Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2828-2836.doi: 10.3864/j.issn.0578-1752.2023.14.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Identification of Key Amino Acids in the Antigenic Variation of Eurasian Avian-Like H1N1 Swine Influenza Viruses

ZHANG NaiXin(), XU ChengZhi, YANG YuYing, ZHANG YaPing, WAN YunFei, QIAO ChuanLing(), CHEN HuaLan   

  1. Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Disease Control and Prevention, Harbin 150069
  • Received:2022-12-06 Accepted:2023-02-13 Online:2023-07-16 Published:2023-07-21
  • Contact: QIAO ChuanLing

Abstract:

【Background】 The antigenicity of influenza virus is mainly determined by the hemagglutinin (HA), a surface glycoprotein of the virus. Our previous study indicated that amino acid changes at positions 190, 230 and 269 (H3 numbering) of HA protein resulted in antigenic escape by using the monoclonal antibody (mAb) against the HA protein of Eurasian avian-like H1N1 swine influenza virus (EA H1N1 SIV). These three amino acid substitutions widely existed in the HA protein of the recently isolated EA H1N1 SIVs. 【Objective】This study aimed to explore which amino acids played a key role in the antigenicity of the virus, and further provide scientific basis for the control of influenza. 【Method】 In this study, A/swine /Liaoning /SY72/2018 (H1N1) (SY72) was selected as the model virus, and its reverse genetic system (RGS) was established. Then, using SY72 virus as backbone, three reassortant viruses were rescued by introducing the respective single amino acid mutation at position 190, 230, and 269 into HA protein. Antisera were raised by inoculating the rSY72-inactivated vaccine into specific-pathogen-free (SPF) chickens and non-immunized pigs. The effects of each of these substitutions on viral antigenicity were determined by measuring the neutralization and hemagglutination inhibition (HI) titers with mAbs and polyclonal sera raised against the rSY72 virus. Then their effects on viral replication capacities and receptor binding properties were further evaluated. 【Result】 Sequence analysis showed that the HA of SY72 virus carried 190D, 230M, and 269R, respectively. The viruses, including rSY72, rSY72HA/D190N, rSY72HA/M230I, and rSY72HA/R269M, were rescued by RGS. The results of neutralization test showed that all the three mutant viruses could react with two mAbs, to some extent, compared with the rSY72 virus. The HI results indicated that the HI antibody titers of the rSY72HA/D190N reacted with the rSY72-immunized chicken and pig sera were 4- and 8-fold lower than those of the rSY72 virus with the respective sera. However, the rSY72HA/M230I and rSY72HA/R269M virus reacted well with these two sera. The results indicated that residue 190 in the HA had the important effects on the viral antigenicity. Results of the viral plaque assay and growth curve experiments demonstrated that plaque sizes generated by the rSY72HA/D190N virus were smaller than those by the rSY72 virus in MDCK cells. The replication ability of the rSY72HA/R269M virus was significantly decreased in MDCK cells, compared with that of the rSY72 virus. Furthermore, the three amino acid mutations had no impact on the viral receptor-binding preference. 【Conclusion】 The amino acid at position 190 of HA protein played an important role in determining the antigenicity of EA H1N1 SIV. The mutation of amino acid at position 269 reduced the viral replication ability in MDCK cells. These results suggested that more attentions should be paid for monitoring these residue changes in the influenza surveillance, so as to improve early warning of influenza in animals.

Key words: swine influenza virus, HA protein

Table 1

Primer sequence of point mutation to the different amino acids"

病毒 Virus 上游引物Forward primer(5' - 3') 下游引物Reverse primer(5' - 3')
rSY72HA/D190N ACCGACAGTAACCAACAAACTCTCTACCAG TTTGTTGGTTACTGTCGGTCGGAGGGTGAT
rSY72HA/M230I AGGCAGAATAAATTATTACTGGACACTGTT GTAATAATTTATTCTGCCTGCCTGTTCTCT
rSY72HA/R269M GAATTATGATGTCGGATGCTCAGGTTCA GCATCCGACATCATAATTCCAGAACTAGAG

Table 2

The different amino acids between the SY72 and HeN11 viruses"

病毒
Virus
氨基酸差异位点 Amino acid difference site
4 7 95 132 144 152 190 211 230 269 290 304 347 406 376 522
SY72 V T D A T I D K M R G K V G V I
HeN11 A A N T A L N Q I M S E I R E V

Fig. 1

Biological characteristics of SY72 and rSY72 A: Growth kinetics of SY72 and rSY72; B: Plaque of SY72(a) and rSY72 (b) in MDCK cells"

Table 3

Effects of amino acid substitution(s) on the antigenic variation tested by using mAbs and polyclonal sera of rSY72"

病毒
Virus
mAbs中和抗体效价 Neutralization antibody titer of mAbs 血清HI抗体效价 HI antibody titers of sera
2B6 4C7 鸡血清(rSY72)
Chicken sera (rSY72)
猪血清(rSY72)
Pig sera (rSY72)
HeN11 640 640 NT * NT
rSY72 <10 <10 512 2560
rSY72HA/D190N 320 80 128 320
rSY72HA/M230I 20 20 256 2560
rSY72HA/R269M 40 160 512 2560

Fig. 2

Growth kinetics of the viruses in MDCK cells *: P<0.05; **: P<0.01"

Fig. 3

Plaque of the viruses in MDCK cells A:rSY72;B:rSY72HA/D190N;C:rSY72HA/M230I;D:rSY72HA/R269M"

Fig. 4

Receptor-binding properties of the viruses"

[1]
ITO T, COUCEIRO J N, KELM S, BAUM L G, KRAUSS S, CASTRUCCI M R, DONATELLI I, KIDA H, PAULSON J C, WEBSTER R G, KAWAOKA Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Journal of Virology, 1998, 72(9): 7367-7373.

doi: 10.1128/JVI.72.9.7367-7373.1998 pmid: 9696833
[2]
MA W J, KAHN R E, RICHT J A. The pig as a mixing vessel for influenza viruses: human and veterinary implications. Journal of Molecular and Genetic Medicine, 2008, 3(1): 158-166.

pmid: 19565018
[3]
YANG H L, QIAO C L, TANG X, CHEN Y, XIN X G, CHEN H L. Human infection from avian-like influenza A (H1N1) viruses in pigs, China. Emerging Infectious Diseases, 2012, 18(7): 1144-1146.

doi: 10.3201/eid1807.120009 pmid: 22709385
[4]
WANG D Y, QI S X, LI X Y, GUO J F, TAN M J, HAN G Y, LIU Y F, LAN Y, YANG L, HUANG W J, CHENG Y H, ZHAO X, BAI T, WANG Z, WEI H J, XIAO N, SHU Y L. Human infection with Eurasian avian-like influenza A (H1N1) virus, China. Emerging Infectious Diseases, 2013, 19(10): 1709-1711.

doi: 10.3201/eid1910.130420
[5]
ZHU W F, ZHANG H, XIANG X Y, ZHONG L L, YANG L, GUO J F, XIE Y R, LI F C, DENG Z H, FENG H, HUANG Y W, HU S X, XU X, ZOU X H, LI X D, BAI T, CHEN Y K, LI Z, LI J H, SHU Y L. Reassortant Eurasian avian-like influenza A (H1N1) virus from a severely ill child, Hunan Province, China, 2015. Emerging Infectious Diseases, 2016, 22(11): 1930-1936.

doi: 10.3201/eid2211.160181
[6]
LI X Y, GUO L R, LIU C X, CHENG Y H, KONG M, YANG L, ZHUANG Z C, LIU J, ZOU M, DONG X C, SU X, GU Q. Human infection with a novel reassortant Eurasian-avian lineage swine H1N1 virus in Northern China. Emerging Microbes & Infections, 2019, 8(1): 1535-1545.
[7]
ZELL R, GROTH M, KRUMBHOLZ A, LANGE J, PHILIPPS A, DÜRRWALD R. Cocirculation of swine H1N1 influenza A virus lineages in Germany. Viruses, 2020, 12(7): 762.

doi: 10.3390/v12070762
[8]
ANDERSON T K, CHANG J, ARENDSEE Z W, VENKATESH D, SOUZA C K, KIMBLE J B, LEWIS N S, DAVIS C T, VINCENT A L. Swine influenza A viruses and the tangled relationship with humans. Cold Spring Harbor Perspectives in Medicine, 2021, 11(3): a038737.

doi: 10.1101/cshperspect.a038737
[9]
PARYS A, VANDOORN E, KING J, GRAAF A, POHLMANN A, BEER M, HARDER T, VAN REETH K. Human infection with Eurasian avian-like swine influenza A (H1N1) virus, the Netherlands, September 2019. Emerging Infectious Diseases, 2021, 27(3): 939-943.

doi: 10.3201/eid2703.201863
[10]
QIAO C L, LIU L P, YANG H L, CHEN Y, XU H Y, CHEN H L. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China. Journal of Clinical Virology, 2014, 61(4): 529-534.

doi: 10.1016/j.jcv.2014.10.014 pmid: 25467861
[11]
DE JONG J C, PACCAUD M F, DE RONDE-VERLOOP F M, HUFFELS N H, VERWEI C, WEIJERS T F, BANGMA P J, VAN KREGTEN E, KERCKHAERT J A M, WICKI F, WUNDERLI W. Isolation of swine-like influenza a(H1N1) viruses from man in Switzerland and The Netherlands. Annales De L’Institut Pasteur / Virologie, 1988, 139: 429-437.
[12]
YANG H L, CHEN Y, QIAO C L, HE X J, ZHOU H, SUN Y, YIN H, MENG S S, LIU L P, ZHANG Q Y, KONG H H, GU C Y, LI C J, BU Z G, KAWAOKA Y, CHEN H L. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): 392-397.
[13]
XU C Z, ZHANG N X, YANG Y Y, LIANG W H, ZHANG Y P, WANG J F, SUZUKI Y, WU Y P, CHEN Y, YANG H L, QIAO C L, CHEN H L. Immune escape adaptive mutations in hemagglutinin are responsible for the antigenic drift of Eurasian avian-like H1N1 swine influenza viruses. Journal of Virology, 2022, 96(16): e0097122.

doi: 10.1128/jvi.00971-22
[14]
WEBSTER R G, LAVER W G, AIR G M, SCHILD G C. Molecular mechanisms of variation in influenza viruses. Nature, 1982, 296(5853): 115-121.

doi: 10.1038/296115a0
[15]
NELSON M I, HOLMES E C. The evolution of epidemic influenza. Nature Reviews Genetics, 2007, 8(3): 196-205.

doi: 10.1038/nrg2053 pmid: 17262054
[16]
WU N C, WILSON I A. Influenza hemagglutinin structures and antibody recognition. Cold Spring Harbor Perspectives in Medicine, 2020, 10(8): a038778.

doi: 10.1101/cshperspect.a038778
[17]
SHIMIZU K. Mechanisms of antigenic variation in influenza virus. Nihon Rinsho, 2000, 58(11): 2199-2205.
[18]
WANG Z, CHEN Y, CHEN H Y, MENG F, TAO S Y, MA S J, QIAO C L, CHEN H L, YANG H L. A single amino acid at position 158 in haemagglutinin affects the antigenic property of Eurasian avian-like H1N1 swine influenza viruses. Transboundary and Emerging Diseases, 2022, 69(4): e236-e243.
[19]
梁文花, 贾云慧, 许程志, 吴运谱, 陈艳, 杨焕良, 乔传玲, 陈化兰. 两株H1N1亚型猪流感病毒HA蛋白中和性单克隆抗体的制备及抗病毒活性研究. 畜牧兽医学报, 2018, 49(7): 1460-1466.
LIANG W H, JIA Y H, XU C Z, WU Y P, CHEN Y, YANG H L, QIAO C L, CHEN H L. Preparation and antiviral activity of two neutralizing monoclonal antibodies against HA protein of H1N1 swine influenza virus. Chinese Journal of Animal and Veterinary Sciences, 2018, 49(7): 1460-1466. (in Chinese)
[20]
HOFFMANN E, STECH J, GUAN Y, WEBSTER R G, PEREZ D R. Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 2001, 146(12): 2275-2289.

doi: 10.1007/s007050170002 pmid: 11811679
[21]
XU C Z, XU B F, WU Y P, YANG S M, JIA Y H, LIANG W H, YANG D W, HE L K, ZHU W F, CHEN Y, YANG H L, YU B L, WANG D Y, QIAO C L. A single amino acid at position 431 of the PB2 protein determines the virulence of H1N1 swine influenza viruses in mice. Journal of Virology, 2020, 94(8): e01930-19.
[22]
杨时鳗, 许程志, 许榜丰, 吴运谱, 贾云慧, 乔传玲, 陈化兰. H1N1亚型猪流感病毒HA蛋白225位氨基酸对病毒致病性的影响. 中国农业科学, 2022, 55(4): 816-824. doi:10.3864/j.issn.0578-1752.2022.04.016.

doi: 10.3864/j.issn.0578-1752.2022.04.016
YANG S M, XU C Z, XU B F, WU Y P, JIA Y H, QIAO C L, CHEN H L. Amino acid of 225 in the HA protein affects the pathogenicities of H1N1 subtype swine influenza viruses. Scientia Agricultura Sinica, 2022, 55(4): 816-824. doi:10.3864/j.issn.0578-1752.2022.04.016. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.04.016
[23]
RUDNEVA I, IGNATIEVA A, TIMOFEEVA T, SHILOV A, KUSHCH A, MASALOVA O, KLIMOVA R, BOVIN N, MOCHALOVA L, KAVERIN N. Escape mutants of pandemic influenza A/H1N1 2009 virus: variations in antigenic specificity and receptor affinity of the hemagglutinin. Virus Research, 2012, 166(1/2): 61-67.

doi: 10.1016/j.virusres.2012.03.003
[24]
DANIELS P S, JEFFRIES S, YATES P, SCHILD G C, ROGERS G N, PAULSON J C, WHARTON S A, DOUGLAS A R, SKEHEL J J, WILEY D C. The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. The EMBO Journal, 1987, 6(5): 1459-1465.

doi: 10.1002/embj.1987.6.issue-5
[25]
FLEURY D, WHARTON S A, SKEHEL J J, KNOSSOW M, BIZEBARD T. Antigen distortion allows influenza virus to escape neutralization. Nature Structural Biology, 1998, 5(2): 119-123.

pmid: 9461077
[26]
VACHIERI S G, XIONG X L, COLLINS P J, WALKER P A, MARTIN S R, HAIRE L F, ZHANG Y, MCCAULEY J W, GAMBLIN S J, SKEHEL J J. Receptor binding by H10 influenza viruses. Nature, 2014, 511(7510): 475-477.

doi: 10.1038/nature13443
[27]
GLASER L, STEVENS J, ZAMARIN D, WILSON I A, GARCÍA- SASTRE A, TUMPEY T M, BASLER C F, TAUBENBERGER J K, PALESE P. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. Journal of Virology, 2005, 79(17): 11533-11536.

pmid: 16103207
[28]
TUMPEY T M, MAINES T R, VAN HOEVEN N, GLASER L, SOLÓRZANO A, PAPPAS C, COX N J, SWAYNE D E, PALESE P, KATZ J M, GARCÍA-SASTRE A. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science, 2007, 315(5812): 655-659.

pmid: 17272724
[29]
AYORA-TALAVERA G, CETINA-MONTEJO L, MATOS-PATRÓN A, ROMERO-BELTRÁN L. Hemagglutinin variants of influenza A (H1N1)pdm 09 virus with reduced affinity for sialic acid receptors. Archives of Virology, 2014, 159(5): 1207-1211.

doi: 10.1007/s00705-013-1934-x
[30]
TENG Q Y, XU D W, SHEN W X, LIU Q F, RONG G Y, LI X S, YAN L P, YANG J M, CHEN H J, YU H, MA W J, LI Z J. A single mutation at position 190 in hemagglutinin enhances binding affinity for human type sialic acid receptor and replication of H9N2 avian influenza virus in mice. Journal of Virology, 2016, 90(21): 9806-9825.

doi: 10.1128/JVI.01141-16 pmid: 27558420
[31]
LEWIS N S, DALY J M, RUSSELL C A, HORTON D L, SKEPNER E, BRYANT N A, BURKE D F, RASH A S, WOOD J L N, CHAMBERS T M, FOUCHIER R A M, MUMFORD J A, ELTON D M, SMITH D J. Antigenic and genetic evolution of equine influenza A (H3N8) virus from 1968 to 2007. Journal of Virology, 2011, 85(23): 12742-12749.

doi: 10.1128/JVI.05319-11 pmid: 21937642
[32]
KOEL B F, BURKE D F, BESTEBROER T M, VAN DER VLIET S, ZONDAG G C M, VERVAET G, SKEPNER E, LEWIS N S, SPRONKEN M I J, RUSSELL C A, EROPKIN M Y, HURT A C, BARR I G, DE JONG J C, RIMMELZWAAN G F, OSTERHAUS A D M E, FOUCHIER R A M, SMITH D J. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 2013, 342(6161): 976-979.

doi: 10.1126/science.1244730 pmid: 24264991
[33]
KOEL B F, VAN DER VLIET S, BURKE D F, BESTEBROER T M, BHAROTO E E, HERLIANA I, LAKSONO B M, XU K M, SKEPNER E, RUSSELL C A, RIMMELZWAAN G F, PEREZ D R, OSTERHAUS A D M E, SMITH D J, PRAJITNO T Y, FOUCHIER R A M. Antigenic variation of clade 2.1 H5N1 virus is determined by a few amino acid substitutions immediately adjacent to the receptor binding site. mBio, 2014, 5(3): e01070-14.
[34]
安艺萌, 周旭, 王佑春, 黄维金. 流感病毒抗原性进化及对流感疫苗研发的启示. 中华预防医学杂志, 2021, 55(11): 1339-1345.

pmid: 34749479
AN Y M, ZHOU X, WANG Y C, HUANG W J. Antigenic evolution of influenza virus and the implications for influenza vaccine development. Chinese Journal of Preventive Medicine, 2021, 55(11): 1339-1345. (in Chinese)

doi: 10.3760/cma.j.cn112150-20210802-00740 pmid: 34749479
[1] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[2] JIA YunHui,XU ChengZhi,SUI JinYu,WU YunPu,XU BangFeng,CHEN Yan,YANG HuanLiang,QIAO ChuanLing,CHEN HuaLan. Immunogenicity Evaluation of Eukaryotic Expressing Plasmids Encoding HA Protein of Eurasian Avian-Like H1N1 Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2019, 52(5): 930-938.
[3] XU Hui-yang, XU Bang-feng, CHEN Yan, SUI Jin-yu, YANG Huan-liang, YIN Hang, YANG Da-wei, QIAO Chuan-ling, CHEN Hua-lan. Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3071-3078.
[4] ZHAN Xiao-guo,QIAO Chuan-ling,YANG Huan-liang,CHEN Yan,KONG Wei,XIN Xiao-guang,CHEN Hua-lan
. Immunogenicity of a Recombinant Adenovirus Expressing HA Gene of H3N2 Subtype Swine Influenza Virus in Mice#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1235-1241 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!