Scientia Agricultura Sinica

Previous Articles    

Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs

ZHANG DanDan, XU TengTeng, GAO Di, QI Xin, NING Wei, RU ZhenYuan, ZHANG XiangDong, GUO TengLong, SHENTU LuYan, YU Tong, MA YangYang, LI YunSheng, ZHANG YunHai, CAO Z Bing   

  1. Key Laboratory of Conservation and Biological Breeding of Local Livestock and Poultry Genetic Resources, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036
  • Published:2021-09-12

Abstract: 【Objective TEA domain transcription factor 4 (TEAD4) is known to be a member of the TEAD family of transcription factors and plays a key role in determining the characteristics of the preimplantation embryo in rodents. In mouse embryos, it was found to be involved in regulating the genealogical differentiation of trophectoderm cells in preimplantation embryos by promoting Cdx2 expression. The absence of the TEAD4 gene in mouse embryos can lead to failure of mouse blastocyst formation. However, the role of TEAD4 in early porcine embryonic development is still unclear. Here we aim to preliminarily elucidate the effect of TEAD4 on early porcine embryonic development in order to lay the theoretical foundation for further exploring the molecular mechanisms of transcription factors on early porcine embryonic development.【MethodIn this study, bioinformatics analysis of the porcine TEAD4 gene was performed using web-based tools, including analysis of the porcine TEAD4 gene sequence, comparison of homology between pigs and humans and mice, and comparison of the evolutionary relationship of TEAD4 between different species. The role of TEAD4 in early embryonic development in pigs was then tested. The mRNA expression level of TEAD4 gene in porcine oocytes and early embryos was firstly detected by fluorescence quantitative PCR, and then by designing siRNA targeting TEAD4 and injecting it into mature oocytes by microinjection technique to reduce the level of endogenous TEAD4 gene in the oocyte cytoplasm, and to determine that TEAD4 siRNA acts only on TEAD4 gene, with a view to determining the role of TEAD4 gene in early porcine embryonic development.【Results】.Sequence analysis showed that the porcine TEAD4 gene contains 11 exons, localized on chromosome 5, spanning 37.188 kb, 1473 bp in full mRNA length, 1305 bp in full coding region, and encoding 434 amino acids. Homology analysis with human and mouse revealed that TEAD4 is highly conserved in different species and has the closest affinity on pig and cow. The results of fluorescence quantitative PCR showed that TEAD4 mRNA was expressed in both porcine oocytes and early embryos, and when compared with GV-stage oocytes, the expression was lowest in MII-stage oocytes and remained low until the 4-cell stage, but reached the highest expression in the 8-cell stage, and then gradually decreased in the morula and blastocyst stages. Microinjection of siRNA targeting TEAD4 revealed that TEAD4 siRNA only acted on the endogenous TEAD4 gene in oocytes, but not on TEAD1 and TEAD3, and compared with the control and negative control siRNA groups, injection of TEAD4 siRNA significantly reduced TEAD4 mRNA expression at the 8-cell and morula embryo periods. When TEAD4 gene expression was knocked down, observation of the developmental efficiency of porcine orphan activation and in vitro fertilization embryos showed that the developmental efficiency of TEAD4 siRNA knockdown group from 8-cell to blastocyst stage was significantly reduced compared to the control and negative control siRNA groups.【Conclusion The results of this study indicate that the TEAD4 gene is highly conserved across species, with the closest affinity on pigs and bovine, and that TEDA4 may be involved in regulating the development of early porcine embryos.


Key words: Pig, Early embryos, TEAD4, Parthenogenetic activation, In vitro fertilization

[1] REN ZhiQiang, WANG ChenYang, KOU ZhongYun, CAI Rui, YANG GongShe, PANG WeiJun. In Vivo Estimation of Lean Percentage, Fat Percentage, and Intramuscular Fat Content of Boars by Computed Tomography [J]. Scientia Agricultura Sinica, 2023, 56(9): 1787-1799.
[2] ZHANG PengYun, CHEN Min, LIU MingXing, ZHOU Hong, LIN HuiXing, FAN HongJie. Development and Application of Indirect ELISA Kits for Antibody Detection of Haemophilus parasuis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1606-1614.
[3] FAN Shuai, ZHONG Han, YANG ZhongYuan, HE WenRui, WAN Bo, WEI ZhanYong, HAN ShiChong, ZHANG GaiPing. African Swine Fever Virus MGF110-5L-6L Induces Host Cell Translation Arrest and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway [J]. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416.
[4] CUI DengShuai, XIONG SanYa, ZHENG Hao, LI LongYun, YU NaiBiao, HUANG ZhiYong, XIAO ShiJun, GUO YuanMei. Comparing Methods for Correcting Days to 100 kg of Sows in Licha Black Pig and Its Intercross with Berkshire [J]. Scientia Agricultura Sinica, 2023, 56(6): 1177-1188.
[5] YANG HuiZhen, YANG Huan, WU ZiXuan, FAN KuoHai, YIN Wei, SUN PanPan, ZHONG Jia, SUN Na, LI HongQuan. Prokaryotic Expression and Metal Binding Characterization of Metallothionein 1A and 2A of Sus scrofa [J]. Scientia Agricultura Sinica, 2023, 56(17): 3461-3478.
[6] WANG Dong, CHEN WanZhao, LI HongBo, QIN Lei, XU QiQi, LIU ZePeng, XIA LiNing. Analysis of Drug Resistance and Epidemic Characteristics of optrA/lsa(E) in Enterococcus faecalis from Pig Farms in Aksu Area of Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(16): 3213-3225.
[7] WANG XiaoHong, XING MingJie, GU XianHong, HAO Yue. Screening of Anti-Apoptotic Protein GRP94 Interaction Proteins in Porcine Hepatic Stellate Cells by Immunoprecipitation Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2023, 56(15): 3020-3031.
[8] ZHANG NaiXin, XU ChengZhi, YANG YuYing, ZHANG YaPing, WAN YunFei, QIAO ChuanLing, CHEN HuaLan. Identification of Key Amino Acids in the Antigenic Variation of Eurasian Avian-Like H1N1 Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2023, 56(14): 2828-2836.
[9] WANG Tao, LUO Rui, SUN Yuan, QIU HuaJi. Development Strategies and Application Prospects of African Swine Fever Vaccines: Feasibility and Probability [J]. Scientia Agricultura Sinica, 2023, 56(11): 2212-2222.
[10] YIN YanZhen, HOU LiMing, LIU Hang, TAO Wei, SHI ChuanZong, LIU KaiYue, ZHANG Ping, NIU PeiPei, LI Qiang, LI PingHua, HUANG RuiHua. Identifying Quantitative Trait Loci Associated with Teat Number of Pig by Genomic Analysis [J]. Scientia Agricultura Sinica, 2023, 56(10): 1994-2006.
[11] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[12] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[13] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[14] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[15] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!