Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (5): 837-848.doi: 10.3864/j.issn.0578-1752.2019.05.006

• PLANT PROTECTION • Previous Articles     Next Articles

Function of Copper-Resistant Gene copA of Ralstonia solanacearum

WANG XiaoNing,LIANG Huan,WANG Shuai,FANG WenSheng,XU JingSheng,FENG Jie,XU Jin(),CAO AoCheng()   

  1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2018-10-30 Accepted:2018-11-29 Online:2019-03-01 Published:2019-03-12
  • Contact: Jin XU,AoCheng CAO E-mail:jinxu@ippcaas.cn;caoac@vip.sina.com

Abstract:

【Objective】 Bacterial wilt of plants, caused by Ralstonia solanacearum , is a major soil-borne disease around the world. As an important bactericide to control bacterial diseases such as bacterial wilt, the widespread use of copper-based bactericides has led to the emergence of copper-resistant strains in a variety of plant pathogenic bacterial population. The copper-resistant coding gene copA , homologous with Pseudomonas syringae , was carried on the megaplasmid of R. solanacearum Po82 strain. The objective of this study is to investigate the biological function of copA in copper resistance and pathogenicity of Po82 strain.【Method】The phylogenetic relationship of the copper-resistant gene copA in different strains of R. solanacearum and other phytobacterial strains was analyzed based on neighbor-joining method using MEGA6.0 for constructing the phylogenetic tree of copA . By means of reverse genetics strategy, using the methods of gene homologous recombination and electroporation, copA gene deletion and complementary strains of Po82 were constructed. Copper minimal inhibition concentration (MIC) test, RT-qPCR, Biolog chip analysis, pathogenicity test and other basic biological methods were employed to clarify the relationship between copA and biological characteristics such as response to copper stress, metabolic activity, pathogenicity, and motility of R. solanacearum. 【Result】The results of homology analysis showed that the copA existed widely in the bacterial population, and the copA of R. solanacearum was most closely related to Cupriavidus metallidurans , but far genetic relationship with Xanthomonas oryzae , P. syringae and Escherichia coli . RT-qPCR analysis showed that the expression of copA was induced by copper. The expression of copA increased with the increase of CuSO4 concentration. The expression level of copA was the highest when the CuSO4 concentration was 1.0 mmol·L -1. By MIC analysis, the result showed that the sensitivity of the copA deletion strain to copper was significantly increased. The MIC value of copA deletion strain was 0.8 mmol·L -1, which decreased by 33.3% compared with that of wild-type strain (1.2 mmol·L -1). The complementary strain restored copper resistance. The results indicated that copA played an important role in copper resistance of R. solanacearum . Compared with wild-type strain, the logarithmic growth rate of copA gene deletion strain decreased in both NA medium and NA medium containing 0.6 mmol·L -1 CuSO4, indicating that copA was related to the growth rate of R. solanacearum . The absence of copA resulted in a decrease in the pathogenicity of R. solanacearum . On the 10th day of inoculation, the disease index of the copA gene deletion strain decreased by 11.7% compared with that of the wild-type strain Po82. The absence of copA resulted in a reduction of metabolic utilization rate of carbon sources such as α -D-glucose, D-trehalose and nitrogen sources such as L-alanine and glucuronide. Compared with wild-type strain Po82, the expression level of hrpB , hrpG and ripX genes, which are important components of the type Ⅲ secretion system, was also significantly down-regulated in copA gene deletion strain. 【Conclusion】 The copper-resistant gene copA plays an important role in copper stress response and pathogenicity of R. solanacearum . The results provide a theoretical basis for further analysis of copper resistance mechanism and the control of copper-resistant strains.

Key words: Ralstonia solanacearum, copper-resistant, copA, pathogenicity

Table 1

Strains and plasmids used in this study"

菌株和质粒 Strains and plasmids 特征 Characteristics 来源 Source
菌株
Strain
R. solanacearum Po82 Wild-type potato strain; Phylotype Ⅱ, sequevar. 4 (race 3 biovar. 2) 本实验室The laboratory
E. coli DH5α mcrA φ80 lacZΔM15, recA1, endA1 本研究This study
ΔPo82copA copA deletion strain, Gmr 本研究This study
PBBR-ΔPo82copA copA complentmentary strain, Gmr, Ampr 本研究This study
质粒
Plasmid
pKMS1-gm (+U) Cloning vector, Gmr, Kanr 本实验室The laboratory
pBBR1MCS-4 Ampr, lacZ alpha 本实验室The laboratory
pKMS1-copA-gm Gmr, for copA gene deletion 本研究This study
pBBR-copA Ampr, for copA gene complementation 本研究This study

Table 2

Primer sequences used in this study"

引物名称 Primer name 引物序列 Primer sequence (5′-3′) 用途Purpose
759f GTCGCCGTCAACTCACTTTCC 青枯菌特异性验证
Specificity verification of R. solanacearum
760r GTCGCCGTCAGCAATGCGGAATCG
copA Upf GGTCTTAAUCCCGTGAGGTTGGGAGGTGA 扩增copA 上游片段
Amplification of upstream of copA
copA Upr GGCATTAAUTGCTCGACTTTCACAGCGGA
copA Downf GGACTTAAUGATCGAGTTTTCCTTACGTAA 扩增copA 下游片段
Amplification of downstream of copA
copA Downr GGGTTTAAUTCACGCAGCGCCGTGTAGTCC
copAf ATATGGCGGCCTCATCATCG 基因缺失菌株验证
Verification of gene deletion strain
copAr CGAGAAAAGCCCTGTCCAGT
pBRRf CATTAGGCACCCCAGGCTTTAC 质粒线性化
Plasmid linearization
pBRRr CCTCTTCGCTATTACGCCAGC
copA Hf CCTCGAGGTCGACGGTATCGATATGCGCAGCAATCGTGCATCCCGCC copA 扩增
Amplification of copA
copA Hr GAACTAGTGGATCCCCCGGGCTTCAGGCCACCACCACTTCGCGGAAC
copA Testf GCCGTTTGTGATGGCTTCC 基因互补菌株验证
Verification of gene complementary strain
copA Testr CTTATTCAGGCGTAGCACCAGG
gyrBf GACCTTCCAGGGGTTGATCG RT-qPCR
gyrBr TCTCCCCCAGCCCCTTATAC
copAf ATATGGCGGCCTCATCATCG
copAr CGAGAAAAGCCCTGTCCAGT
hrpBf GAAGTGGCCGCCCATATC
hrpBr GCTTGCGGTAGCCCTTGA
hrpGf GGACACATTCCACGTTCTGCA
hrpGr CCATGAAATTCGCCGTATTGA
popAf TTCAGGAGCTTCACCAGGTCT
popAr CAACACCAATGGCAACTCCAA

Fig. 1

Constituent components of GEN Ⅲ MicroPlant"

Fig. 2

Phylogenetic tree based on copA sequence"

Fig. 3

PCR detection of copA gene deletion and complementary strains"

Fig. 4

Induced expression of copA The asterisk on the column indicates significant difference in gene expression under different inductive concentrations (P <0.05)"

Fig. 5

Growth curve test of the wild-type Po82, ΔPo82copA and pBBR-ΔPo82copA strains * indicates significant difference between the mutant strain and wild-type strain under the same treatment (0.01<P ≤0.05); ** indicates extremely significant difference between the mutant strain and wild-type strain under the same treatment (P <0.01). The same as below"

Fig. 6

Pathogenicity test of the wild-type Po82, ΔPo82copA and pBBR-ΔPo82copA strains on tomato"

Fig. 7

Expression analysis of pathogenic genes in the wild-type Po82 and ΔPo82copA strains"

Fig. 8

Biolog metabolic microarray detection Purple pore is defined as positive and pores shallower than purple are defined as boundary values. The picture indicates the metabolic results of Po82, ΔPo82copA and pBBR-ΔPo82copA strains in 96 h, respectively. The OD590 of α -D-glucose (micropore plate C1) in the three strains is 0.632, 0.521 and 0.372, respectively. The OD590 of D-trehalose (micropore plate A4) in the three strains is 0.620, 0.480 and 0.383, respectively. The OD590 of L-alanine (micropore plate E3) in the three strains is 0.786, 0.370 and 0.436, respectively. The OD590 of glucuronamide (micropore plate F6) in the three strains is 0.566, 0.388 and 0.380, respectively"

Fig. 9

The mobility of the wild-type Po82, ΔPo82copA and pBBR-ΔPo82copA strains"

[1] 徐进, 冯洁 .植物青枯菌遗传多样性及致病基因组学研究进展. 中国农业科学, 2013,46(14):2902-2909.
doi: 10.3864/j.issn.0578-1752.2013.14.006
XU J, FENG J . Advances in research of genetic diversity and pathogenome of Ralstonia solanacearum species complex.Scientia Agriculture Sinica , 2013,46(14):2902-2909. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.14.006
[2] MUKAIHARA T, HATANAKA T, NAKANO M, ODA K .Ralstonia solanacearum type III effector ripAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. mBio , 2016,7(2):e00359-16.
doi: 10.1128/mBio.00359-16 pmid: 27073091
[3] 张争, 徐进, 许景升, 何礼远, 冯洁 .植物青枯菌aac 基因克隆及猝灭群体感应信号功能的研究. 中国农业科学, 2008,41(9):2651-2656.
ZHANG Z, XU J, XU J S, HE L Y, FENG J . Cloning of aac gene of Ralstonia solanacearum and function research on quenching quorum-sensing signal. Scientia Agriculture Sinica , 2008,41(9):2651-2656. (in Chinese)
[4] WICKER E, GRASSART L, CORANSON-BEAUDU R, MIAN D, GUILBAUD C, FEGAN M, PRIO P .Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and Environmental Microbiology , 2007,73(21):6790-6801.
[5] XU J, PAN Z C, PRIOR P, XU J S, ZHANG Z, ZHANG H, ZHANG L Q, HE L Y, FENG J .Genetic diversity ofRalstonia solanacearum strains from China. European Journal of Plant Pathology , 2009,125(4):641-653.
[6] CHA J S, COOKSEY D A .Copper resistance inPseudomonas syringae mediated by periplasmic and outer membrane proteins. Proceedings of the National Academy of Sciences of the United States of America , 1991,88(20):8915-8919.
[7] RADEMACHER C, MASEPOHL B .Copper-responsive gene regulation in bacteria. Microbiology, 2012,158(10):2451-2464.
doi: 10.1099/mic.0.058487-0 pmid: 22918892
[8] ANTSOTEGI-USKOLA M, MARKINA-IÑARRAIRAEGUI A, UGALDE U. Copper resistance in Aspergillus nidulans relies on the P1-type ATPase CrpA,regulated by the transcription factor AceA. Frontiers in Microbiology , 2017,8: Article 912.
doi: 10.3389/fmicb.2017.00912 pmid: 5447758
[9] MELLANO M A, COOKSEY D A .Nucleotide sequence and organization of copper resistance genes fromPseudomonas syringae pv. tomato . Journal of Bacteriology , 1988,170(6):2879-2883.
[10] HOEGLER K J, HECHT M H .A de novo protein confers copper resistance in Escherichia coli . Protein Science , 2016,25(7):1249-1259.
[11] BONDARCZUK K, PIOTROWSKA-SEGET Z .Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biology and Toxicology, 2013,29(6):397-405.
doi: 10.1007/s10565-013-9262-1 pmid: 3847284
[12] GRASS G, RENSING C .Genes involved in copper homeostasis in Escherichia coli . Journal of Bacteriology , 2001,183(6):2145-2147.
[13] WAYNE OUTTEN F, HUFFMAN D L, HALE J A ,O’HALLORAN T V. The Independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . The Journal of Biological Chemistry , 2001,276(33):30670-30677.
doi: 10.1074/jbc.M104122200 pmid: 11399769
[14] RENSING C, GRASS G .Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews , 2003,27(2/3):197-213.
[15] 胡小梅 .青枯菌copSRABCD 抗铜基因簇的功能研究[D].北京: 中国农业科学院, 2016.
HU X M .Research on function of putative copper resistance gene cluster copSRABCD of Ralstonia solanacearum [D].Beijing: Chinese Academy of Agricultural Sciences, 2016. ( in Chinese)
[16] 李芳菲, 马文瑶, 金亮亮, 杨英军 .基于PG蛋白的蔷薇科植物分子进化树的构建与分析. 分子植物育种, 2018,16(19):6332-6340.
doi: 10.14088/j.cnki.issn0439-8114.2016.21.059
LI F F, MA W Y, JIN L L, YANG Y J . Construction and analysis of molecular phylogenetic tree of Rosaceae plant based on polygalacturonase protein. Molecular Plant Breeding , 2018,16(19):6332-6340. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2016.21.059
[17] FRANDSEN R J, ANDERSSON J A, KRISTENSEN M B, GIESE H .Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi. BMC Molecular Biology, 2008,9:70.
doi: 10.1186/1471-2199-9-70 pmid: 18673530
[18] BOUCHER C A, BARBERIS P A, TRIGALET A P, DEMERY D A .Transposon mutagenesis ofPseudomonas solanacearum : Isolation of Tn5-induced avirulent mutants. Journal of General Microbiology , 1985,131(9):2449-2457.
[19] LAVIE M, SHILLINGTON E, EGUILUZ C, GRIMSLEY N, BOUCHER C .PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum . Molecular Plant-Microbe Interactions , 2002,15(10):1058-1068.
doi: 10.1094/MPMI.2002.15.10.1058 pmid: 12437304
[20] 张丽勍 .植物青枯菌GMI1000菌株Ⅵ型分泌系统基因功能的研究[D].北京: 中国农业科学院, 2013.
ZHANG L Q .Research on the function of genes in type VI secretionsystem of Ralstonia solanacearum GMI1000 strain[D].Beijing: Chinese Academy of Agricultural Sciences, 2013. ( in Chinese )
[21] LIVAK K J, SCHMITTGEN T D .Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[22] HE L Y, SEQUEIRA L, KLEMAN A .Characteristics of strains ofPseudomonas solanacearum from China. Plant Disease , 1983,67(12):1357-1361.
[23] MENG F, YAO J, ALLEN C .A MotN mutant of Ralstonia solanacearum is hypermotile and has reduced virulence. Journal of Bacteriology , 2011,193(10):2477-2486.
[24] 王帅 .植物青枯菌VBNC状态及相关基因rpoS 生物学功能的研究[D].北京: 中国农业科学院, 2018.
WANG S .Research on VBNC state and function analysis of the related gene rpoS in Ralstonia solanacearum [D].Beijing: Chinese Academy of Agricultural Sciences, 2018. ( in Chinese)
[25] TANS-KERSTEN J, BROWN D, ALLEN C .Swimming motility, a virulence trait of Ralstonia solanacearum , is regulated by FlhDC and the plant host environment. Molecular Plant-Microbe Interactions , 2004,17(6):686-695.
[26] YAO J, ALLEN C .Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum . Journal of Bacteriology , 2006,188(10):3697-3708.
doi: 10.1128/JB.188.10.3697-3708.2006 pmid: 1482862
[27] ALTIMIRA F YÁÑEZ C,BRAVO G,GONZÁLEZ M,ROJAS L A,SEEGER M,. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiology, 2012,12:193.
doi: 10.1186/1471-2180-12-193 pmid: 3496636
[28] PRIOR P, FEGAN M .Recent development in the phylogeny and classification of Ralstonia solanacearum . Acta Horticulturae , 2005,695:127-136.
[29] OUTTEN F W, HUFFMAN D L, HALE J A ,O’HALLORAN T V. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . The Journal of Biological Chemistry , 2001,276(33):30670-30677.
doi: 10.1074/jbc.M104122200 pmid: 11399769
[30] ZHANG X X, RAINEY P B .The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization. Molecular Plant-Microbe Interactions , 2007,20(5):581-588.
[31] VASSE J, GENIN S, FREY P, BOUCHER C, BRITO B .The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Molecular Plant-Microbe Interactions , 2000,13(3):259-267.
[32] ASOLKAR T, RAMESH R .Development of T3SS mutants (hrpB - and hrcV -) of Ralstonia solanacearum , evaluation of virulence attenuation in brinjal and tomato—A pre-requisite to validate T3Es of R. solanacearum . Indian Journal of Microbiology , 2018,58(3):372-380.
[33] VAN GIJSEGEM F, VASSE J, CAMUS J C, MARENDA M, BOUCHER C .Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Molecular Microbiology , 2000,36(2):249-260.
doi: 10.1046/j.1365-2958.2000.01851.x pmid: 10792714
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[5] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[6] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[7] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[8] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[9] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[10] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[11] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[12] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[13] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[14] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
[15] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!