Scientia Agricultura Sinica ›› 2005, Vol. 38 ›› Issue (11): 2198-2204 .

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES • Previous Articles     Next Articles

Development and Superior Performance of High Oil Yielding Canola Hybrid Zhongyouza No.8

,,,,   

  1. 中国农业科学院油料作物研究所
  • Received:2005-03-02 Revised:1900-01-01 Online:2005-11-10 Published:2005-11-10

Abstract: High oil yield resulted from the combination of high grain yield and high oil content is a prerequisite for the development of high efficient oilseed rape production. Using irradiation induced mutation,sexual hybridization combined with paired test cross, the fertility, yield and oil content of the three lines of cytoplasmic male sterility were improved and a new hybrid variety Zhongyouza No.8 with high oil yield was developed. The yield of Zhongyouza No.8 was significantly higher than that of the control variety Zhongyou 821 with 9.82% and 10.64% increase in Hubei provincial and nationwide trials, respectively. The oil content and oil yield of Zhongyouza No.8 was the highest among all the lines in Hubei provincial trials, being 42.77% and 1 051.05 kg·ha-1 with 3% and 161.25 kg·ha-1 increase compared to the control Zhongyou 821, respectively. The genetic basis for the strong heterosis, factors contributing to the yield and oil content increase of Zhongyouza No.8 as well as the strategy for high oil yielding variety improvement through the increase of seed size are discussed in this paper.

Key words: Brassica napus, high oil yielding, Zhongyouza No.8, hybrid breeding

[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[4] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[5] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[6] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[7] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[8] HENG YanFang,LI Jian,WANG Zheng,CHEN Zhuo,HE Hang,DENG XingWang,MA LiGeng. Cloning, Expression and Functional Analysis of a Male Fertility Gene ThMs1 in Bread Wheat [J]. Scientia Agricultura Sinica, 2020, 53(23): 4727-4737.
[9] CAO XiaoDong,LIU ZiGang,MI WenBo,XU ChunMei,ZOU Ya,XU MingXia,ZHENG GuoQiang,FANG XinLing,CUI XiaoRu,DONG XiaoYun,MI Chao,CHEN QiXian. Analysis on the Adaptability of Northward Planting of Brassica napus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4164-4176.
[10] WAN HuaFang,WEI Shuai,FENG YuXia,QIAN Wei. Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge [J]. Scientia Agricultura Sinica, 2020, 53(16): 3225-3234.
[11] WAN HuaFang,DING YiJuan,CHEN ZhiFu,MEI JiaQin,QIAN Wei. Improvement of the Resistance Against Sclerotinia sclerotiorum in Ogu CMS Restorer in Brassica napus Using Wild B. oleracea as Donor [J]. Scientia Agricultura Sinica, 2020, 53(10): 1950-1958.
[12] YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340.
[13] ZHOU QingYuan, WANG Qian, YE Sang, CUI MinSheng, LEI Wei, GAO HuanHuan, ZHAO YuFeng, XU XinFu, TANG ZhangLin, LI JiaNa, CUI Cui. Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination [J]. Scientia Agricultura Sinica, 2019, 52(3): 399-413.
[14] YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan. QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map [J]. Scientia Agricultura Sinica, 2019, 52(21): 3733-3747.
[15] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!