Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (23): 4514-4521.doi: 10.3864/j.issn.0578-1752.2018.23.010

• HORTICULTURE • Previous Articles     Next Articles

Molecular Mechanism of Apple MdWRKY18 and MdWRKY40 Participating in Salt Stress

XU HaiFeng(),YANG GuanXian,ZHANG Jing,ZOU Qi,WANG YiCheng,QU ChangZhi,JIANG ShengHui,WANG Nan,CHEN XueSen   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2018-05-25 Accepted:2018-07-26 Online:2018-12-01 Published:2018-12-12

Abstract:

【Objective】 In order to improve the molecular mechanism of salt stress, we studied several aspects of MdWRKY18 and MdWRKY40 in apple WRKY transcription factors, including the protein structure, the expression level and the function in salt stress. 【Method】 We cloned the MdWRKY18 and MdWRKY40 genes in ‘Hongcui No.2’ apple and analysed their protein structure. The expression levels of MdWRKY18 and MdWRKY40 were studied by the qRT-PCR under the salt stress, and their promoter activities were analyzed using the GUS staining. We analyzed the interaction relationship between MdWRKY18 and MdWRKY40 proteins by yeast two-hybrid and verified their function by transgenosis. 【Result】 Analysis of protein structure showed that both MdWRKY18 and MdWRKY40 proteins contained a WRKY, Cx5C and HxH structural domains. The expression levels and promoter activities of MdWRKY18 and MdWRKY40 were induced by the 150 mmol·L -1 NaCl. The yeast two-hybrid experiments showed that MdWRKY18 and MdWRKY40 could respectively interact with itself to form homodimers, and MdWRKY18 could also interact with MdWRKY40 to form heterodimers. When MdWRKY18 and MdWRKY40 was overexpressed respectively in orin callus, they could increase the callus weight under salt stress and promote the expression of MdSOS1 and MdNHX1. When MdWRKY18 and MdWRKY40 were co-overexpressed in orin callus, it could also promote the expression of MdSOS1 and MdNHX1, however, the weight of callus was heavier than the weight of callus overexpressing MdWRKY18 or MdWRKY40. 【Conclusion】 MdWRKY18 and MdWRKY40 were induced by the salt stress, and they could form homodimers or heterodimers, overexpressing MdWRKY18 or MdWRKY40 in orin callus could increase its salt tolerance.

Key words: apple, WRKY transcription factor, salt stress, GUS staining, yeast two-hybrid

Fig. 1

Protein structure analysis of MdWRKY18 and MdWRKY40"

Fig. 2

The expression level of MdWRKY18 and MdWRKY40 treated with 150 mmol·L-1 NaCl"

Fig. 3

The GUS staining analysis of MdWRKY18 and MdWRKY40 promoter treated with 150 mmol·L-1 NaCl"

Fig. 4

Yeast two-hybrid analysis between MdWRKY18 and MdWRKY40"

Fig. 5

The orin callus that overexpressing MdWRKY18 and MdWRKY40 treated with 150 mmol·L-1 NaCl"

Fig. 6

The weight of orin callus that overexpressing MdWRKY18 and MdWRKY40 treated with 150 mmol·L-1 NaCl"

Fig. 7

The expression level analysis of related gene in four types of callus 1:Orin;2:OEWRKY18;3:OEWRKY40;4:OEWRKY18+OEWRKY40"

[1] MAHAJAN S, TUTEJA N . Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 2005,444:139-158.
doi: 10.1016/j.abb.2005.10.018 pmid: 16309626
[2] TUTEJA N . Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 2007,428:419-438.
doi: 10.1016/S0076-6879(07)28024-3
[3] DONG D, ZHANG L F, HANG W, LIU Z J, ZHANG Z X, ZHENG Y L . Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 2009,103:29-38.
doi: 10.1093/aob/mcn205 pmid: 18952624
[4] OHTA M, HAYASHI Y, NAKASHIMA A, HAMADA A, TANAKA A, NAKAMURA T, HAYAKAWA T . Introduction of a Na +/H + antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters, 2002,532:279-282.
[5] NING Z, CHENG S, LIU X, HAO D, DAI M, ZHOU D X, YANG W, YU Z . The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Science, 2015,236:146-156.
doi: 10.1016/j.plantsci.2015.03.023 pmid: 26025528
[6] XUE Z Y, ZHI D Y, XUE G P, ZHANG H, ZHAO Y X, XIA G M . Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na +/H + antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na +. Plant Science , 2004,167:849-859.
doi: 10.1016/j.plantsci.2004.05.034
[7] ÇIÇEK N, HÇ X . Effects of salt stress on some physiological and photosynthetic parameters at three different temperatures in six soya bean (Glycine max L. Merr.) Cultivars. Journal of Agronomy and Crop Science, 2008,194:34-46.
doi: 10.1111/j.1439-037X.2007.00288.x
[8] HUSAINI A M, ABDIN M Z . Development of transgenic strawberry (Fragaria × ananassa Duch.) plants tolerant to salt stress. Plant Science, 2008,174:446-455.
[9] RASHEDY A . Response of two grape rootstocks to some salt tolerance treatments under saline water conditions. Journal of Horticultural Science & Ornamental Plants, 2010,2:93-106.
[10] XUE H, ZHANG F, ZHANG Z H, FU JF, WANG F, ZHANG B, MA Y . Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress. Scientia Horticulturae, 2015,190:2430.
doi: 10.1016/j.scienta.2015.04.009
[11] SAHI C, SINGH A, BLUMWALD E, GROVER A . Beyond osmolytes and transporters: Novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiologia Plantarum, 2006,127:1-9.
doi: 10.1111/j.1399-3054.2005.00610.x
[12] HASEGAWA P M, BRESSAN R A, ZHU J K, BOHNERT H J . Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 2000,51:463-499.
doi: 10.1146/annurev.arplant.51.1.463
[13] BLUMWALD E, POOLE R J . Na/H antiport in isolated tonoplast vesicles from storage tissue of beta vulgaris. Plant Physiology, 1985,78:163-167.
doi: 10.1104/pp.78.1.163 pmid: 16664191
[14] DING Z, LI S, AN X, LIU X, QIN H, WANG D . Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Journal of Genetics and Genomics, 2009,36:17-29.
doi: 10.1016/S1673-8527(09)60003-5 pmid: 19161942
[15] ABE H, URAO T, ITO T, SEKI M, SHINOZAKI K, YAMAGUCHISHINOZAKI K . Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 2003,15:63-78.
doi: 10.1105/tpc.006130 pmid: 12509522
[16] YANG O, POPOVA O V, SÜTHOFF U, LÜKING I, DIETZ K J, GOLLDACK D . The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 2009,436:45-55.
doi: 10.1016/j.gene.2009.02.010 pmid: 19248824
[17] REN X, CHEN Z, LIU Y, ZHANG H, ZHANG M, LIU Q, HONG X, ZHU J K, GONG Z . ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal, 2010,63:417-429.
doi: 10.1111/j.1365-313X.2010.04248.x pmid: 20487379
[18] JIANG Y, YANG B, DEYHOLOS M K . Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Molecular Genetics and Genomics, 2009,282:503-516.
[19] WU X, SHIROTO Y, KISHITANI S, ITO Y, TORIYAMA K . Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 2009,28:21-30.
doi: 10.1007/s00299-008-0614-x pmid: 2018818929
[20] JIANG Y J, LIANG G, YU D Q . Activated expression of WRKY57 confers drought tolerance inArabidopsis. Molecular Plant, 2012,5:1375-1388.
doi: 10.1093/mp/sss080 pmid: 22930734
[21] JIANG Y, DEYHOLOS M . Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 2009,69:91-105.
[22] XU H F, WANG N, LIU J X, QU C Z, WANG Y C, JIANG S H, LU N L, WANG D Y, ZHANG Z Y, CHEN X S . The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Molecular Biology, 2017,94:149-165.
doi: 10.1007/s11103-017-0601-0 pmid: 28286910
[23] KENNETH J L, THOMAS D S . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△CT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[24] ZHANG Y, WANG L . The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 2005,5(1):1-12.
doi: 10.1186/1471-2148-5-1 pmid: 15629062
[25] RUSHTON P J, SOMSSICH I E, RINGLER P, SHEN Q J . WRKY transcription factors. Trends in Plant Science, 2010,15:247-258.
doi: 10.1016/j.tplants.2010.02.006
[26] WU K L, GUO Z J, WANG H H, LI J . The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research, 2005,12:9-26.
[27] GUO D, ZHANG J, WANG X, HAN X, WEI B, WANG J . The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis. The Plant Cell, 2015,27:3112-3127.
doi: 10.1105/tpc.15.00829 pmid: 26578700
[28] SCHLUTTENHOFER C, YUAN L . Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology, 2015,167:295-306.
doi: 10.1104/pp.114.251769 pmid: 25501946
[29] ZHANG L, GU L, RINGLER P, SMITH S, RUSHTON P J, SHEN Q J . Three WRKY transcription factors additively repress abscisic acid and gibberellins signaling in aleurone cells. Plant Science, 2015,236:214-222.
doi: 10.1016/j.plantsci.2015.04.014 pmid: 26025535
[30] CHEN L, SONG Y, LI S, ZHANG L, ZOU C, YU D . The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta, 2012,1819:120-128.
doi: 10.1016/j.bbagrm.2011.09.002 pmid: 21964328
[31] BANERJEE A, ROYCHOUDHURY A . WRKY proteins: signaling and regulation of expression during abiotic stress responses. The Scientific World Journal, 2015,2015:3-24.
doi: 10.1155/2015/807560 pmid: 4387944
[32] ZHOU Q Y, TIAN A G, ZOU H F, XIE Z M, LEI G, HUANG J, WANG C M, WANG H W, ZHANG J S, CHEN SY . Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 2008,6:486-503.
doi: 10.1111/j.1467-7652.2008.00336.x pmid: 18384508
[33] JIANG Y, DEYHOLOS M K . Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology, 2006,6:25.
doi: 10.1186/1471-2229-6-25 pmid: 1621065
[34] BERRI S, ABBRUSCATO P, FAIVRE-RAMPANT O, BRASILEIRO A C, FUMASONI I, SATOH K, KIKUCHI S, MIZZI L, MORANDINI P, PÈ M E, PIFFANELLI P . Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biology, 2009,9:120.
doi: 10.1186/1471-2229-9-120 pmid: 19772648
[35] NIU C F, WEI W, ZHOU Q Y, TIAN A G, HAO Y J, ZHANG W K, MA B, LIN Q, ZHANG Z B, ZHANG J S, CHEN S Y . Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell and Environment, 2012,35:1156-1170.
doi: 10.1111/j.1365-3040.2012.02480.x pmid: 22220579
[36] QIN Y, TIAN Y, LIU X . A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochemical And Biophysical Research Communications, 2015,464:428-433.
doi: 10.1016/j.bbrc.2015.06.128 pmid: 26106823
[37] ZHOU L, WANG N N, GONG S Y, LU R, LI Y, LI X B . Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiology and Biochemistry, 2015,96:311-320.
[38] CHEN H, LAI Z B, SHI J W, XIAO Y, CHEN Z X, XU X P . Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 2010,10:281.
doi: 10.1186/1471-2229-10-281 pmid: 21167067
[39] WANG N, QU C Z, WANG Y C, XU H F, JIANG S H, FANG H C, LIU J X, ZHANG Z Y, CHEN X S . MdMYB4 enhances apple callus salt tolerance by increasing MdNHX1 expression levels. Plant Cell, Tissue and Organ Culture, 2017,131:283-293.
doi: 10.1007/s11240-017-1283-7
[40] XU X, CHEN C, FAN B, CHEN Z . Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. The Plant Cell, 2006,18:1310-1326.
doi: 10.1105/tpc.105.037523 pmid: 16603654
[41] CHEN Y F, LI L Q, XU Q, KONG Y H, WANG H, WU W H . The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. The Plant Cell, 2009,21:3554-3566.
doi: 10.1105/tpc.108.064980 pmid: 19934380
[42] BESSEAU S, LI J, PALVA E T . WRKY54 and WRKY70 cooperate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 2012,63:2667-2679.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[4] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[8] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[9] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[10] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[11] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[12] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[13] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[14] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[15] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!