistry, 2009,115(1):233-237.
[46] DASHDORJ D, AMNA T, HWANG I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. European Food Research and Technology, 2015,241(2):157-171.
[47] MADRUGA M S, ELMORE J S, ORUNA-CONCHA M J, BALAGIANNIS D, MOTTRAM D S. Determination of some water- soluble aroma precursors in goat meat and their enrolment on flavour profile of goat meat. Food Chemistry, 2010,123(2):513-520.
[48] AMES J M, GUY R C E, KIPPING G J. Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/ starch mixtures during extrusion cooking. Journal of Agricultural and Food Chemistry, 2001,49(4):1885-1894.
doi: 10.1021/jf0012547 pmid: 11308341
[49] 顾振新, 陈志刚, 蒋振晖. 赤霉素处理对糙米发芽力及其主要成分变化的影响. 南京农业大学学报, 2003,26(1):74-77.
GU Z X, CHEN Z G, JIANG Z H. Effect of gibberellic acid on germinating power and composition of brown rice. Journal of Nanjing Agricultural University, 2003,26(1):74-77. (in Chinese)
[50] 王玉萍, 韩永斌, 蒋振辉, 顾振新, 汪志君, 方维明. 通气处理对发芽糙米生理活性及主要物质含量影响. 扬州大学学报(农业与生命科学版), 2005,26(4):91-94.
WANG Y P, HAN Y B, JIANG Z H, GU Z X, WANG Z J, FANG W M. Effect of aerating treatment on physiological activities and essential substances in germinating brown rice. Journal of Yangzhou University (Agricultural and Life Science Edition), 2005,26(4):91-94. (in Chinese)
[51] 郑艺梅. 发芽糙米营养特性、γ-氨基丁酸富集及生理功效的研究[D]. 武汉: 华中农业大学, 2006.
ZHENG Y M. Study of germinated brown rice on its nutritional property and physiological function of gamma aminobutyric acid accumulation therein[D]. Wuhan: Huazhong Agricultural University, 2006. (in Chinese)
[1] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[2] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[3] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[4] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[5] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[6] ZHANG YaWen, BAO ShuHui, TANG ZhenJia, WANG XiaoWen, YANG Fang, ZHANG DeChun, HU YiBing. Function of Sucrose Transporter OsSUT5 in Rice Pollen Development and Seed Setting [J]. Scientia Agricultura Sinica, 2021, 54(16): 3369-3380.
[7] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[8] SONG SongQuan,LIU Jun,XU HengHeng,LIU Xu,HUANG Hui. ABA Metabolism and Signaling and Their Molecular Mechanism Regulating Seed Dormancy and Germination [J]. Scientia Agricultura Sinica, 2020, 53(5): 857-873.
[9] XU ChunMei,ZOU Ya,LIU ZiGang,MI WenBo,XU MingXia,DONG XiaoYun,CAO XiaoDong,ZHENG GuoQiang,FANG XinLing. Physiological and Biochemical Characteristics of Low Temperature Vernalization of Germinating Seeds of Brassica rapa [J]. Scientia Agricultura Sinica, 2020, 53(5): 929-941.
[10] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
[11] YU AiLi,ZHAO JinFeng,CHENG Kai,WANG ZhenHua,ZHANG Peng,LIU Xin,TIAN Gang,ZHAO TaiCun,WANG YuWen. Screening and Analysis of Key Metabolic Pathways in Foxtail Millet During Different Water Uptake Phases of Germination [J]. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019.
[12] SUN Kai, LI DongXiu, YANG Jing, DONG JiChi, YAN XianCheng, LUO LiXin, LIU YongZhu, XIAO WuMing, WANG Hui, CHEN ZhiQiang, GUO Tao. Genome-Wide Association Analysis for Rice Submergence Seedling Rate [J]. Scientia Agricultura Sinica, 2019, 52(3): 385-398.
[13] ZHOU QingYuan, WANG Qian, YE Sang, CUI MinSheng, LEI Wei, GAO HuanHuan, ZHAO YuFeng, XU XinFu, TANG ZhangLin, LI JiaNa, CUI Cui. Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination [J]. Scientia Agricultura Sinica, 2019, 52(3): 399-413.
[14] ChunHua PANG,Yuan ZHANG,YaNi LI. Effects of Soaking Seeds with Lanthanum Nitrate on Seed Germination and Seedling Growth of Quinoa Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(24): 4484-4492.
[15] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!