Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (23): 4673-4685.doi: 10.3864/j.issn.0578-1752.2024.23.008

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Late Sowing on Yield, Quality, Photosynthetic Source Succession and Loadability Characteristics of Rape

LI Fei(), XIONG Cai, GU JiaJia, CAO Xin, WANG ShanShan, HU Wei, ZHOU ZhiGuo, CHEN BingLin()   

  1. College of Agriculture, Nanjing Agricultural University/Key Laboratory of Crop Physiology, Ecology and Production Management, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Crop Production Cosponsored by Province and Ministry, Nanjing 210095
  • Received:2024-04-04 Accepted:2024-05-29 Online:2024-12-01 Published:2024-12-07

Abstract:

【Objective】 This study aimed to explore the regulation mechanism of late sowing on succession of photosynthetic sources (leaf and silique shell), source loadability, yield and quality in rape. 【Method】 The experiment was conducted in the Dafeng District, Yancheng city of Jiangsu Province, and Nanjing of Jiangsu Province in 2022-2023. The main factors sowing dates were set up at 6 levels, October 17th (SD1), October 23rd (SD2), October 29th (SD3), November 4th (SD4), November 10th (SD5), and November 16th (SD6), and the secondary factors were two conventional varieties: Nannongyou 4 (strong cold resistance) and Zheyou 51 (medium cold resistance). The effects of different sowing dates on dynamic change characteristics of leaf area index (LAI), pod area index (PAI) and source succession, source loadability and rape yield and quality were investigated. 【Result】 (1) The later the sowing dates, the younger the pre-winter seedling age, and the lower the overwintering survival rate. The latest safe date of late-sowing rapeseed in the lower reaches of Yangtze River was the end of October, and the pre-winter seedling age was more than 5 leaves. The sowing date was postponed to November, the leaf age of rape decreased to 1.2-3.6 leaves, and the average overwintering survival rate was less than 30%. The average overwintering rate of Nannongyou 4 in November was 30.9%, which was 14.5% higher than that of Zheyou 51. (2) During the latest safe sowing period, the yield of rapeseed decreased significantly with the delay of sowing dates, and the decrease of plant silique number and 1000-seed weight were the most direct factors causing the decrease of oilseed yield. With the delay of sowing date, compared with SD1, the yield of SD2 and SD3 decreased by 9.6% and 29.0%, the number of plant silique number decreased by 6.1% and 23.9%, and the 1000-seed weight decreased by 4.4% and 6.5%, respectively. The average content of fat and protein in Nannongyou 4 was 42.9% and 25%, which in Zheyou 51 was 47.9% and 22.7%, respectively. (3) With the delay of sowing dates, the maximum LAI and PAI of rape decreased significantly, the slow growth rate before LAI reaching the peak and the fast decline rate after LAI reaching the peak both decreased, and the rapid growth rate of PAI slowed down. The later the sowing dates, the earlier the LAI and PAI succession points (the lower the effective accumulated temperature), and the lower the LAI and PAI succession points (the lower the LAI and PAI succession point). The photosynthetic source and source succession dynamic characteristic values of Nannongyou 4 were generally better than those of Zheyou 51. (4) With the delay of sowing date, the leaf area decreased faster than the seeds yield and pod area, caused the leaf loadability gradually increased, while the silique loadability gradually decreased. Insufficient leaf source and seeds sink were the main reasons for the yield reduction of late sowing. The leaf and shell loadability of Nannongyou 4 was both higher than that of Zheyou 51.【Conclusion】 Within the latest safe sowing period of rapeseed in the lower reaches of Yangtze River, it was advisable to select cold-resistant, high-yield and high-oil varieties with suitable photosynthetic source succession point and high source load, to reduce yield loss caused by late sowing.

Key words: rape (Brassica napus L.), late sowing, leaf area index, pod area index, succession of photosynthetic sources, loadability, yield, quality

Fig. 1

Average daily temperature during the whole growth period of rape"

Table 1

Effects of different sowing dates on pre-winter seedling age of rape (leaf)"

地点
Place
品种
Variety
播期 Sowing date
SD1 SD2 SD3 SD4 SD5 SD6
大丰
Dafeng
V1 7.4a 5.9b 4.7c 3.6d 1.9e 1.2f
V2 7.6a 5.5b 4.4c 3.6d 1.9e 1.3f
南京
Nanjing
V1 8.8a 7.2c 5.2d 3.3e 1.8f 1.3f
V2 8.7a 7.8b 4.8d 3.3e 1.8f 1.3f

Fig. 2

Effects of different sowing dates on overwintering survival rate of winter rape A and B indicate Dafeng and Nanjing pilot, respectively"

Table 2

Effects of different sowing dates on yield and quality of rape"

地点
Place
播期
Sowing date
品种
Variety
单株角果数
Plant silique number
每角果粒数
Number of seeds
千粒重
1000-seed weight (g)
产量
Yield
(kg·hm-2)
脂肪含量
Fat content
(%)
蛋白质含量
Protein content
(%)
大丰
Dafeng
SD1 V1 129.5a 22.3a 4.00a 3814.7a 43.0b 24.8a
V2 99.5b 21.9a 3.77b 2693.3c 47.7a 22.5b
SD2 V1 119.3a 22.9a 3.72bc 3352.8b 42.5b 24.0a
V2 100.0b 22.6a 3.55cd 2646.2c 47.5a 21.9b
SD3 V1 105.0b 21.8a 3.54cd 2694.8c 42.8b 24.7a
V2 55.8c 22.7a 3.47d 1445.1d 47.5a 21.6b
南京
Nanjing
SD1 V1 119.5b 22.1a 4.03a 3506.5ab 43.0b 24.9ab
V2 130.4a 22.4a 3.88b 3745.4a 48.0a 23.1b
SD2 V1 117.8ab 21.7a 3.87b 3258.5bc 43.1b 25.6a
V2 110.0bc 22.2a 3.84b 3089.3bcd 48.7a 23.1b
SD3 V1 106.0bc 22.3a 3.81b 2971.2cd 42.9b 25.7a
V2 102.5c 21.5a 3.86b 2810.9d 47.8a 23.3b
F值 F-value
地点 Place (P) ** NS ** ** ** **
播期 Sowing date (SD) ** NS ** ** NS NS
品种Vairety (V) ** NS ** ** ** **
地点×播期 P×SD * NS * * NS NS
地点×品种 P×V ** NS * ** * NS
播期×品种 SD×V * NS * NS NS NS
地点×播期×品种 P×SD×V ** NS NS * NS NS

Fig. 3

Changes in photosynthetic area index of rape under different sowing dates A, B, C and D indicate Dafeng Nannongyou 4, Dafeng Zheyou 51, Najing Nannongyou 4 and Nanjing Zheyou 51, respectively"

Table 3

Dynamic characteristics of leaf area index in rape under different sowing dates"

地点
Place
播期
Sowing
date
品种
Variety
回归方程
Regression equation
R2 LAIM EATLAIM
(℃·d)
LAI上升期
LAI ascent stage
LAI下降期
LAI descent stage
MR1
(/(100
℃·d))
EATM1
(℃·d)
Ravg1
(/(100
℃·d))
MR2
(/(100
℃·d))
EATM2
(℃·d)
Ravg2
(/(100
℃·d))
大丰
Dafeng
SD1 V1 LAI=1864.9/(1+e1.03×10-8EAT3-5.04×10-6EAT2-0.0082EAT+11.1 0.930 ** 3.0 701.2 0.93 531.2 0.55 -1.16 872.6 -0.75
V2 LAI=1843.3/(1+e6.24×10-9EAT3-3.07×10-6EAT2-0.0076EAT+11.4 0.969 ** 2.7 820.6 0.71 622.6 0.43 -0.87 1020.7 -1.12
SD2 V1 LAI=1607.1/(1+e1.03×10-8EAT3-5.08×10-6EAT2-0.0084EAT+11.3 0.801 ** 2.4 711.2 0.76 542.5 0.45 -0.93 882.5 -0.60
V2 LAI=1645.2/(1+e8.84×10-9EAT3-5.16×10-6EAT2-0.0076EAT+11.6 0.935 ** 2.1 764.7 0.62 586.6 0.37 -0.77 945.6 -0.39
SD3 V1 LAI=1094.2/(1+e1.35×10-8EAT3-6.90×10-6EAT2-0.0092EAT+11.6 0.761 ** 1.8 677.1 0.63 524.6 0.38 -0.78 832.7 -1.00
V2 LAI=1374.7/(1+e1.03×10-8EAT3-5.44×10-6EAT2-0.0081EAT+11.7 0.891 ** 1.4 715.5 0.44 546.5 0.26 -0.55 887.2 -0.35
南京
Nanjing
SD1 V1 LAI=2175.3/(1+e4.03×10-9EAT3-1.04×10-6EAT2-0.0076EAT+10.9 0.901 ** 4.6 885.3 1.11 660.0 0.67 -1.34 1111.3 -0.87
V2 LAI=3741.4/(1+e2.81×10-9EAT3-1.38×10-6EAT2-0.0051EAT+10.4 0.936 ** 4.4 957.2 0.91 689.9 0.54 -1.15 1227.0 -0.74
SD2 V1 LAI=1169.3/(1+e4.96×10-9EAT3-8.13×10-7EAT2-0.0094EAT+11.3 0.915 ** 3.8 852.4 1.02 649.2 0.63 -1.22 1056.4 -0.79
V2 LAI=1303.8/(1+e3.91×10-9EAT3-1.59×10-6EAT2-0.0063EAT+10.6 0.904 ** 3.4 882.4 0.77 647.4 0.46 -0.96 1120.7 -0.62
SD3 V1 LAI=1149.0/(1+e5.69×10-9EAT3-1.57×10-6EAT2-0.0092EAT+11.4 0.933 ** 3.1 832.2 0.85 635.6 0.52 -1.02 1030.8 -0.66
V2 LAI=1592.8/(1+e4.93×10-9EAT3-2.00×10-6EAT2-0.0074EAT+11.2 0.935 ** 2.3 854.4 0.58 641.4 0.35 -0.71 1069.7 -0.46

Table 4

Dynamic characteristics of pod area index in rape under different sowing dates"

地点
Place
播期
Sowing date
品种
Variety
回归方程
Regression equation
R2 PAIM MR3
(/(100℃·d))
EATM3
(℃·d)
EAT1
(℃·d)
EAT2
(℃·d)
∆EAT
(℃·d)
大丰
Dafeng
SD1 V1 PAI=2.7/(1+e-0.023EAT+19.5 0.967** 2.7 1.57 841.8 784.9 898.6 113.7
V2 PAI=2.4/(1+e-0.020EAT+16.9 0.971** 2.4 1.07 839.5 774.1 904.8 130.7
SD2 V1 PAI=2.3/(1+e-0.019EAT+14.8 0.962** 2.3 0.78 798.6 727.6 869.6 141.9
V2 PAI=2.2/(1+e-0.019EAT+15.1 0.995** 2.2 1.21 798.4 728.8 868.1 139.4
SD3 V1 PAI=1.8/(1+e-0.018EAT+13.8 0.963** 1.8 1.01 778.4 704.3 852.5 148.1
V2 PAI=1.8/(1+e-0.017EAT+12.4 0.984** 1.8 0.74 737.9 659.7 816.1 156.3
南京
Nanjing
SD1 V1 PAI=3.2/(1+e-0.012EAT+13.1 0.964** 3.2 0.99 1050.8 944.7 1156.8 212.1
V2 PAI=3.4/(1+e-0.014EAT+14.3 0.981** 3.4 0.72 1017.8 923.8 1111.8 188.0
SD2 V1 PAI=2.5/(1+e-0.011EAT+11.3 0.99** 2.5 0.48 988.2 872.9 1103.4 230.4
V2 PAI=3.2/(1+e-0.014EAT+13.9 0.927** 3.2 1.18 1007.5 912.2 1102.8 190.6
SD3 V1 PAI=2.4/(1+e-0.008EAT+7.8 0.966** 2.4 1.11 986.7 819.8 1153.6 333.8
V2 PAI=2.8/(1+e-0.013EAT+12.0 0.988** 2.8 0.71 915.4 814.9 1015.9 200.9

Fig. 4

Effects of different sowing dates on source loadability of rape A and C indicate Dafeng plot, B and D indicate Nanjing plot"

[1]
张琼瑛, 周桂清, 王国槐, 邹应斌. 播种期和播种方式对免耕直播油菜生长与产量的影响. 作物研究, 2004, 18(3): 167-170.
ZHANG Q Y, ZHOU G Q, WANG G H, ZOU Y B. Study of seeding times and methods on the growth and yield of oilseed rape under the no-tillage condition. Crop Research, 2004, 18(3): 167-170. (in Chinese)
[2]
杨萍, 鲜孟筑, 胡立勇, 徐正华. 低温胁迫对油菜种子萌发及幼苗生长的影响. 华中农业大学学报, 2015, 34(6): 7-13.
YANG P, XIAN M Z, HU L Y, XU Z H. Effects of low-temperature on seed germination and seedling development of rapeseed. Journal of Huazhong Agricultural University, 2015, 34(6): 7-13. (in Chinese)
[3]
苏伟, 鲁剑巍, 周广生, 李小坤, 韩自航, 雷海霞. 免耕及直播密度对油菜生长、养分吸收和产量的影响. 中国农业科学, 2011, 44(7): 1519-1526. doi: 10.3864/j.issn.0578-1752.2011.07.027.
SU W, LU J W, ZHOU G S, LI X K, HAN Z H, LEI H X. Effect of no-tillage and direct sowing density on growth, nutrient uptake and yield of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2011, 44(7): 1519-1526. doi: 10.3864/j.issn.0578-1752.2011.07.027. (in Chinese)
[4]
TURHAN H, GÜL M K, EGESEL C Ö, KAHRIMAN F. Effect of sowing time on grain yield, oil content, and fatty acids in rapeseed (Brassica napus subsp. oleifera). Turkish Journal of Agriculture and Forestry, 2011, 35(3): 225-234.
[5]
OZER H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. European Journal of Agronomy, 2003, 19(3): 453-463.
[6]
SHAFIGHI A, ARDAKANI M R, SHIRANI RAD A H, ALAVIFAZEL M, RAFIEI F. Grain yield and associated physiological traits of rapeseed (Brassica napus L.) cultivars under different planting dates and drought stress at the flowering stage. Italian Journal of Agronomy, 2021, 16(1): 1648.
[7]
蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51(24): 4625-4632. doi: 10.3864/j.issn.0578-1752.2018.24.004.
KUAI J, WANG J J, ZUO Q S, CHEN H L, GAO J Q, WANG B, ZHOU G S, FU T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Scientia Agricultura Sinica, 2018, 51(24): 4625-4632. doi: 10.3864/j.issn.0578-1752.2018.24.004. (in Chinese)
[8]
李莉. 播期、 密度对油菜产量和品质及生产潜力影响的研究[D]. 武汉: 华中农业大学, 2005.
LI L. The study on the effect of rapeseed yield, quality and production potential under different sowing date and density[D]. Wuhan: Huazhong Agricultural University, 2005. (in Chinese)
[9]
凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000: 387-389.
LING Q H. Crop Population Quality. Shanghai: Shanghai Scientific and Technical Publishers, 2000: 387-389. (in Chinese)
[10]
巩若琳, 宋波, 杨志叶, 路丽静, 董军刚. 迟播和密度对不同油菜品种抗倒伏及产量的影响. 作物学报, 2023, 49(10): 2777-2792.
GONG R L, SONG B, YANG Z Y, LU L J, DONG J G. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars. Acta Agronomica Sinica, 2023, 49(10): 2777-2792. (in Chinese)

doi: 10.3724/SP.J.1006.2023.24248
[11]
GOFFMAN F D, ALONSO A P, SCHWENDER J, SHACHAR-HILL Y, OHLROGGE J B. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiology, 2005, 138(4): 2269-2279.

pmid: 16024686
[12]
吴永成, 徐亚丽, 彭海浪, 李壮, 牛应泽. 播期及种植密度对直播油菜农艺性状和产量品质的影响. 西南农业学报, 2015, 28(2): 534-538.
WU Y C, XU Y L, PENG H L, LI Z, NIU Y Z. Effects of sowing date and plant density on agronomic traits, yield and quality of direct-sown oilseed rape (Brassica napus L.) in Sichuan Province. Southwest China Journal of Agricultural Sciences, 2015, 28(2): 534-538. (in Chinese)
[13]
GRAMI B, STEFANSSON B R, BAKER R J. Genetics of protein and oil content in summer rape: Heritability, number of effective factors, and correlations. Canadian Journal of Plant Science, 1977, 57(3): 937-943.
[14]
胡盛, 李阳阳, 唐章林, 李加纳, 曲存民, 刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析. 中国农业科学, 2023, 56(1): 17-35. doi: 10.3864/j.issn.0578-1752.2023.01.002.
HU S, LI Y Y, TANG Z L, LI J N, QU C M, LIU L Z. Genome-wide association analysis of the changes in oil content and protein content under drought stress in Brassica napus L.. Scientia Agricultura Sinica, 2023, 56(1): 17-35. doi: 10.3864/j.issn.0578-1752.2023.01.002. (in Chinese)
[15]
BRUNEL-MUGUET S, BEAUCLAIR P, BATAILLÉ M P, AVICE J C, TROUVERIE J, ETIENNE P, OURRY A. Light restriction delays leaf senescence in winter oilseed rape (Brassica napus L.). Journal of Plant Growth Regulation, 2013, 32(3): 506-518.
[16]
王玲. 油菜光合面积指数消长变化及高产群体指标研究[D]. 武汉: 华中农业大学, 2019.
WANG L. Study on the dynamic changes of photosythetic area index and the canopy indices of high yield rapeseed[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[17]
蔡昆争, 骆世明. 不同生育期遮光对水稻生长发育和产量形成的影响. 应用生态学报, 1999, 10(2): 193-196.
CAI K Z, LUO S M. Effect of shading on growth, development and yield formation of rice. Chinese Journal of Applied Ecology, 1999, 10(2): 193-196. (in Chinese)
[18]
KHAYAT M, RAHNAMA A, LORZADEH S, LACK S. Physiological indices, phenological characteristics and trait evaluation of canola genotypes response to different planting dates. Proceedings of the National Academy of Sciences of the United States, India Section B: Biological Sciences, 2016, 88(1): 153-163.
[19]
LABRA M H, STRUIK P C, EVERS J B, CALDERINI D F. Plasticity of seed weight compensates reductions in seed number of oilseed rape in response to shading at flowering. European Journal of Agronomy, 2017, 84: 113-124.
[20]
KIRKEGAARD J A, LILLEY J M, MORRISON M J. Drivers of trends in Australian canola productivity and future prospects. Crop and Pasture Science, 2016, 67(4): i-ix.
[21]
王兴才, 杨文钰. 基于间套作弱光胁迫下作物源库协调与产量研究进展. 中国油料作物学报, 2019, 41(2): 292-299.

doi: 10.7505/j.issn.1007-9084.2019.02.019
WANG X C, YANG W Y. Review on relationship of source-sink and crop yield under shading stress in intercropping systems. Chinese Journal of Oil Crop Sciences, 2019, 41(2): 292-299. (in Chinese)
[22]
王瑛, 张胜, 张润生. 植物激素处理对春油菜结实特性的影响. 华北农学报, 2005, 20(S1): 50-53.

doi: 10.7668/hbnxb.2005.S1.014
WANG Y, ZHANG S, ZHANG R S. Effects of plant hormones treament on seeds set of characteristics in rapeseed. Acta Agriculturae Boreali-Sinica, 2005, 20(S1): 50-53. (in Chinese)

doi: 10.7668/hbnxb.2005.S1.014
[23]
冷锁虎, 唐瑶, 李秋兰, 左青松, 杨萍. 油菜的源库关系研究 Ⅰ.角果大小对油菜后期源库的调节. 中国油料作物学报, 2005, 27(3): 37-40.
LENG S H, TANG Y, LI Q L, ZUO Q S, YANG P. Studies on source and sink of rapeseed Ⅰ.Regulation of pod size on source and sink in rapeseed after flowering. Chinese Journal of Oil Crop Scieves, 2005, 27(3): 37-40. (in Chinese)
[24]
中华人民共和国农业农村部公告第12号. 中华人民共和国农业农村部公报, 2018(5): 56.
Announcement No.12 of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Gazette of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2018(5): 56. (in Chinese)
[25]
中华人民共和国农业农村部公告第2566号, 2017. http://www.zzj.moa.gov.cn/gsgg/201712/t20171222_6313696.htm.
Announcement No. 2566 of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2017. http://www.zzj.moa.gov.cn/gsgg/201712/t20171222_6313696.htm. (in Chinese)
[26]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[27]
冷锁虎, 朱耕如. 油菜角果表面积的计算方法. 中国油料, 1991, 13(3): 76-77.
LENG S H, ZHU G R. Calculation method of surface area of rape horn fruit. Chinese Journal of Oil Crop Sciences, 1991, 13(3): 76-77. (in Chinese)
[28]
LÓPEZ-BASCÓN M A, LUQUE DE CASTRO M D. Soxhlet Extraction. Liquid-Phase Extraction. Amsterdam: Elsevier, 2020: 327-354.
[29]
BOUCHEREAU A, CLOSSAIS-BESNARD N, BENSAOUD A, LEPORT L, RENARD M. Water stress effects on rapeseed quality. European Journal of Agronomy, 1996, 5(1): 19-30.
[30]
王信理. 在作物干物质积累的动态模拟中如何合理运用Logistic方程. 农业气象, 1986, 7(1): 14-19.
WANG X L. How to use Logistic equation reasonably in dynamic simulation of crop dry matter accumulation. Chinese Journal of Agrometeorology, 1986, 7(1): 14-19. (in Chinese)
[31]
王春丽, 王周礼, 陈婷, 杨建利, 陈文杰, 穆建新, 田建华, 赵小光. 甘蓝型油菜生殖生长期叶片和角果光合与产量关系的研究. 西北植物学报, 2016, 36(7): 1417-1426.
WANG C L, WANG Z L, CHEN T, YANG J L, CHEN W J, MU J X, TIAN J H, ZHAO X G. Relationship between yield and photosynthesis of leaf and silique of different Brassica napus L. varieties during reproduction period. Acta Botanica Boreali- Occidentalia Sinica, 2016, 36(7): 1417-1426. (in Chinese)
[32]
袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54(8): 1613-1626. doi: 10.3864/j.issn.0578-1752.2021.08.004.
YUAN Y, WANG B, ZHOU G S, LIU F, HUANG J S, KUAI J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626. doi: 10.3864/j.issn.0578-1752.2021.08.004. (in Chinese)
[33]
张树杰, 李玲, 张春雷. 播种期和种植密度对冬油菜籽粒产量和含油率的影响. 应用生态学报, 2012, 23(5): 1326-1332.
ZHANG S J, LI L, ZHANG C L. Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape. Chinese Journal of Applied Ecology, 2012, 23(5): 1326-1332. (in Chinese)
[34]
MOMOH E J J, ZHOU W. Growth and yield responses to plant density and stage of transplanting in winter oilseed rape (Brassica napus L.). Journal of Agronomy and Crop Science, 2001, 186(4): 253-259.
[35]
LIERSCH A, BOCIANOWSKI J, NOWOSAD K, MIKOŁAJCZYK K, SPASIBIONEK S, WIELEBSKI F, MATUSZCZAK M, SZAŁA L, CEGIELSKA-TARAS T, SOSNOWSKA K, BARTKOWIAK- BRODA I. Effect of genotype × environment interaction for seed traits in winter oilseed rape (Brassica napus L.). Agriculture, 2020, 10(12): 607.
[36]
OMIDI H, TAHMASEBI Z, ALI NAGHDI BADI H, TORABI H, MIRANSARI M. Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. Comptes Rendus Biologies, 2010, 333(3): 248-254.
[37]
MORSHEDI A. An investigation into the effects of sowing time, N and P fertilizers on seed yield, oil and protein production in canola. Archives of Agronomy and Soil Science, 2011, 57(5): 533-547.
[38]
NAZERI P, SHIRANI RAD A H, VALADABADI S A, MIRAKHORI M, HADIDI MASOULE E. Effect of sowing dates and late season water deficit stress on quantitative and qualitative traits of canola cultivars. Outlook on Agriculture, 2018, 47(4): 291-297.
[39]
张敏, 钟志堂, 金梅, 赵敏, 吴崇友. 江苏省油菜生产现状与问题分析. 中国农机化学报, 2021, 42(8): 209-213, 236.

doi: 10.13733/j.jcam.issn.2095-5553.2021.08.28
ZHANG M, ZHONG Z T, JIN M, ZHAO M, WU C Y. Current status and problems facing rapeseed production in Jiangsu Province. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 209-213, 236. (in Chinese)
[40]
张子龙, 李加纳, 唐章林, 谌利. 播期和密度对甘蓝型黄籽油菜主要品质的影响. 西南农业大学学报(自然科学版), 2005, 27(6): 791-794, 798.
ZHANG Z L, LI J N, TANG Z L, CHEN L. Effects of sowing date and planting density on the seed colour and the related quality characters of yellow-seeded rapeseed (Brassica napus L.). Journal of Southwest University (Natural Science Edition), 2005, 27(6): 791-794, 798. (in Chinese)
[41]
倪绯. 不同农艺措施对油菜角果碳氮代谢与油脂积累的影响[D]. 武汉: 华中农业大学, 2018.
NI F. Effect of different agronomic measures on carbon-nitrogen metabolism and oil accumulation in rapeseed pod[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[42]
WANG C L, HAI J B, YANG J L, TIAN J H, CHEN W J, CHEN T, LUO H B, WANG H. Influence of leaf and silique photosynthesis on seeds yield and seeds oil quality of oilseed rape (Brassica napus L.). European Journal of Agronomy, 2016, 74: 112-118.
[43]
屠乃美, 官春云. 油菜库器官分化发育期剪叶对源库关系的影响. 湖南农业大学学报(自然科学版), 2001, 27(4): 258-263.
TU N M, GUAN C Y. Effects on sink-source relationship by leaf-cutting during sink organ differentiation and development of rapeseed. Journal of Hunan Agricultural University, 2001, 27(4): 258-263. (in Chinese)
[44]
戴敬, 郑伟, 喻义珠, 杨举善. 油菜花后光合面积变化及其与产量的关系. 中国油料作物学报, 2001, 23(2): 19-22.
DAI J, ZHENG W, YU Y Z, YANG J S. The relationship between yield and photosynthetic area after flowering in rapeseed. Chinese Journal of Oil Crop Scieves, 2001, 23(2): 19-22. (in Chinese)
[45]
王春丽, 海江波, 田建华, 杨建利, 赵晓光. 油菜终花后角果和叶片光合对籽粒产量和品质的影响. 西北植物学报, 2014, 34(8): 1620-1626.
WANG C L, HAI J B, TIAN J H, YANG J L, ZHAO X G. Influence of silique and leaf photosynthesis on yield and quality of seed of oilseed rape (Brassica napus L.) after flowering. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1620-1626. (in Chinese)
[46]
刘建国, 帕尼古丽, 董志新, 黄瑛, 张继生, 朱新在. 单位叶面积负荷量对大豆源库调节效应的研究. 石河子大学学报(自然科学版), 2003, 21(4): 259-262.
LIU J G, PA N, DONG Z X, HUANG Y, ZHANG J S, ZHU X Z. Regulation effect study of unit-leaf-area load on source and sink activity in soybean. Journal of Shihezi University (Natural Science), 2003, 21(4): 259-262. (in Chinese)
[47]
LUO T, ZHANG J, KHAN M N, LIU J H, XU Z H, HU L Y. Temperature variation caused by sowing dates significantly affects floral initiation and floral bud differentiation processes in rapeseed (Brassica napus L.). Plant Science, 2018, 271: 40-51.
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[4] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[5] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[6] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[7] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[8] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[9] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[10] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[11] YANG Yang, JIA MengHan, CHEN Can, ZHANG YiHan, TONG YuXin. Effects of Different Ratios of Green-Blue Light on Basil Growth and Its Energy Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(6): 1167-1179.
[12] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[13] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[14] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[15] HUANG Hao, WU QingHong, ZHANG Yu, WANG Ye, LIU QingE, FANG YiDa, LUO ZiSheng. Effects of Novel Phase Change Coolant on the Postharvest Quality of Shiitake Mushrooms [J]. Scientia Agricultura Sinica, 2024, 57(5): 989-999.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!