Scientia Agricultura Sinica

Previous Articles    

Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat

CHEN JiHao1,2, ZHOU JieGuang1, QU XiangRu1, WANG SuRong1, TANG HuaPing1, JIANG Yun3, TANG LiWei4, LAN XiuJin1, WEI YuMING1, ZHOU JingZhong5*, MA Jian1* #br#   

  1. 1 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130; 2 College of Agronomy, Sichuan Agricultural University, Chengdu 611130; 3Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610000; 4 PanZhiHua Academy of Agricultural and Forestry Sciences, Panzhihua 617061, Sichuan; 5Tongliao Institute of Agriculture and Animal Husbandry Sciences, Tongliao 028015, Inner Mongolia
  • Published:2022-09-29

Abstract: 【ObjectiveThis study is to excavate embryo-related quantitative trait loci (QTL) with potential breeding value, to explore the genetic relationship between embryo and other agronomic traits in tetraploid wheat, and finally to aim at laying an important foundation for the fine mapping and breeding utilization of embryo-related traits in the future.MethodA total of 121 F8 recombinant inbred lines (RIL) constructed by crossing tetraploid durum wheat (Ailanmai) and wild emmer wheat (LM001) were used. This RIL population was planted in five different environments including Wenjiang (2018-2020), Chongzhou (2020), and Ya'an (2020) in Sichuan Province for phenotypic evaluation of embryo length (EL), embryo width (EW), embryo length/embryo width (EL/EW), embryo length/kernel length (EL/KL), embryo width/kernel width (EW/KW), and embryo area (EA). QTL mapping was performed based on a genetic linkage map constructed based on the wheat 55K SNP. ResultThe embryo size-related traits showed approximately normal distribution in the RIL population satisfying the genetic characteristics of quantitative traits. A total of 27 QTL for embryo size-related traits were detected in five environments over three years. Among them, seven ones controlling EL could contribute 11.88 % to 18.99% of phenotypic variation. Seven QTLs controlling EW could explain 21.77 to 29.41% of phenotypic variation. Five stable and major QTLs (QEL.sicau-AM-3B, QEW.sicau-AM-2B, QEW/KW.sicau-AM-2B, QEL/EW.sicau-AM-2B-1 and QEA.sicau-AM-2B) were identified, and they explained 11.88% to 18.99%, 21.77% to 29.41%, 8.80% to 24.92%, 12.79% to 25.69% and 10.47% to 15.22% of phenotypic variation, respectively. In addition, four QTL-rich regions were identified in the embryo size-related loci mentioned above. The QTL controlling EL/KL and EL was located on chromosome 1B, that for EW, EL/EW, EW/KW, and EA was located on 2B, that controlling EL and EA was on 3B, and that controlling EL/EW and EW/KW was on 6B. Embryo size was significantly and positively correlated with kernel size. Further, the major QTL for EL, QEL.sicau-AM-3B was co-located with that for kernel length identified previously, but that for EW QEW.sicau-AM-2B was independent of that for kernel width. Four genes likely involved in regulation of embryo size were identified in intervals where major QTL were mapped. ConclusionFive stable and major QTLs were identified: QEL.sicau-AM-3B, QEW.sicau-AM-2B, QEW/KW.sicau-AM-2B, QEL/EW.sicau-AM-2B-1, QEA.sicau-AM-2B, among which QEW.sicau-AM-2B may be novel.


Key words: tetraploid wheat, embryo length, embryo width, embryo area, QTL mapping

[1] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[2] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[3] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[4] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[5] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[6] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[7] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[8] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
[9] ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui. QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice [J]. Scientia Agricultura Sinica, 2020, 53(2): 225-238.
[10] WANG Qin,LIU ZeHou,WAN HongShen,WEI HuiTing,LONG Hai,LI Tao,DENG GuangBing,LI Jun,YANG WuYun. Identification and Pyramiding of QTLs for Traits Associated with Pre-Harvest Sprouting Resistance in Two Wheat Cultivars Chuanmai 42 and Chuannong 16 [J]. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431.
[11] ZhiHong NIU,XiaoFei SONG,XiaoLi LI,XiaoYu GUO,ShuQiang HE,LuanJingZhi HE,ZhiHong FENG,ChengZhen SUN,LiYing YAN. Inheritance and QTL Mapping for Parthenocarpy in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 160-171.
[12] CHEN JingJing, LIU XieXiang, YU LiLi, LU YiPeng, ZHANG SiTian, ZHANG HaoChen, GUAN RongXia, QIU LiJuan. QTL Mapping of Hard Seededness in Wild Soybean Using BSA Method [J]. Scientia Agricultura Sinica, 2019, 52(13): 2208-2219.
[13] WANG BingWei, QIN JiaMing, SHI ChengQiao, ZHENG JiaXing, QIN YongAi, HUANG AnXia. QTL Mapping and Genetic Analysis of a Gene with High Resistance to Southern Corn Rust [J]. Scientia Agricultura Sinica, 2019, 52(12): 2033-2041.
[14] YingBin DING, LiZhen ZHANG, Rui XU, YanYan WANG, XiaoMing ZHENG, LiFang ZHANG, YunLian CHENG, Fan WU, QingWen YANG, WeiHua QIAO, JinHao LAN. Fine Mapping of Grain Length Associated QTL, qGL12 in Wild Rice (Oryza sativa L.) Using a Chromosome Segment Substitution Line [J]. Scientia Agricultura Sinica, 2018, 51(18): 3435-3444.
[15] MA YaRu, FENG JianCan, LIU ChongHuai, FAN XiuCai, SUN HaiSheng, JIANG JianFu, ZHANG Ying. Development and Application of SSR New Molecular Marker for Seedless Traits in Grape [J]. Scientia Agricultura Sinica, 2018, 51(13): 2622-2630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!