Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4591-4602.doi: 10.3864/j.issn.0578-1752.2018.24.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein

ZHANG HuiYuan1(),LIU YongWei2(),YANG JunFeng3,ZHANG ShuangXi4,YU TaiFei1,CHEN Jun1,CHEN Ming1,ZHOU YongBin1,MA YouZhi1,XU ZhaoShi1(),FU JinDong1()   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081
    2 Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051
    3 Hebei Wangfeng Seed Industry Co., Ltd. Xingtai 054900, Hebei
    4 Institute of Crop Science, Ningxia Academy of Agriculture and Forestry Sciences, Yongning 750105, Ningxia
  • Received:2018-06-27 Accepted:2018-09-12 Online:2018-12-16 Published:2018-12-16

Abstract:

【Objective】 WRKY transcription factors are one of the largest families of transcriptional regulators in plants which functions in the regulation of various physiological programs, including pathogen defense, growth, development and abiotic stresses. Wheat transcription factor TaWRKY33 enhanced drought and heat tolerance in transgenic Arabidopsis. To further investigate its function and stress response mechanism, this article studied its salt tolerance and screened wheat cDNA library to obtain its putative interacting proteins by yeast two-hybrid system. Meanwhile, dual luciferase system was used to detect transcriptional activity of TaWRKY33 transcription factors.【Method】 TaWRKY33 was tested under salt stress using quantitative real-time PCR (qRT-PCR) based on SYBR Green I technology. The coding sequence of TaWRKY33 was cloned into pBI121 driven by CaMV35S promoter. The construct was transformed mediated by Agrobacterium into Arabidopsis plants (Col-0) to obtain transgenic lines. Meanwhile, pWMB110- TaWRKY33 binary vector was used to create over expressed wheat lines. Homozygous T3 seeds of Arabidopsis transgenic lines and T2 wheat overexpression lines were used for salt tolerance analysis. The wheat cDNA was used as the template for amplifying the TaWRKY33 coding sequence, and the bait plasmid pGBKT7- TaWRKY33 was constructed. We transformed the recombinant plasmid and cDNA library into yeast cell AH109. We screened positive clones via SD/-Trp/-Leu/-His/-Ade and SD/Raf/Gal/X-α-gal plate. Predicted clones were sequenced and analyzed by BLAST. The protoplasts of wheat were prepared, and the reporters and effector plasmids were transformed by transient expression experiments, and the relative fluorescence values were calculated to illustrate transcription activity of transcription factors. 【Result】 qRT-PCR analysis showed that TaWRKY33 was induced by salt. The transient expression experiment of double luciferase showed that TaWRKY33 could activate the luciferase activity in wheat cells. From the perspective of functional analysis, formed longer roots compared with wild type plants, the fresh weight of overexpressing Arabidopsis was significantly different from that of wild type. Importantly, from the perspective of fresh weight, relative electrical conductivity and Na + content in salt treatment showed that wheat with overexpression of TaWRKY33 had better salt tolerance than control. Through preliminary analysis, the candidate proteins screened by yeast two-hybrid system showed influence on signal transduction and immune process, which demonstrates that TaWRKY33 plays an important role in stress signal transduction and gene transcription regulation in plants.【Conclusion】 Salt-inducible TaWRKY33 improved salt tolerance in transgenic Arabidopsis and wheat and it has potential transcriptional activation activity in cells; TaWRKY33 might function via interacting with a diverse array of protein partners.

Key words: Triticum aestivum, WRKY transcription factor, yeast two-hybrid system, protein interaction, salt tolerance

Fig. 1

Gene structure, WRKY motif and phylogenetic analysis of TaWRKY33"

Fig. 2

Cis-element analysis of TaWRKY33 promoter"

Fig. 3

The expression pattern of TaWRKY33 under 150 mmol·L-1 NaCl treatment"

Fig. 4

Total root length of Arabidopsis under salt stress"

Fig. 5

TaWRKY33 upregulates relative luciferase activity"

Fig. 6

Amplification and Auto-activity assays of TaWRKY33"

Fig. 7

Screening of TaWRKY33-interacting proteins"

Fig. 8

PCR identification of candidate clones"

Fig. 9

Identification and analysis of salt tolerance of TaWRKY33 transgenic wheat"

Table 1

BLAST analysis and predicted functions of candidate genes"

TaWRKY33的互作蛋白
The proteins interacting with TaWRKY33
GenBank登录号
GenBank accession No.
功能
Functions
烯醇化酶Enolase
乙醇酸氧化酶Glycolate oxidase
KC342469
AAB82143
糖酵解过程Glycolytic process
光呼吸反应中的关键酶,能氧化乙醇酸形成乙醛酸
One of the key enzymes in photorespiration where it oxidizes glycolate to glyoxylate
1,5-二磷酸核酮糖羧化酶/加氧酶小亚基
Chloroplast ribulose-1,5-bisphosphate carboxylase/ oxygenase small subunit (rbcS) gene
KT288199 主要在固定CO2中对D-核酮糖二磷酸羧化以及对戊糖底物的氧化裂解
To catalyze the primary CO2 fixation step in the reductive pentose phosphate pathway
叶绿素a/b结合蛋白
Chlorophyll a/b-binding protein
AAT81763 在光合作用中利用光能同化二氧化碳
To utilizie light energy to assimilate carbon dioxide in photosynthesis
ATP合成酶γ亚基ATP
synthase gamma subunit
ADC33136 与其他亚基组成ATP合成酶
To form the ATP synthase with other subunits
半胱氨酸蛋白酶抑制剂
Cysteine proteinase inhibitor
AY062608 抑制蛋白氨基酸肽链内切酶的水解作用,维持细胞蛋白的构象
Protect cells from inappropriate endogenous or external proteolysis and may regulate intra-or extracellular protein breakdown
泛素结合酶2E2 XM_003568254 参与蛋白的降解途径和DNA的修复途径
To be involved in the ubiquitin-mediated protein degradation pathway and the DNA repair pathway
电压依赖性阴离子通道VDAC3 X82148 电压门控离子通道活性Vo ltage-gated anion channel activity
铝胁迫基因AIP ACV44213 受到铝、干旱以及高盐胁迫上调表达
Up-regulated by the imposition of aluminum, high-salt, and drought stress
WD40重复蛋白WD40
尿酸氧化酶Urate oxidase
未知蛋白Unknown protein
NM_124800
DQ365938
控制植物表皮特征,并且能通过与其他蛋白互作来调控下游基因的表达
Controls plant epidermal traits, and the combination and interaction of these regulatory proteins determine the set of downstream genes to be expressed
参与尿酸合成第一步
This protein is involved in step 1 of the subpathway that synthesizes (S)-allantoin from urate
小麦染色体3B基因组片段
Triticum aestivum chromosome 3B, genomic scaffold
[1] XU Z S, CHEN M, LI L C, MA Y Z . Functions of the ERF transcription factor family in plants. Botany, 2008,86(9):969-977.
[2] XU Z S, CHEN M, LI L C, MA Y Z . Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 2011,53(7):570-585.
doi: 10.1111/j.1744-7909.2011.01062.x pmid: 21676172
[3] RIECHMANN J L, HEARD J, MARTIN G, REUBER L, JIANG C Z, KEDDIE J, ADAM L, PINEDA O, RATCLIFFE O J, SAMAHA R R, CREELMAN R, PILGRIM M, BROUN P, ZHANG J Z, GHANDEHARI D , SHERMAN B K L, YU G .Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000,290(5499):2105.
[4] XIE Z, ZHANG Z L, ZOU X, HUANG J, RUAS P, THOMPSON D, SHEN Q J . Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology, 2005,137(1):176-189.
[5] RUSHTON P J, BOKOWIEC M T, HAN S, ZHANG H, BRANNOCK J F, CHEN X, LAUDEMAN T W, TIMKO M P . Tobacco transcription factors: Novel insights into transcriptional regulation in the solanaceae. Plant Physiology, 2008,147(1):280-295.
doi: 10.1104/pp.107.114041 pmid: 18337489
[6] ZHANG Y, WANG L . The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 2005,5(1):1.
doi: 10.1186/1471-2148-5-1 pmid: 544883
[7] DONG J, CHEN C, CHEN Z . Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 2003,51(1):21-37.
doi: 10.1023/A:1020780022549 pmid: 12602888
[8] SEKI M, UMEZAWA T, URANO K, SHINOZAKI K . Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 2007,10(3):296-302.
doi: 10.1016/j.pbi.2007.04.014 pmid: 17468040
[9] MA T, LI M, ZHAO A, XU X, LIU G, CHENG L . Lcwrky5: An unknown function gene from sheepgrass improves drought tolerance in transgenic Arabidopsis. Plant Cell Reports, 2014,33(9):1507-1518.
doi: 10.1007/s00299-014-1634-3 pmid: 24913125
[10] LEE B H, HENDERSON D A, ZHU J K . The Arabidopsis cold-responsive transcriptome and its regulation by ice1. The Plant Cell, 2005,17(11):3155-3175.
doi: 10.1105/tpc.105.035568 pmid: 16214899
[11] QIU Y, YU D . Over-expression of the stress-induced oswrky45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009,65(1):35-47.
doi: 10.1016/j.envexpbot.2008.07.002
[12] DING Z J, YAN J Y, XU X Y, YU D Q, LI G X, ZHANG S Q, ZHENG S J . Transcription factor wrky46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. The Plant Journal, 2014,79(1):13-27.
doi: 10.1111/tpj.12538 pmid: 24773321
[13] WANG F, CHEN H W, LI Q T, WEI W, LI W, ZHANG W K, MA B, BI Y D, LAI Y C, LIU X L, MAN W Q, ZHANG J S, CHEN S Y . Gmwrky27 interacts with gmmyb174 to reduce expression of gmnac29 for stress tolerance in soybean plants. The Plant Journal, 2015,83(2):224-236.
doi: 10.1111/tpj.12879 pmid: 25990284
[14] CHUJO T, MIYAMOTO K, OGAWA S, MASUDA Y, SHIMIZU T, KISHI-KABOSHI M, TAKAHASHI A, NISHIZAWA Y, MINAMI E, NOJIRI H, YAMANE H, OKADA K . Overexpression of phosphomimic mutated oswrky53 leads to enhanced blast resistance in rice. PLoS ONE, 2014,9(6):e98737.
doi: 10.1371/journal.pone.0098737 pmid: 24892523
[15] HE G H, XU J Y, WANG Y X, LIU J M, LI P S, CHEN M, MA Y Z, XU Z S . Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biology, 2016,16(1):116.
doi: 10.1186/s12870-016-0806-4 pmid: 27215938
[16] ABEL S, THEOLOGIS A . Transient transformation of Arabidopsis leaf protoplasts: A versatile experimental system to study gene expression. The Plant Journal, 2010,5(3):421-427.
doi: 10.1111/j.1365-313X.1994.00421.x pmid: 8180625
[17] 于太飞, 徐兆师, 李盼松, 陈明, 李连城, 张俊华, 马有志 . 小麦蛋白激酶TaMAPK2互作蛋白的筛选与验证. 中国农业科学, 2014,47(13):2494-2503.
YU T F, XU Z S, LI P S, CHEN M, LI L C, ZHANG J H, MA Y Z . Screening and identification of proteins interacting with TaMAPK2 in wheat. Scientia Agricultura Sinica, 2014,47(13):2494-2503. (in Chinese)
[18] 茹京娜, 于太飞, 陈隽, 陈明, 周永斌, 马有志, 徐兆师, 闵东红 . 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选. 中国农业科学, 2017,50(13):2411-2422.
RU J N, YU T F, CHEN J, CHEN M, ZHOU Y B, MA Y Z, XU Z S, MIN D H . Response of wheat zinc-finger transcription factor TaDi19A to cold and its screening of interacting proteins. Scientia Agricultura Sinica, 2017,50(13):2411-2422. (in Chinese)
[19] RUSHTON P J, SOMSSICH I E, RINGLER P, SHEN Q J . WRKY transcription factors. Trends in Plant Science, 2010,15(5):247-258.
doi: 10.1016/j.tplants.2010.02.006
[20] RUSHTON D L, TRIPATHI P, RABARA R C, LIN J, RINGLER P, BOKEN A K, LANGUM T J, SMIDT L, BOOMSMA D D, EMME N J, CHEN X, FINER J J, SHEN Q J, RUSHTON P J . WRKY transcription factors: Key components in abscisic acid signalling. Plant Biotechnology Journal, 2012,10(1):2-11.
[21] LI H, XU Y, XIAO Y, ZHU Z, XIE X, ZHAO H, WANG Y . Expression and functional analysis of two genes encoding transcription factors, vpwrky1 and vpwrky2, isolated from Chinese wild Vitis pseudoreticulata. Planta, 2010,232(6):1325-1337.
doi: 10.1007/s00425-010-1258-y pmid: 20811906
[22] ZHOU Q Y, TIAN A G, ZOU H F, XIE Z M, LEI G, HUANG J, WANG C M, WANG H W, ZHANG J S, CHEN S Y . Soybean WRKY-type transcription factor genes, gmwrky13, gmwrky21, and gmwrky54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 2008,6(5):486-503.
doi: 10.1111/j.1467-7652.2008.00336.x
[23] LI C, LV J, ZHAO X, AI X, ZHU X, WANG M, ZHAO S, XIA G . Tachp: A wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. Plant Physiology, 2010,154(1):211-221.
[24] LI S, FU Q, HUANG W, YU D . Functional analysis of an Arabidopsis transcription factor wrky25 in heat stress. Plant Cell Reports, 2009,28(4):683-693.
doi: 10.1007/s00299-008-0666-y pmid: 19125253
[25] LI S, FU Q, CHEN L, HUANG W, YU D . Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta, 2011,233(6):1237-1252.
[26] JIANG Y, DEYHOLOS M K . Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 2009,69(1/2):91-105.
doi: 10.1007/s11103-008-9408-3 pmid: 18839316
[27] WU X, SHIROTO Y, KISHITANI S, ITO Y, TORIYAMA K . Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing oswrky11 under the control of hsp101 promoter. Plant Cell Reports, 2009,28(1):21-30.
doi: 10.1007/s00299-008-0614-x
[28] BAHRINI I, SUGISAWA M, KIKUCHI R, OGAWA T, KAWAHIGASHI H, BAN T, HANDA H . Characterization of a wheat transcription factor, tawrky45, and its effect on fusarium head blight resistance in transgenic wheat plants. Breeding Science, 2011,61(2):121-129.
doi: 10.1270/jsbbs.61.121
[29] TURAN S, CORNISH K, KUMAR S . Salinity tolerance in plants: Breeding and genetic engineering. Australian Journal of Crop Science, 2012,6(9):1337-1348.
[30] MAHAJAN S, TUTEJA N . Cold, salinity and drought stresses: An overview. Archives of Biochemistry & Biophysics, 2005,444(2):139-158.
[31] TAKAHASHI Y, TATEDA C . The functions of voltage-dependent anion channels in plants. Apoptosis, 2013,18(8):917-924.
doi: 10.1007/s10495-013-0845-3 pmid: 23568336
[32] MILLYARD L, LEE J, ZHANG C, YATES G, SADANANDOM A . The ubiquitin conjugating enzyme, tau4 regulates wheat defence against the phytopathogen Zymoseptoria tritici. Scientific Reports, 2016,6:35683.
doi: 10.1038/srep35683
[33] STREB P, SHANG W, FEIERABEND J, BLIGNY R . Divergent strategies of photoprotection in high-mountain plants. Planta, 2008,207:313-324.
[34] FEUSSNER K, FEUSSNER I, LEOPOLD I, WASTERNACK C . Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato-the first stress-induced UBC of higher plants. FEBS Letters, 1997,409(2):211-215.
doi: 10.1016/S0014-5793(97)00509-7 pmid: 9202147
[35] PENG R H, YAO Q H, XIONG A S, FAN H Q, PENG Y L . Ubiquitin- conjugating enzyme (E2) confers rice UV protection through phenylalanine ammonia-lyase gene promoter unit. Acta Botanica Sinica, 2003,45(11):1351-1358.
doi: 10.1023/A:1022289509702
[36] NIU C F ,WEI W E I, ZHOU Q Y, TIAN A G, HAO Y J, ZHANG W K, MA B, LIN Q, ZHANG Z B, ZHANG J S, CHEN S Y. Wheat wrky genes tawrky2 and tawrky19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant, Cell & Environment, 2012,35(6):1156.
doi: 10.1111/j.1365-3040.2012.02480.x pmid: 22220579
[1] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[2] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[3] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[4] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[5] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[6] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[7] ZHAI ShengNan,LIU AiFeng,LI FaJi,LIU Cheng,GUO Jun,HAN Ran,ZI Yan,WANG XiaoLu,LÜ YingYing,LIU JianJun. Improvement and Application of the Method for Determining Yellow Pigment Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(2): 239-247.
[8] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
[9] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[10] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
[11] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
[12] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[13] LIU PeiXun,WAN HongShen,ZHENG JianMin,LUO JiangTao,PU ZongJun. Genome-Wide Identification and Expression Analysis of PIN Genes Family in Wheat [J]. Scientia Agricultura Sinica, 2020, 53(12): 2321-2330.
[14] YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078.
[15] LI XiaoBo,LI Zhen,DAI ShaoJun,PAN JiaoWen,WANG QingGuo,GUAN YanAn,DING GuoHua,LIU Wei. Response of Receptor-Like Protein Kinase Gene SiRLK35 of Foxtail Millet to Salt in Heterologous Transgenic Rice [J]. Scientia Agricultura Sinica, 2019, 52(22): 3976-3986.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!