Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 943-955.doi: 10.3864/j.issn.0578-1752.2025.05.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Chemical Phosphorus Application on Phosphorus Morphology and Phosphatase Activity of Different Aggregates Sizes in Calcareous Brown Soil

HUANG ShaoHui(), YANG HuiMin, YANG JunFang, YANG WenFang, NIE HaoLiang, ZHANG Jing, XING SuLi, WANG JingXia, YANG YunMa(), JIA LiangLiang()   

  1. Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences/Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051
  • Received:2024-04-30 Accepted:2024-06-11 Online:2025-03-07 Published:2025-03-07
  • Contact: YANG YunMa, JIA LiangLiang

Abstract:

【Objective】This study aimed to explore the differences of phosphorus (P) morphology and phosphatase activity in different aggregates sizes, and to clarify the change mechanism of soil P component contents and availability under different long-term chemical P application rates, so as to provide the theoretical support for the efficient utilization of soil P and sustainable agricultural development. 【Method】Long-term field experiment with different chemical P fertilizer application rates were established in calcareous brown soil. Soil samples in the topsoil (0-20 cm) were collected, which were treated with three gradients of P fertilizer application rates of 0 (P0, control), 120 (P120) and 210 (P210) kg P2O5·hm-2 annually. The soil aggregate content, P component contents and alkaline phosphatase activity of different soil aggregate sizes were determined. The effects of long-term chemical P application on P morphology and phosphatase activity of different aggregates sizes in calcareous brown soil were analyzed. 【Result】Compared with P0, the stability and P component content of different aggregates in calcareous brown soil were significantly improved after long-term P application. The content of acid-soluble inorganic P (Pi-HCl) was the highest in different P components, while the content of water-soluble P (Pi-H2O), sodium bicarbonate organic P (Po-NaHCO3) and sodium hydroxide inorganic P (Pi-NaOH) were relatively low. The changes of inorganic P pools in all aggregates were higher than those in organic P pools under different treatments. Compared with P120 treatment, the inorganic P content in large aggregate (>2 mm), small aggregate (0.25-2 mm) and micro-aggregate (<0.25 mm) were reduced by 21.5%, 27.0% and 18.7%, respectively, and the organic P content decreased by 15.6%, 12.8% and 12.2%, respectively. There were significant differences in organic P contents among different aggregate sizes and P application rates. The labile P (LP) content changed largest in different P availability forms. There were extremely significant differences among different particle size and P application rate. The contribution rate of inorganic P in large aggregates (Pi, >2 mm) was the highest, ranging from 27.6% to 38.3%, while that of organic P in small aggregates (Po, 0.25-2 mm) was the lowest, ranging from 2.9% to 4.9%. The contribution rate of stable P (SP) content to total P content was the highest, accounting for 84.3-91.2%. The contribution rate of SP in large aggregates (SP, >2 mm) was the highest, ranging from 52.6% to 55.2%. Soil phosphatase activity was significantly different in soil aggregates, which increased with the increase of aggregate size. In large aggregates, the phosphatase activity was significantly increased with the increase of P application rate. In small aggregates, the phosphatase activity of P120 treatment was the highest, and it was a significant difference between them. However, there was no significant difference in phosphatase activity of micro-aggregates between different treatments. The results of correlation analysis showed that the aggregate size was negatively correlated with the content of organic P content significantly, and positively correlated with the activity of alkaline phosphatase significantly. Structural equation model (SEM) analysis results showed that the P application rate could directly affect the inorganic P content in soil and then affect the P availability in soil. Soil aggregate structural could direct influence on the organic P content and alkaline phosphatase activities, and indirectly affect the inorganic P content and P availability. 【Conclusion】 Long-term application of chemical P fertilizer significantly increased the content of aggregates, the content of P components in each size aggregates, and the activity of alkaline phosphatase in calcareous brown soil. The large aggregates contributed the most to the soil P availability. P application rate and soil aggregate regulated soil P availability synergistically. Therefore, the scientific P application and increasing the proportion of soil large aggregates were important to improve the availability of soil P utilization.

Key words: long-term phosphorus application, phosphorus component, soil aggregate, phosphatase activity, calcareous brown soil

Table 1

The fertilizer application rates under different treatments"

处理
Treatment
冬小麦 Winter wheat (kg·hm-2) 夏玉米 Summy maize (kg·hm-2)
N P2O5 K2O N P2O5 K2O
P0 195 0 60 150 0 75
P120 195 120 60 150 0 75
P210 195 210 60 150 0 75

Table 2

Soil organic matter content, soil mass proportion and stability of aggregate under different treatments"

处理
Treatment
有机质含量
SOM content (g·kg-1)
团聚体质量百分比 Mass proportion of aggregate (%) MWD
(mm)
>2 mm 0.25-2 mm <0.25 mm
P0 15.6±2.1b 58.7±2.2b 23.9±1.7a 17.3±0.8a 3.2±0.1b
P120 18.9±0.5a 63.4±2.5a 18.9±1.4b 17.8±1.2a 3.4±0.1a
P210 18.6±0.3a 65.1±2.3a 16.3±1.6c 18.5±1.2a 3.5±0.1a

Table 3

Phosphorus component content in soil aggregates under different treatments (mg·kg-1)"

团聚体
粒级
Aggregate size
处理
Treatment
全磷
TP
水溶性
无机磷
Pi-
H2O
碳酸氢钠
无机磷
Pi-
NaHCO3
碳酸氢钠
有机磷
Po-
NaHCO3
氢氧化钠
无机磷
Pi-
NaOH
氢氧化钠
有机磷
Po-
NaOH
酸溶性
无机磷
Pi-HCl
酸溶性
有机磷
Po-HCl
酸溶性
残留磷
Residual-
P
提取率
Extraction efficiency
(%)
无机磷
Inorganic P
有机磷
Organic
P
活性磷
LP
中等
活性磷
MLP
稳定
性磷
SP
>2 mm P0 904.9c 0.7c 6.4c 6.2ab 6.9c 53.2c 415.5c 106.6a 295.9b 98.5 429.4c 166.0c 13.3c 60.0c 818.0c
P120 1085.5b 3.1b 22.7b 5.7b 15.6b 64.7b 505.7b 126.3b 317.7a 97.8 547.2b 196.6b 31.5b 80.3b 949.6b
P210 1389.2a 21.4a 77.3a 6.5a 36.1a 74.2a 677.6a 153.8c 319.9a 98.4 812.3a 234.5a 105.2a 110.3a 1151.2a
0.25-2 mm P0 901.6c 0.9c 9.1c 6.3b 6.2c 59.0c 397.8c 119.8c 293.3a 99.0 414.0c 185.1c 16.3c 65.2c 810.9c
P120 1112.3b 3.4b 23.5b 6.1b 13.9b 71.5b 526.2b 134.6b 311.3a 98.0 566.9b 212.3b 33.0b 85.4b 972.1b
P210 1397.5a 19.6a 73.2a 7.6a 34.4a 85.0a 703.8a 151.8a 310.5a 99.2 831.0a 244.4a 100.4a 119.4a 1166.1a
<0.25 mm P0 1033.5c 1.3c 9.8c 12.5a 5.7c 73.5b 502.1c 133.4b 275.1a 98.0 518.8c 219.3b 23.5c 79.1c 910.6c
P120 1203.1b 3.6b 24.9b 13.5ab 11.9b 83.7a 597.8b 152.6a 303.9a 99.1 638.2b 249.8a 42.0b 95.6b 1054.3b
P210 1459.4a 18.5a 69.2a 14.9a 32.6a 84.2a 771.2a 153.6a 294.1a 98.6 891.6a 252.7a 102.7a 116.8a 1218.9a
变异来源 Source of variation
团聚体粒级
Aggregate size(A)
<0.001 0.165 0.488 <0.001 0.061 <0.001 <0.001 <0.001 0.002 - <0.001 <0.001 <0.001 <0.001 <0.001
处理 Treatment(T) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 <0.001 <0.001
团聚体粒级×处理
A×T
0.005 <0.001 <0.001 0.116 0.904 0.003 0.114 0.029 0.857 - 0.205 0.014 <0.001 0.041 0.618

Fig. 1

Content and contribution rates of organic and inorganic phosphorus in soil aggregates under different treatments Pi means inorganic phosphorus, Po means organic phosphorus, and Residual P means residual phosphorus. The same as below"

Fig. 2

Content and contribution rates of labile, moderately labile and residual phosphorus in soil aggregates under different treatments LP means labile phosphorus; MLP means moderately labile phosphorus; SP means stable phosphorus. The same as below"

Fig. 3

Alkaline phosphatase activity in soil aggregates under different treatments"

Fig. 4

Correlation analysis among soil aggregate size, phosphorus application rates and phosphorus components TP means total phosphorus; ALP means alkaline phosphatase"

Fig. 5

Structural equation model The line thickness in the figure indicates the strength of the effects of variables on each other"

[1]
周志高, 汪金舫, 周健民. 植物磷营养高效的分子生物学研究进展. 植物学通报, 2005, 40(1): 82-91.
ZHOU Z G, WANG J F, ZHOU J M. Advances in molecular biology of phosphorus nutrition and high efficiency in plants. Chinese Bulletin of Botany, 2005, 40(1): 82-91. (in Chinese)
[2]
ZOU T, ZHANG X, DAVIDSON E A. Global trends of cropland phosphorus use and sustainability challenges. Nature, 2022, 611: 81-87.
[3]
杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香. 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018, 51(8): 1518-1526. doi: 10.3864/j.issn.0578-1752.2018.08.009.
YANG Y M, SUN Y M, JIA L L, JIA S L, MENG C X. Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Scientia Agricultura Sinica, 2018, 51(8): 1518-1526. doi: 10.3864/j.issn.0578-1752.2018.08.009. (in Chinese)
[4]
张国桥. 不同磷源及其施用方式对石灰性土壤磷的有效性与磷肥利用效率的影响[D]. 石河子: 石河子大学, 2014.
ZHANG G Q. Effects of different forms of P fertilizer and its supply strategy on soil P availability and P utilization efficiency on calcareous soil[D]. Shihezi: Shihezi University, 2014. (in Chinese)
[5]
KHAN A, LU G Y, AYAZ M, ZHANG H T, WANG R J, LV F L, YANG X Y, SUN B H, ZHANG S L. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agriculture, Ecosystems & Environment, 2018, 256: 1-11.
[6]
FAZLE RABBI S M, WILSON B R, LOCKWOOD P V, DANIEL H, YOUNG I M. Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma, 2014, 216: 10-18.
[7]
王碧胜, 于维水, 武雪萍, 高丽丽, 李景, 李生平, 宋霄君, 刘彩彩, 李倩, 梁国鹏, 蔡典雄, 张继宗. 添加玉米秸秆对旱作土壤团聚体及其有机碳含量的影响. 中国农业科学, 2019, 52(9): 1553-1563. doi: 10.3864/j.issn.0578-1752.2019.09.007.
WANG B S, YU W S, WU X P, GAO L L, LI J, LI S P, SONG X J, LIU C C, LI Q, LIANG G P, CAI D X, ZHANG J Z. Effect of straw addition on the formation of aggregates and accumulation of organic carbon in dryland soil. Scientia Agricultura Sinica, 2019, 52(9): 1553-1563. doi: 10.3864/j.issn.0578-1752.2019.09.007. (in Chinese)
[8]
张秀芝. 长期施肥对黑土及团聚体中有机磷形态的影响及转化研究[D]. 长春: 吉林农业大学, 2020.
ZHANG X Z. Effects of long-term fertilization on phosphorus characteristic and transformation in black soil and its aggregates[D]. Changchun: Jilin Agricultural University, 2020. (in Chinese)
[9]
许杏红, 王艳玲, 姚怡, 殷丹. 长期施肥对红壤旱地团聚体磷素储存容量的影响. 土壤学报, 2020, 57(3): 730-738.
XU X H, WANG Y L, YAO Y, YIN D. Effects of long-term fertilization on phosphorus storage capacity of soil aggregates in red soil upland. Acta Pedologica Sinica, 2020, 57(3): 730-738. (in Chinese)
[10]
李璠, 王炯琪, 刘子刚, 赵海超, 和江鹏, 黄智鸿, 卢海博. 土地利用方式对土壤团聚体磷组分及磷库管理指数的影响. 中国水土保持科学(中英文), 2023, 21(1):83-91.
LI F, WANG J Q, LIU Z G, ZHAO H C, HE J P, HUANG Z H, LU H B. Effects of land use types on the phosphorus component of soil aggregates and phosphorus pool management index. Science of Soil and Water Conservation, 2023, 21(1): 83-91. (in Chinese)
[11]
MITRAN T, KUMAR MANI P, KUMAR BANDYOPADHYAY P, BASAK N. Effects of organic amendments on soil physical attributes and aggregate-associated phosphorus under long-term rice-wheat cropping. Pedosphere, 2018, 28(5): 823-832.
[12]
ZHANG Y J, GAO W, LUAN H A, TANG J W, LI R N, LI M Y, ZHANG H Z, HUANG S W. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system. Journal of Integrative Agriculture, 2022, 21(7): 2119-2133.
[13]
李帅帅, 郭俊杰, 刘文波, 韩春龙, 贾海飞, 凌宁, 郭世伟. 不同施肥模式下轮作制度引起的土壤磷素有效性变化及其影响因素. 中国农业科学, 2022, 55(1): 96-110. doi: 10.3864/j.issn.0578-1752.2022.01.009.
LI S S, GUO J J, LIU W B, HAN C L, JIA H F, LING N, GUO S W. Influence of typical rotation systems on soil phosphorus availability under different fertilization strategies. Scientia Agricultura Sinica, 2022, 55(1): 96-110. doi: 10.3864/j.issn.0578-1752.2022.01.009. (in Chinese)
[14]
武爱莲, 王劲松, 董二伟, 王立革, 郭珺, 南江宽, 韩雄, Louis McDonald, 焦晓燕. 施用生物炭和秸秆对石灰性褐土氮肥去向的影响. 土壤学报, 2019, 56(1): 176-185.
WU A L, WANG J S, DONG E W, WANG L G, GUO J, NAN J K, HAN X, MCDONALD L, JIAO X Y. Effect of application of biochar and straw on fate of fertilizer N in cinnamon soil. Acta Pedologica Sinica, 2019, 56(1): 176-185. (in Chinese)
[15]
LUAN H A, ZHANG X M, LIU Y R, HUANG S H, CHEN J, GUO T F, LIU Y, GUO S P, QI G H. The microbial-driven C dynamics within soil aggregates in walnut orchards of different ages based on microbial biomarkers analysis. Catena, 2022, 211: 105999.
[16]
周亦靖, 牛犇, 李欢, 王艳玲. 长期施肥对旱地红壤微团聚体磷素有效性的影响. 土壤通报, 2023, 54(1): 89-99.
ZHOU Y J, NIU B, LI H, WANG Y L. Effects of long-term fertilization on availability of micro-aggregate associated phosphorus in upland red soil. Chinese Journal of Soil Science, 2023, 54(1): 89-99. (in Chinese)
[17]
王箫璇, 张敏, 张鑫尧, 魏鹏, 柴如山, 张朝春, 张亮亮, 罗来超, 郜红建. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响. 中国农业科学, 2023, 56(6): 1113-1126. doi: 10.3864/j.issn.0578-1752.2023.06.008.
WANG X X, ZHANG M, ZHANG X Y, WEI P, CHAI R S, ZHANG C C, ZHANG L L, LUO L C, GAO H J. Effects of different varieties of phosphate fertilizer application on soil phosphorus transformation and phosphorus uptake and utilization of winter wheat. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126. doi: 10.3864/j.issn.0578-1752.2023.06.008. (in Chinese)
[18]
MARANGUIT D, GUILLAUME T, KUZYAKOV Y. Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: short-term effects and mechanisms. Catena, 2017, 158: 161-170.
[19]
张璐, 张文菊, 徐明岗, 蔡泽江, 彭畅, 王伯仁, 刘骅. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响. 中国农业科学, 2009, 42(5): 1646-1655. doi: 10.3864/j.issn.0578-1752.2009.05.018.
ZHANG L, ZHANG W J, XU M G, CAI Z J, PENG C, WANG B R, LIU H. Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China. Scientia Agricultura Sinica, 2009, 42(5): 1646-1655. doi: 10.3864/j.issn.0578-1752.2009.05.018. (in Chinese)
[20]
谢钧宇, 杨文静, 强久次仁, 薛文, 李婕, 张树兰, 杨学云. 长期不同施肥下塿土有机碳和全氮在团聚体中的分布. 植物营养与肥料学报, 2015, 21(6): 1413-1422.
XIE J Y, YANG W J, QIANGJIUCIREN, XUE W, LI J, ZHANG S L, YANG X Y. Distribution of soil organic carbon and nitrogen in water-stable aggregates of manurial loess soils under long-term various fertilization regimes. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1413-1422. (in Chinese)
[21]
韩玉竹, 黄建国, 赵敬坤, 梁涛, 宝德俊. 长期定位施肥对潮土团聚体结构及其磷组分的影响. 水土保持学报, 2011, 25(6): 105-109.
HAN Y Z, HUANG J G, ZHAO J K, LIANG T, BAO D J. Influence of long-term localized fertilization on distribution of aggregates and phosphorus forms in fluvo-aquic soil. Journal of Soil and Water Conservation, 2011, 25(6): 105-109. (in Chinese)
[22]
邓伟明, 唐梦天, 郭玉栋, 池哲伟, 黄期, 邝曦芝, 蔡昆争, 田纪辉. 生物炭与磷肥添加对红壤团聚体及其磷组分分布的影响. 土壤通报, 2023, 54(2): 352-363.
DENG W M, TANG M T, GUO Y D, CHI Z W, HUANG Q, KUANG X Z, CAI K Z, TIAN J H. Effects of biochar and phosphorus application on red soil aggregates and their phosphorus components distribution. Chinese Journal of Soil Science, 2023, 54(2): 352-363. (in Chinese)
[23]
杨艳菊, 王改兰, 张海鹏, 赵旭, 熊静, 黄学芳. 长期施肥条件下栗褐土碱性磷酸酶活性及其与磷形态的关系. 土壤, 2013, 45(4): 678-682.
YANG Y J, WANG G L, ZHANG H P, ZHAO X, XIONG J, HUANG X F. Effects of long-term fertilization on relationship among phosphorus forms in loess hilly-gully region. Soils, 2013, 45(4): 678-682. (in Chinese)
[24]
金欣, 姚珊, Batbayar Javkhlan, 贾丽洁, 张树兰, 杨学云. 冬小麦-夏休闲体系作物产量和土壤磷形态对长期施肥的响应. 植物营养与肥料学报, 2018, 24(6): 1660-1671.
JIN X, YAO S, JAVKHLAN B, JIA L J, ZHANG S L, YANG X Y. Response of wheat yield and soil phosphorus fractions to long-term fertilization under rainfed winter wheat-summer fallow cropping system. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1660-1671. (in Chinese)
[25]
黄少辉, 杨军芳, 刘学彤, 杨云马, 邢素丽, 韩宝文, 刘孟朝, 贾良良, 何萍. 长期小麦秸秆还田对壤质潮土磷素含量及磷盈亏的影响. 作物杂志, 2020(6): 89-96.
HUANG S H, YANG J F, LIU X T, YANG Y M, XING S L, HAN B W, LIU M C, JIA L L, HE P. Effects of wheat long-term straw returning on soil phosphorus content and phosphorus balance in loamy tidal soil. Crops, 2020(6): 89-96. (in Chinese)
[26]
展晓莹, 任意, 张淑香, 康日峰. 中国主要土壤有效磷演变及其与磷平衡的响应关系. 中国农业科学, 2015, 48(23): 4728-4737. doi: 10.3864/j.issn.0578-1752.2015.23.014.
ZHAN X Y, REN Y, ZHANG S X, KANG R F. Changes in Olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China. Scientia Agricultura Sinica, 2015, 48(23): 4728-4737. doi: 10.3864/j.issn.0578-1752.2015.23.014. (in Chinese)
[27]
陈磊, 云鹏, 高翔, 卢昌艾, 刘荣乐, 汪洪. 磷肥减施对玉米根系生长及根际土壤磷组分的影响. 植物营养与肥料学报, 2016, 22(6): 1548-1557.
CHEN L, YUN P, GAO X, LU C A, LIU R L, WANG H. Effects of reducing phosphorus fertilizer rate on root growth and phosphorus fractions in rhizosphere soils of summer maize. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1548-1557. (in Chinese)
[28]
徐晓峰, 米倩, 刘迪, 付森林, 王旭刚, 郭大勇, 周文利. 磷肥施用量对石灰性土壤磷组分和作物磷积累量的影响. 中国生态农业学报(中英文), 2021, 29(11): 1857-1866.
XU X F, MI Q, LIU D, FU S L, WANG X G, GUO D Y, ZHOU W L. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1857-1866. (in Chinese)
[29]
GU Y, ROS G H, ZHU Q C, ZHENG D F, SHEN J B, CAI Z J, XU M G, DE VRIES W. Responses of total, reactive and dissolved phosphorus pools and crop yields to long-term fertilization. Agriculture, Ecosystems & Environment, 2023, 357: 108658.
[30]
吴璐璐, 张水清, 黄绍敏, 杜伟, 柳小琪, 王晓红, 吕家珑. 长期定位施肥对潮土磷素形态和有效性的影响. 土壤通报, 2021, 52(2): 379-386.
WU L L, ZHANG S Q, HUANG S M, DU W, LIU X Q, WANG X H, J L. Effect of long-term fertilization on phosphorus fraction and availability in fluvo-aquic soil. Chinese Journal of Soil Science, 2021, 52(2): 379-386. (in Chinese)
[31]
柳开楼, 都江雪, 邬磊, 张文菊, 韩天富, 李文军, 施林林, 余喜初. 长期施肥对不同深度稻田土壤团聚体磷素分配的影响. 农业资源与环境学报, 2022, 39(6): 1115-1123.
LIU K L, DU J X, WU L, ZHANG W J, HAN T F, LI W J, SHI L L, YU X C. Effects of long-term fertilization on phosphorus distribution in soil aggregates of different depths in paddy fields. Journal of Agricultural Resources and Environment, 2022, 39(6): 1115-1123. (in Chinese)
[32]
牛明芬, 温林钦, 赵牧秋, 陈欣, 鲁彩艳. 可溶性磷损失与径流时间关系模拟研究. 环境科学, 2008, 29(9): 2580-2585.
NIU M F, WEN L Q, ZHAO M Q, CHEN X, LU C Y. Simulation of relationship between dissoluble phosphorus loss and runoff time. Environmental Science, 2008, 29(9): 2580-2585. (in Chinese)
[33]
张微微, 周怀平, 黄绍敏, 杨军, 刘树堂, 马俊永, 张淑香. 长期不同施肥模式下碱性土有效磷对磷盈亏的响应. 植物营养与肥料学报, 2021, 27(2): 263-274.
ZHANG W W, ZHOU H P, HUANG S M, YANG J, LIU S T, MA J Y, ZHANG S X. Response of alkaline soil Olsen-P to phosphorous budget under different long-term fertilization treatments. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 263-274. (in Chinese)
[34]
ZHANG W W, ZHAN X Y, ZHANG S X, IBRAHIMA K H M, XU M G. Response of soil Olsen-P to P budget under different long-term fertilization treatments in a fluvo-aquic soil. Journal of Integrative Agriculture, 2019, 18(3): 667-676.
[35]
沈开勤, 刘倩, 杨国涛, 陈虹, 梁成, 赖鹏, 李冲, 王学春, 胡运高. 减量施磷对土壤磷库组成及解磷微生物的影响. 中国农业科学, 2023, 56(15): 2941-2953. doi: 10.3864/j.issn.0578-1752.2023.15.009.
SHEN K Q, LIU Q, YANG G T, CHEN H, LIANG C, LAI P, LI C, WANG X C, HU Y G. Effects of phosphorus reduction on soil phosphorus pool composition and phosphorus solubilizing microorganisms. Scientia Agricultura Sinica, 2023, 56(15): 2941-2953. doi: 10.3864/j.issn.0578-1752.2023.15.009. (in Chinese)
[36]
LI R L, ZHANG S R, ZHANG M, FEI C, DING X D. Phosphorus fractions and adsorption-desorption in aggregates in coastal saline- alkaline paddy soil with organic fertilizer application. Journal of Soils and Sediments, 2021, 21(9): 3084-3097.
[37]
MARTÍN-HERNÁNDEZ E, MARTÍN M, RUIZ-MERCADO G J. A geospatial environmental and techno-economic framework for sustainable phosphorus management at livestock facilities. Resources, Conservation, and Recycling, 2021, 175: 1-13.
[38]
蔡成, 王擎运, 王慧, 曹维, 齐永波, 章力干. 含铁秸秆腐熟物对砂姜黑土和潮土磷形态及有效性的影响. 土壤通报, 2023, 54(3): 662-672.
CAI C, WANG Q Y, WANG H, CAO W, QI Y B, ZHANG L G. Effects of decomposed straw added iron on phosphorus factions and availability in lime concretion black soil and fluvo-aquic soil. Chinese Journal of Soil Science, 2023, 54(3): 662-672. (in Chinese)
[39]
ZHANG Y J, GAO W, LUAN H A, TANG J W, LI R N, LI M Y, ZHANG H Z, HUANG S W. Long-term organic substitution management affects soil phosphorus speciation and reduces leaching in greenhouse vegetable production. Journal of Cleaner Production, 2021, 327: 129464.
[40]
陈丽明. 长期秸秆还田下双季稻田土壤碳氮转化特征及其微生物学机制[D]. 南昌: 江西农业大学, 2023.
CHEN L M. Microbiological mechanism of soil carbon and nitrogen transformation under long-term straw return in a double-cropped rice paddy[D]. Nanchang: Jiangxi Agricultural University, 2023. (in Chinese)
[41]
WEI K, CHEN Z H, ZHANG X P, LIANG W J, CHEN L J. Tillage effects on phosphorus composition and phosphatase activities in soil aggregates. Geoderma, 2014, 217/218: 37-44.
[42]
TIAN S Y, ZHU B J, YIN R, WANG M W, JIANG Y J, ZHANG C Z, LI D M, CHEN X Y, KARDOL P, LIU M Q. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biology and Biochemistry, 2022, 165: 108533.
[1] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[4] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[7] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[8] LI Jing,WU HuiJun,WU XuePing,WANG BiSheng,YAO YuQing,LÜ JunJie. Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates [J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344.
[9] MIAO FangFang,MIAN YouMing,PU XueKe,WU ChunHua,ZHOU YongJin,HOU XianQing. Effects of Tillage with Mulching on Soil Aggregate Structure and Water Use Efficiency of Potato in Dry-Farming Area of Southern Ningxia [J]. Scientia Agricultura Sinica, 2021, 54(11): 2366-2376.
[10] ZHANG Qi, WANG ShuLan, WANG Hao, LIU PengZhao, WANG XuMin, ZHANG YuanHong, LI HaoYu, WANG Rui, WANG XiaoLi, LI Jun. Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851.
[11] WANG WenXin,WANG WenLong,GUO MingMing,WANG TianChao,KANG HongLiang,YANG Bo,ZHAO Man,CHEN ZhuoXin. Effects of Natural Vegetation Restoration on Characteristics of Soil Aggregate and Soil Erodibility of Gully Heads in Gully Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2019, 52(16): 2845-2857.
[12] CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334.
[13] MA JianHui, YE XuHong, HAN Bing, LI Wen, YU Na, FAN QingFeng, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Controlled Irrigation Low Limits on the Size Distribution of Soil Aggregates with Drip Irrigation Under Film Mulching in a Greenhouse Soil [J]. Scientia Agricultura Sinica, 2017, 50(18): 3561-3571.
[14] TAN Huang, YANG Pei-ling, REN Shu-mei, YU Hao-liang, WANG Jia-hang. Effects of the Application of Flue Gas Desulphurized Gypsum and Water Leaching on Sodic Soil Aggregates [J]. Scientia Agricultura Sinica, 2016, 49(4): 705-716.
[15] HE Yu-ting, WANG Chang-quan, SHEN Jie, LI Bin, LI Bing, CHEN Lin, PAN Xing-bing. Effects of Two Biochars on Red Soil Aggregate Stability and Microbial Community [J]. Scientia Agricultura Sinica, 2016, 49(12): 2333-2342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!