Scientia Agricultura Sinica ›› 2007, Vol. 40 ›› Issue (2): 419-425 .

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of Exogenous Nitric Oxide on Seed Germination, Seedling Growth and Physiological Characteristics of Cucumber Under Osmotic Pressure

  

  1. 西南大学生命科学学院
  • Received:2006-07-27 Revised:2006-11-09 Online:2007-02-10 Published:2007-02-10

Abstract: 【Objective】The purpose of this paper is to clarify the protective effects of nitric oxide (NO) on seed germination, seedling growth and leaf oxidative damage in osmotic stress cucumber (Cucumis sativus L.).【Method】Under 25% (W•V-1) PEG-6000 stress condition, the effects of sodium nitroprusside (SNP, an exogenous nitric oxide donor) at the concentration of 0.1 and 0.5 mmol•L-1 on the germination, growth, leaf oxidative damage and protective enzymatic activities in cucumber seedlings were investigated.【Result】The significant effect on the alleviation of osmotic stress damage was observed in the treatment of 0.1 mmol•L-1 SNP. At this concentration, the seed germination rate, germination index and vigor index were increased by 18.89%, 86.03% and 3.02 times respectively, plant height, root length and fresh weight were increased by 1.15, 2.17 and 1.16 times respectively, proline content and activities of SOD, POD, CAT and APX in leaves were increased by 50.99%, 42.39%, 66.58%, 79.03% and 116.39% respectively, while malondialdehyde (MDA) content in leaves was decreased by 4.13 times.【Conclusion】The above results indicated that and dosage effect of exogenous nitric oxide donor (SNP) existed on the promotion of germination and alleviation of osmotic stress in cucumber seedlings, and better alleviation effect on osmotic stress damage was 0.1 mmol•L-1 SNP, which elevated the drought resistance of plants.

Key words: Cucumber, Seed germination, nitric oxide (NO), Osmotic stress, Oxidative damage

[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[3] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[4] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[5] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[6] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[7] DOU Yong,YAO MiaoAi,LÜ HuaiZhong,HU PeiHong,DONG Jing. Antibacterial Mechanism of Cold Plasma Against Listeria monocytogenes [J]. Scientia Agricultura Sinica, 2020, 53(24): 5104-5114.
[8] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[9] YU AiLi,ZHAO JinFeng,CHENG Kai,WANG ZhenHua,ZHANG Peng,LIU Xin,TIAN Gang,ZHAO TaiCun,WANG YuWen. Screening and Analysis of Key Metabolic Pathways in Foxtail Millet During Different Water Uptake Phases of Germination [J]. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019.
[10] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[11] Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI. Genome-Wide Identification of Cucumber ERF Gene Family and Expression Analysis in Female Bud Differentiation [J]. Scientia Agricultura Sinica, 2020, 53(1): 133-147.
[12] WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG. Cloning and Functional Analysis of CsRPL1/2 in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 148-159.
[13] ZhiHong NIU,XiaoFei SONG,XiaoLi LI,XiaoYu GUO,ShuQiang HE,LuanJingZhi HE,ZhiHong FENG,ChengZhen SUN,LiYing YAN. Inheritance and QTL Mapping for Parthenocarpy in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 160-171.
[14] Fei QI,Shu LIN,MengFei SONG,MengRu ZHANG,ShuYan CHEN,NaiXin ZHANG,JinFeng CHEN,QunFeng LOU. Screening and Identification of Cucumber Mutant Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 172-182.
[15] CHUAI HongYun,SHI YanXia,CHAI ALi,YANG Jie,XIE XueWen,LI BaoJu. Development of 10% Diethofencarb·Procymidone Micropowder and Its Control Efficacy to Cucumber Corynespora Leaf Spot [J]. Scientia Agricultura Sinica, 2019, 52(6): 1009-1020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!