Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (24): 5104-5114.doi: 10.3864/j.issn.0578-1752.2020.24.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Antibacterial Mechanism of Cold Plasma Against Listeria monocytogenes

DOU Yong1(),YAO MiaoAi1,LÜ HuaiZhong1,HU PeiHong2,DONG Jing1   

  1. 1Department of Grain Engineering and Food & Drug, Jiangsu Vocational College of Finance & Economics, Huai’an 223003, Jiangsu
    2Huai’an Zhengchang Feed Co., Ltd, Huai’an 223003, Jiangsu
  • Received:2020-04-17 Accepted:2020-06-10 Online:2020-12-16 Published:2020-12-28
  • Contact: Yong DOU E-mail:douyong1979@163.com

Abstract:

【Objective】 As a novel non-thermal sterilization technology, the cold plasma has been widely applied in food industry. The aim of this study was to explore the antibacteral mechanism of cold plasma against bacteria at cytomembrane level, thus providing a foundation for the application of the cold plasma in food industry. 【Method】 In this study, the Listeria monocytogenes (LM) was selected as the test strain. After cold plasma treatment, the changes of morphology and intracellular materials were detected to reveal the integrity of LM cytomembranes. The changes of cell membrane fatty acid content and type, as well as the 8-aniline-1-naphthalene sulfonic acid (ANS) fluorescence intensity were also measured to detect the fluidity change of cytomembranes after cold plasma treatment. The changes of cytomembrane permeabilization were detected by propidium iodide (PI) fluorescence, conductivity and β-galactosidase activity. Finally, in order to demonstrate the oxidative damage of LM cytomembrane caused by cold plasma treatment, the changes of reactive oxygen species (ROS) and reactive oxygen species related genes were detected as well. 【Result】After cold plasma treatment, damaged and deformed structures were observed on the surface of the LM cytomembrane, the contents of proteins and DNA were decreased by 68 mg?mL -1 and 14 μg?mL -1, respectively, which showed that cold plasma destroyed the integrity of cytomembrane. After cold plasma treatment, the content of unsaturated fatty acids in LM cytomembrane increased from 40.17% to 53.91%, along with the decrease of saturated fatty acids from 53.68% to 41.57%. The ANS fluorescence intensity decreased from 8.99 to 3.73, indicating the increase of cytomembrane fluidity caused by cold plasma action. In addition, cold plasma treatment resulted in the penetration of PI and reacted with DNA to emit red fluorescence. By analyzing the changes of β-galactosidase activity and conductivity (increased from 0.15 mS?cm -1 to 0.33 mS?cm-1), it was concluded that the cold plasma enhanced the permeabilization of LM cytomembrane. The changes of ROS fluorescence intensity indicated that cold plasma stimulated the generation of ROS on cytomembrane, thus exerting oxidative damage to cytomembrane. Finally, the results of qRT-PCR showed that cold plasma down-regulated the expression of perR and recA genes by 43.29% and 52.71%, while up-regulated the expression of sigB gene by 89.42%, which disclosed the regulatory mechanism of oxidative stress in microorganism at genic level.【Conclusion】Through the action on cell membrane of the active groups of cold plasma, the viability of LM was inhibited and eventually died.

Key words: cold plasma, Listeria monocytogenes, cytomembrane, fluidity, oxidative damages

Fig. 1

Graphical abstract of mechanism of cold plasma on cytomembrane"

Table 1

Primer sequence of different genes"

基因名称 Gene name 前引物(5'-3') Forward primer (5'-3') 后引物(5'-3') Reverse primer (5'-3')
16S RNA ACCGTCAAGGGACAAGCA GGGAGGCAGCAGTAGGGA
perR CAACTGTATATAATAATTTACGCGT TGCTGCGAAATGTTCTACTT
recA CAAGCACAAGGCGGAACAG CAACGGAGTCAATTACTAGCATAT
sigB TATTTGGATTGCCGCTTACC TTTCGGACCTAACTCTTTGATT

Fig. 2

Response surface of the effects of power, treatment time and flow rate on the inhibitory effect of cold plasma"

Fig. 3

Effect of cold plasma treatment on cell membrane integrity A: TEM results of control; B: TEM results of CP treatment; C: SDS-PAGE results; D: Protein concentration; E: DNA concentration. * means significant difference (P<0.05). The same as below"

Table 2

Compositions and contents of fatty acids in different samples"

脂肪酸成分
Fatty acid composition
样品Sample
试验组 Test group 对照组 Control group
C12:0 (%) 2.12±0.03a 1.43±0.02b
C14:0 (%) 6.01±0.13a 5.45±0.07b
C16:0 (%) 16.45±0.75a 19.48±1.03b
C16:1 (%) 27.27±1.25a 21.26±0.77b
C17:0 (%) 2.73±0.05a 2.84±0.02a
C18:0 (%) 14.26±0.93a 24.48±1.02b
C18:1 (%) 26.64±0.16a 18.91±0.84b
不饱和脂肪酸
Unsaturated fatty acid (%)
53.91±1.76a 40.17±0.78b
饱和脂肪酸
Saturated fatty acid (%)
41.57±0.82a 53.68±1.64b
短链脂肪酸
Short chain fatty acid (%)
8.13±0.09a 6.88±0.15b

Fig. 4

ANS fluorescence intensity of different samples"

Fig. 5

Effect of cold plasma treatment on cell membrane permeability A: PI fluorescent images of control; B: PI fluorescent images of CP treatment; C: Changes of conductivity and β-galactosidase"

Fig. 6

Effect of cold plasma treatment on cell fluorescence intensity A: ROS fluorescent images of control; B: Fluorescent images of CP treatment for 20 min; C: Fluorescent images of CP treatment for 40 min; D: ROS fluorescence intensity"

Fig. 7

ESR spectrogram of different samples (A), Changes of expression of perR, recA and sigB genes (B)"

[1] 刘海泉, 赵强, 孙晓红, 吴启华, 潘迎婕, 赵勇. 多重PCR快速检测食品中单核细胞增生性李斯特菌. 中国农业科学, 2010,43(23):4893-4900.
LIU H Q, ZHAO Q, SUN X H, WU Q H, PAN Y J, ZHAO Y. Rapid detection of Listeria monocytogenes in food by multiple PCR. Scientia Agricultura Sinica, 2010,43(23):4893-4900. (in Chinese)
[2] PARK S H, BALASUBRAMANIAM V M, SASTRY S K. Quality of shelf-stable low-acid vegetables processed using pressure-ohmic- thermal sterilization. LWT - Food Science and Technology, 2014,57(1):243-252.
doi: 10.1016/j.lwt.2013.12.036
[3] ZHU Y L, LI C Z, CUI H Y, LIN L. Antimicrobial mechanism of pulsed light for the control of Escherichia coli O157:H7 and its application in carrot juice. Food Control, 2019,106:106751.
doi: 10.1016/j.foodcont.2019.106751
[4] 杨天歌, 邓红, 李涵, 孟永宏, 雷佳蕾, 马婧, 郭玉蓉. 超高压杀菌处理冷破碎猕猴桃果浆的条件优化及其贮藏期杀菌效果. 中国农业科学, 2018,51(7):1368-1377.
doi: 10.3864/j.issn.0578-1752.2018.07.014
YANG T G, DENG H, LI H, MENG Y H, LEI J L, MA J, GUO Y R. Optimization of ultra-high pressure sterilization conditions on the kiwi fruit pulp produced by cold crushing method and its sterilization effect during storage period. Scientia Agricultura Sinica, 2018,51(7):1368-1377. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.07.014
[5] 陶瑞, 史智佳, 贡慧, 杨震, 刘梦. 超声协同诱导剂对枯草芽孢杆菌芽孢致死的作用. 食品科学, 2018,39(11):95-100.
TAO R, SHI Z J, GONG H, YANG Z, LIU M. Inactivation of Bacillus subtilis spores by ultrasonic treatment combined with inducer. Food Science, 2018,39(11):95-100. (in Chinese)
[6] 乔维维, 黄明明, 王佳媚, 严文静, 章建浩, 杨龙平. 低温等离子体对生鲜牛肉杀菌效果及色泽的影响. 食品科学, 2017,38(23):237-242.
QIAO W W, HUANG M M, WANG J M, YAN W J, ZHANG J H, YANG L P. Effect of cold plasma on sterilization and color of fresh beef. Food Science, 2017,38(23):237-242. (in Chinese)
[7] KIM H J, YONG H I, PARK S, CHOE W, JO C. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Current Applied Physics, 2013,13(7):1420-1425.
doi: 10.1016/j.cap.2013.04.021
[8] 李兆杰, 杨丽君, 刘小菁, 王静, 刘玉敏, 李春喜. 辉光放电低温等离子体技术对微生物的杀菌动力学和杀菌机制. 食品科学, 2015,36(11):167-171.
doi: 10.7506/spkx1002-6630-201511032
LI Z J, YANG L J, LIU X J, WANG J, LIU Y M, LI C X. Bactericidal kinetics and mechanisms of low temperature glow discharge plasma. Food Science, 2015,36(11):167-171. (in Chinese)
doi: 10.7506/spkx1002-6630-201511032
[9] LIN L, LIAO X, LI C Z, ABDEL-SAMIE M A, CUI H Y. Inhibitory effect of cold nitrogen plasma on Salmonella Typhimurium biofilm and its application on poultry egg preservation. LWT-Food Science and Technology, 2020,126:109340.
doi: 10.1016/j.lwt.2020.109340
[10] 张爱静, 李琳琼, 王鹏杰, 高瑀珑. 热胁迫对大肠杆菌细胞膜和膜蛋白的影响. 中国农业科学, 2020,53(5):1046-1057.
doi: 10.3864/j.issn.0578-1752.2020.05.015
ZHANG A J, LI L Q, WANG P J, GAO Y L. Effects of heat stress on cell membrane and membrane protein of Escherichia coli. Scientia Agricultura Sinica, 2020,53(5):1046-1057. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.05.015
[11] SANTOS A L, GOMES N C M, HENRIQUES I, ALMEIDA A, CORREIA A, CUNHA A. Contribution of reactive oxygen species to UV-B-induced damage in bacteria. Journal of Photochemistry & Photobiology B Biology, 2012,117:40-46.
[12] 吴学友, 朱悦, 陈正行, 鞠兴荣. 乳酸菌细菌素Durancin GL对单增李斯特菌的抗菌活性及机制. 食品科学, 2019,40(23):73-78.
WU X Y, ZHU Y, CHEN Z H, JU X R. Antibacterial activity and mechanism of Durancin GL against Listeria monocytogenes. Food Science, 2019,40(23):73-78. (in Chinese)
[13] ZHAO L, ZHANG H, HAO T Y, LI S R. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chemistry, 2015,187(15):370-377.
doi: 10.1016/j.foodchem.2015.04.108
[14] 李长城, 白伟娟, 贾真, 方婷, 陈锦权. 温度和盐含量对三文鱼中单增李斯特菌热失活的影响. 食品工业, 2018,39(12):50-53.
LI C C, BAI W J, JIA Z, FANG T, CHEN J Q. Effect of temperature and salt on thermal inactivation of Listeria monocytogenes in salmon. Food Industry, 2018,39(12):50-53. (in Chinese)
[15] 王婷婷, 李春, 李佳栋, 杜鹏, 刘丽波, 徐占文, 杨雨泽. 乙醇胁迫对植物乳杆菌膜生理及粘附性的影响. 食品科学, 2019,40(18):63-69.
WANG T T, LI C, LI J D, DU P, LIU L B, XU Z W, YANG L Z. Effect of ethanol stress on membrane and adhesion of lactobacillus plantarum. Food Science, 2019,40(18):63-69. (in Chinese)
[16] LI S G, HUANG Y, AN F P, HUANG Q, GENG F, MA M H. Hydroxyl radical-induced early stage oxidation improves the foaming and emulsifying properties of ovalbumin. Poultry Science, 2019,98(2):1047-1054.
doi: 10.3382/ps/pey370 pmid: 30101285
[17] CAI X T, WANG X, CHEN Y C, WANG Y D, SONG D F, GU Q. A natural biopreservative: Antibacterial action and mechanisms of Chinese Litsea mollis Hemsl. extract against Escherichia coli DH5α and Salmonella spp. Journal of Dairy Science, 2019,102(11):9663-9673.
[18] WASTON A L, CHIU N H L. Fluorometric cell-based assay for β-galactosidase activity in probiotic gram-positive bacterial cells- Lactobacillus helveticus. Journal of Microbiological Methods, 2016,128(8):58-60.
doi: 10.1016/j.mimet.2016.06.030
[19] ESCUDERO R, SEGURA J, VELASCO R, VALHONDO M, DE AVILA M, GARCIA-GARCIA A B, CAMBERO M I. Electron spin resonance (ESR) spectroscopy study of cheese treated with accelerated electrons. Food Chemistry, 2019,276:315-321.
doi: 10.1016/j.foodchem.2018.09.101 pmid: 30409600
[20] 李凤珠, 张玉礼 杨吉霞. 运用实时荧光定量PCR法研究榨菜腌制过程中细菌和真菌的数量变化. 食品与发酵工业, 2019,50(18):58-64.
LI F Z, ZHANG Y L, YANG J X. Evaluation of quantity dynamics of bacteria and fungi during curing process of Zhacai by quantitative PCR. Food and Fermentation Industries, 2019,50(18):58-64. (in Chinese)
[21] ZHAO W, YANG R J, GU Y J, LI C Y. Effects of pulsed electric fields on cytomembrane lipids and intracellular nucleic acids of Saccharomyces cerevisiae. Food Control, 2014,39:204-213.
doi: 10.1016/j.foodcont.2013.11.015
[22] LIU Z W, ZENG X A, NGADI M, HAN Z. Effect of cell membrane fatty acid composition of Escherichia coli on the resistance to pulsed electric field (PEF) treatment. LWT- Food Science and Technology, 2017,76:18-25.
doi: 10.1016/j.lwt.2016.10.019
[23] GREBOWSKI J, KROKOSZ A, PUCHALA M. Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene. Biochimica et Biophysica Acta, 2013,1828(2):241-248.
doi: 10.1016/s0005-2736(98)00020-0 pmid: 9630653
[24] ANUVA S, BIJAN K P, NIKHIL G. Photophysics of DNA staining dye Propidium Iodide encapsulated in bio-mimetic micelle and genomic fish sperm DNA. Journal of Photochemistry and Photobiology B: Biology, 2012,192(2):58-67.
[25] LIU P, XIE J X, LIU J H, JIA O Y. A novel thermostable β- galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey. Journal of Dairy Science, 2019,102(11):9740-9748.
doi: 10.3168/jds.2019-16654 pmid: 31477300
[26] XIE Y F, JIANG S H, LI M, GUO Y H, CHENG Y L, QIAN H, YAO W R. Evaluation on the formation of lipid free radicals in the oxidation process of peanut oil. LWT-Food Science and Technology, 2019,104:24-29.
doi: 10.1016/j.lwt.2019.01.016
[27] OLATUNDE O O, BENJAKUL S, VONGKAMJAN K. Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. Journal of Food Safety, 2019,39:1-10.
[28] MOMTAHAN N, CROSBY C O, ZOLDAN J. The role of reactive oxygen species in i n vitro cardiac maturation. Trends in Molecular Medicine, 2019,25(6):482-493.
doi: 10.1016/j.molmed.2019.04.005 pmid: 31080142
[29] REN X Y, AN P P, ZHAI X, WANG S, KONG Q J. The antibacterial mechanism of pterostilbene derived from xinjiang wine grape: A novel apoptosis inducer in Staphyloccocus aureus and Escherichia coli. LWT-Food Science and Technology, 2019,101:100-106.
[30] RUHLAND B R, RENIERE M L. Sense and sensor ability: Redox-responsive regulators in Listeria monocytogenes. Current Opinion in Microbiology, 2019,47:20-25.
doi: 10.1016/j.mib.2018.10.006 pmid: 30412828
[31] VAN DER VEEN S, VAN SCHALKWIJK S, MOLENAAR D, DE VOS W M, ABEE T, WELLS-BENNIK M H J. The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis. Microbiology, 2010,156(2):374-384.
doi: 10.1099/mic.0.035196-0
[32] FERREIRA A, O'BYRNE C P, BOOR K J. Role of sigma (B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Applied and Environmental Microbiology, 2001,67(10):4454-4457.
doi: 10.1128/aem.67.10.4454-4457.2001 pmid: 11571142
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!