Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4459-4472.doi: 10.3864/j.issn.0578-1752.2024.22.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Planting Density on the Pod Characteristics and Exploring Strategie Analysis to Increase Yield in High-Yield Rapeseed

LI YiYang(), WANG Long, QIAN Chen, LI Jing, LIN GuoBing, QU WenTing, WANG Yan, LIN YaoWei, HUANG YiHang, ZHENG JingDong, YOU JingJing, ZUO QingSong()   

  1. College of Agriculture, Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu
  • Received:2024-05-08 Accepted:2024-08-05 Online:2024-11-16 Published:2024-11-22
  • Contact: ZUO QingSong

Abstract:

【Objective】Planting density is an important factor affecting pod quantity and quality in rapeseed. Based on a certain number of rapeseed pod quantity, the quality of rapeseed kernels was improved to further tap the potential of rapeseed production, so as to explore the effect of kernels quality on the formation of rapeseed population yield.【Method】The experiment was conducted to investigate the effects of planting density on rapeseed yield, canopy, and pod characteristics during the 2021 to 2022 and 2022 to 2023 growing seasons in Shiye Experimental site of Yangzhou University in Zhenjiang. Qinyou10 and Ningza1838 were used as the rape test materials. Five planting density levels were set as 2.4×105 plant/hm2 (D1), 3.6×105 plant/hm2 (D2), 4.8×105 plant/hm2 (D3), 6.0×105 plant/hm2 (D4), and 7.2×105·plant/hm2 (D5). 【Result】As planting density increased from D1 to D5, the number of pods in population and plot seed yield initially increased and decreased thereafter. The number of pods in population in D3 and D4 was higher than that in other densities, and plot seed yield reached the maximum value in D2 and D3. The canopy thickness, ranging from 41.50 cm to 80.98 cm across different treatments, increased with an increase in planting density from D2 to D5. The pod density, ranging from 0.98×104 to 2.16×104 per cubic meter, significantly increased as planting density increased. According to the number of seeds per pod across different treatments, the pods were categorized into low efficient pod (≤14), middle efficient pod (15 to 17), and high efficient pod (≥18), respectively. The average yield per pod of low, middle, and high efficient pod was 19.40×10-3, 53.41×10-3 and 80.62×10-3 g, respectively. The allocation ratio of pod number ranged from 27.60% to 40.96% for low efficient pod, 8.39% to19.73% for middle efficient pod and 39.31% to 63.28% for highly efficient pod, respectively. Among the three types of pods, the ratio of yield for highly efficient pod was the highest and the range of variation for low, middle and high efficient type was from 8.41% to 15.62%, 7.24% to 22.01% and 62.60% to 83.92%, respectively. As planting density increased from D3 to D5, the quantity and allocation ratio of highly efficient pod significantly decreased, resulting in decreasing seed yield. 【Conclusion】When the target seed yield was 4 500 kg·hm-2, the appropriate planting density and population quality indicators with suitable sowing date were as follows: planting density ranged from 3.6 to 4.8×105 plant·hm-2, the number of pods in population ranged from 83.0 to 94.0×106·hm-2, and the allocation ratio of high efficient pod (≥18 seeds per pod) is more than 50%. Increasing the number of seeds per pod to improve the quantity and allocation ratio of highly efficient pod was an effective way to further enhance the seed yield in rapeseed.

Key words: rapeseed, yield components, pod characteristics, highly efficient pod, approach to enhance yield

Fig. 1

Plot seed yield at ripening stage in different treatments Error bar represents SD, and different lowercases in the same year and variety experiment mean significant difference at P<0.05 level. The same as below"

Fig. 2

Relationship between yield and density in different treatments"

Table 1

Variance analyses of main traits under different treatments"

项目
Item
年份
Year
(Y)
品种
Variety
(V)
密度
Density
(D)
年份
×品种
Y×V
年份
×密度
Y×D
品种
×密度
V×D
年份×品种
×密度
Y×V×D
产量 Yield ** ** ** ns ns * ns
群体角果数 Number of pods in population * ** ** ns ns ** ns
群体每角粒数Number of seeds per pod in population ns ** ** ns ns ns ns
群体千粒重1000-seed weight in population ** ** ** ns ns * ns
结角层厚度 Canopy thickness * * ** ns ns * ns
高效类型角果数 Number of pods in high type ns * ** ns ns ns ns
中效类型角果数 Number of pods in middle type ns ns ** ns ns ** ns
低效类型角果数 Number of pods in low type ns ** ** ns ns ** ns
高效类型角果粒数 Number of seeds per pod in high type ** ns ** ns ns ** ns
中效类型角果粒数 Number of seeds per pod in middle type ns * ** ns ns ** ns
低效类型角果粒数 Number of seeds per pod in low type ns ** ** ns ns ** ns
高效类型千粒重 1000-seed weight in high type ns ** ** ns ns * ns
中效类型千粒重 1000-seed weight in middle type ns ** ** ns ns * ns
低效类型千粒重 1000-seed weight in low type ** ** ** ns ns ns ns

Table 2

Yield components under different treatments"

品种
Variety
密度
Density
2021—2022 2022—2023
群体角果数
Number of pods in population (×106·hm-2)
每角粒数
Number of seeds per pod
千粒重
1000-seed
weight (g)
群体角果数
Number of pods in population (×106·hm-2)
每角粒数
Number of seeds per pod
千粒重
1000-seed
weight (g)
秦优10号
Qinyou 10
D1 78.50d 17.8a 3.494a 79.02d 17.7a 3.451b
D2 85.54c 17.8a 3.535a 85.67c 17.8a 3.531a
D3 94.02a 16.7b 3.537a 93.11a 16.8b 3.529a
D4 95.42a 15.5c 3.217b 94.61a 15.5c 3.115c
D5 91.01b 14.9d 3.102c 88.59b 14.7d 3.056d
宁杂1838
Ningza 1838
D1 79.39d 17.7a 3.671b 79.40d 17.8a 3.585b
D2 83.44c 17.8a 3.778a 82.62c 17.8a 3.730a
D3 90.56b 16.6b 3.718ab 89.57b 16.5b 3.734a
D4 94.26a 15.2c 3.325c 92.34a 15.2c 3.278c
D5 90.48b 14.3d 3.221d 89.21b 14.3d 3.156d

Fig. 3

Heights of pod starting point and pod ending point under different treatments"

Fig. 4

Canopy thicknesses under different treatments"

Fig. 5

Number of pods per cubic meter under different treatment"

Table 3

Differences of yield components of three efficient pods under different treatments"

产量构成因素
Yield components
品种
Variety
密度
Density
2021—2022 2022—2023
低效
Low efficient
中效
Middle efficient
高效
High efficient
低效
Low efficient
中效
Middle efficient
高效
High efficient
群体角果数
Number of pods
in population
(×106·hm-2)
秦优10号
Qinyou 10
D1 23.28c 7.13c 48.09c 23.66c 7.16c 48.20c
D2 23.62c 8.04c 53.89a 23.69c 7.75c 54.22a
D3 31.40b 11.39b 51.23b 30.81b 11.13b 51.18b
D4 35.58a 17.36a 42.48d 35.28a 17.19a 42.14d
D5 36.34a 17.24a 37.42e 35.63a 16.79a 36.16e
宁杂1838
Ningza 1838
D1 22.71d 6.66c 50.03b 22.56d 6.69d 50.15a
D2 23.28d 7.71c 52.45a 23.11d 7.66c 51.85a
D3 30.14c 11.26b 49.15b 30.16c 11.27b 48.15b
D4 34.43b 18.47a 41.36c 33.96b 18.03a 40.35c
D5 37.07a 17.86a 35.56d 35.84a 17.46a 35.91d
每角粒数
Number of seeds
per pod
秦优10号
Qinyou 10
D1 5.4b 15.8b 24.1a 5.5c 15.7ab 23.9a
D2 6.1a 15.9ab 23.3b 6.4a 15.9ab 23.1ab
D3 6.4a 15.7b 23.2b 6.2ab 15.5b 23.4ab
D4 6.3a 16.2a 23.0b 6.2ab 16.2a 23.0ab
D5 6.1a 16.1ab 22.8b 5.9bc 16.0a 22.9b
宁杂1838
Ningza 1838
D1 5.9b 15.8ab 23.4a 5.9b 15.7ab 23.5a
D2 6.7a 15.5b 23.1ab 6.5a 15.5b 23.2ab
D3 5.6b 15.7ab 23.4a 5.5b 15.6ab 23.7a
D4 6.7a 15.7ab 22.2bc 6.4a 15.7ab 22.5bc
D5 5.9b 16.3a 22.0c 5.7b 16.3a 22.0c
千粒重
1000-seed weight
(g)
秦优10号
Qinyou 10
D1 3.282a 3.454a 3.521a 3.258a 3.400b 3.479b
D2 3.339a 3.486a 3.562a 3.312a 3.464ab 3.565a
D3 3.279a 3.460a 3.592a 3.309a 3.480a 3.571a
D4 2.943b 3.122b 3.307b 2.910b 3.028c 3.186c
D5 2.939b 3.094b 3.149c 2.908b 3.031c 3.103d
宁杂1838
Ningza 1838
D1 3.403a 3.558a 3.713a 3.355a 3.526b 3.617b
D2 3.438a 3.634a 3.835a 3.419a 3.637a 3.778a
D3 3.472a 3.654a 3.765a 3.418a 3.666a 3.790a
D4 3.119b 3.284b 3.390b 3.096b 3.257c 3.328c
D5 2.958c 3.117c 3.335b 2.924c 3.130d 3.225d

Table 4

Average yield per pod for three efficient pods (×10-3 g)"

品种
Variety
密度
Density
2021—2022 2022—2023
低效
Low efficient
中效
Middle efficient
高效
High efficient
低效
Low efficient
中效
Middle efficient
高效
High efficient
秦优10号
Qinyou 10
D1 17.65c 54.61a 84.88a 17.91b 53.34b 83.23a
D2 20.33ab 55.33a 83.00a 21.22a 55.22a 82.42a
D3 21.10a 54.44a 83.36a 20.65a 53.85ab 83.66a
D4 18.65bc 50.65b 76.13b 17.91b 49.02c 73.42b
D5 17.83c 49.75b 71.90c 16.98b 48.60c 70.86b
宁杂1838
Ningza 1838
D1 20.08b 56.05a 86.63a 19.68b 55.29a 84.76b
D2 22.85a 56.46a 88.46a 22.08a 56.35a 87.74ab
D3 19.52b 57.38a 88.06a 18.60b 57.41a 89.61a
D4 20.89b 51.74b 75.15b 19.80b 51.01b 74.77c
D5 17.63c 50.96b 73.51b 16.60c 50.80b 70.92d

Fig. 6

Relationships between number of seeds and 1000-seed weight, number of seeds and yield of per pod for three efficient pods (n=12)"

Table 5

Allocation ratio of the number of pods for three types (%)"

品种
Variety
密度
Density
2021—2022 2022—2023
低效
Low efficient
中效
Middle efficient
高效
High efficient
低效
Low efficient
中效
Middle efficient
高效
High efficient
秦优10号
Qinyou 10
D1 29.65d 9.09c 61.26a 29.94d 9.06d 61.01b
D2 27.60e 9.40c 63.01a 27.66e 9.05d 63.28a
D3 33.40c 12.11b 54.49b 33.08c 11.95c 54.97c
D4 37.29b 18.19a 44.51c 37.29b 18.17b 44.54d
D5 39.93a 18.95a 41.12d 40.22a 18.95a 40.83e
宁杂1838
Ningza 1838
D1 28.61d 8.39c 63.00a 28.41d 8.43d 63.15a
D2 27.89d 9.24c 62.87a 27.98d 9.27c 62.75a
D3 33.27c 12.44b 54.29b 33.67c 12.57b 53.76b
D4 36.53b 19.59a 43.88c 36.78b 19.53a 43.69c
D5 40.96a 19.73a 39.31d 40.18a 19.57a 40.25d

Table 6

Yield and yield allocation ratio for three efficient pods"

项目
Item
品种
Variety
密度
Density
2021—2022 2022—2023
低效
Low efficient
中效
Middle efficient
高效
High efficient
低效
Low efficient
中效
Middle efficient
高效
High efficient
产量
Yields
(kg·hm-2)
秦优10号
Qinyou 10
D1 410.4b 389.3d 4080.6b 423.5c 381.8c 4011.9c
D2 480.0b 444.9c 4471.6a 502.8b 428.3c 4466.1a
D3 663.0a 619.8b 4270.2ab 636.6a 599.1b 4281.4b
D4 663.2a 879.2a 3232.4c 631.8a 842.9a 3092.8d
D5 647.6a 857.3a 2689.0d 604.4a 816.0a 2562.1e
宁杂1838
Ningza 1838
D1 456.1e 373.3c 4333.6b 443.9d 370.1e 4247.9b
D2 531.2d 435.2c 4639.2a 510.3c 431.3d 4547.7a
D3 588.2c 646.7b 4327.6b 561.1bc 646.3c 4315.5b
D4 719.2a 956.5a 3105.6c 672.4a 919.8a 3016.1c
D5 652.2b 909.3a 2613.6d 594.9b 886.5b 2545.7d
产量分配比例
Yield allocation proportion (%)
秦优10号
Qinyou 10
D1 8.41c 7.97d 83.62a 8.79d 7.93d 83.28a
D2 8.91c 8.26d 82.83a 9.31d 7.94d 82.75a
D3 11.95b 11.16c 76.89b 11.53c 10.86c 77.60b
D4 13.89a 18.42b 67.70c 13.84b 18.45b 67.71c
D5 15.44a 20.44a 64.12d 15.18a 20.51a 64.31d
宁杂1838
Ningza 1838
D1 8.84c 7.24d 83.92a 8.77c 7.31d 83.92a
D2 9.48c 7.77d 82.75a 9.30bc 7.86d 82.85b
D3 10.57b 11.62c 77.80b 10.16b 11.71c 78.13c
D4 15.04a 20.00b 64.96c 14.59a 19.97b 65.45d
D5 15.62a 21.78a 62.60d 14.77a 22.01a 63.22e
[1]
叶剑, 孙万仓, 武军艳, 曾军, 张亚宏, 刘雅丽, 康艳丽, 郭秀娟, 魏文惠, 杨杰, 蒲媛媛, 曾潮武, 刘红霞. 群体密度对冬油菜产量和经济性状的影响. 西北农业学报, 2008, 17(3): 171-175.
YE J, SUN W C, WU J Y, ZENG J, ZHANG Y H, LIU Y L, KANG Y L, GUO X J, WEI W H, YANG J, PU Y Y, ZENG C W, LIU H X. Effects of population density on yield and economic characteristics of winter rapeseed in northwest drought and cold region. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(3): 171-175. (in Chinese)
[2]
XU Z H, LUO T, RAO N, YANG L, LIU J H, ZHANG C N, HU L Y. High yield achieved by early-maturing rapeseed with high light energy and temperature production efficiencies under ideal planting density. Crop Science, 2019, 59(1): 351-362.
[3]
鞠红梅, 周宝裕, 陈爱萍, 汤永林. “油研8号”亩产250kg栽培技术研究. 上海农业科技, 2001(1): 53-55.
JU H M, ZHOU B Y, CHEN A P, TANG Y L. Research on cultivation technology in target seed yield of 250 kg/667m2 for rapeseed variety of “Youyan8”. Shanghai Agricultural Science and Technology, 2001(1): 53-55. (in Chinese)
[4]
曹顶华, 陆益平, 卢燕. 启东市优质油菜亩产250kg栽培技术. 农业科技通讯, 2013(10): 207-209.
CAO D H, LU Y P, LU Y. Research on cultivation technology in target seed yield of 250 kg/667m2 in rapeseed in Qidong city. Bulletin of Agricultural Science and Technology, 2013(10): 207-209. (in Chinese)
[5]
寿建尧, 戚航英, 黄建良, 石星华, 卢春燕. “浙大619”油菜新品种攻关田单产超250kg/667m2栽培技术研究. 上海农业科技, 2014(5): 61-62.
SHOU J Y, QI H Y, HUANG J L, SHI X H, LU C Y. Research on cultivation technology in target seed yield of 250 kg/667m2 for rapeseed new variety of “Zheda619”. Shanghai Agricultural Science and Technology, 2014(5): 61-62. (in Chinese)
[6]
冷锁虎, 左青松, 戴敬, 喻义珠. 油菜高产群体质量指标研究. 中国油料作物学报, 2004 (4): 40-46, 50.
LENG S H, ZUO Q S, DAI J, YU Y Z. Studies on indices of high yield population quality of rapeseed. Chinese Journal of Oil Crop Sciences, 2004 (4): 40-46, 50. (in Chinese)
[7]
喻义珠, 蔡瑞生, 肖伯群, 向才干, 徐冰, 吴加跃, 陈华阳, 王宏顺. 甘蓝型杂交油菜亩产250kg适宜密度及其分枝利用研究. 江苏农业科学, 1997, (5): 21-23.
YU Y Z, CAI R S, XIAO B Q, XIANG C G, XU B, WU J Y, CHEN H Y, WANG H S. Research on approximate density and branch utilization for target seed yield of 250 kg/667m2 in rapeseed. Jiangsu Agricultural Sciences, 1997, (5): 21-23. (in Chinese)
[8]
耿玉华, 张建人, 钱长裕. 油菜新品种高油605施氮量与栽培密度的探讨. 浙江农业科学, 1998, (2): 60-62.
GENG Y H, ZHANG J R, QIAN C Y. Research on nitrogen rate and planting density in rapeseed new variety of “Gaoyou605”. Journal of Zhejiang Agricultural Sciences, 1998, (2): 60-62. (in Chinese)
[9]
赵继献, 侯国佐, 王华. 栽培因素对甘蓝型杂交油菜群体角果数影响的研究. 作物研究, 1998, (3): 33-35.
ZHAO J X, HOU G Z, WANG H. Research on effects of cultivation on the number of pods in population in rapeseed. Crop Research, 1998, (3): 33-35. (in Chinese)
[10]
高雪, 苟红英. N、P、K施用量对“杂选1号”油菜单株有效角果数的影响. 种子, 2003, (6): 71-73.
GAO X, GOU H Y. The applying quantity of N, P and K fertilizations influence on economic characteristics of hybrid rape No.1. Seed, 2003, (6): 71-73. (in Chinese)
[11]
胡立勇, 王维金, 吴江生. 氮素对油菜角果生长及结角层结构的影响. 中国油料作物学报, 2002, 24(3): 29-32.
HU L Y, WANG W J, WU J S. Effect of nitrogen levels on pod growth and structure of pod canopy in rapeseed. Chinese Journal of Oil Crop Sciences, 2002, 24(3): 29-32. (in Chinese)
[12]
左青松, 蒯婕, 杨士芬, 曹石, 杨阳, 吴莲蓉, 孙盈盈, 周广生, 吴江生. 不同氮肥和密度对直播油菜冠层结构及群体特征的影响. 作物学报, 2015, 41(5): 758-765.
ZUO Q S, KUAI J, YANG S F, CAO S, YANG Y, WU L R, SUN Y Y, ZHOU G S, WU J S. Effects of nitrogen fertilizer and planting density on canopy structure and population characteristic of rapeseed with direct seeding treatment. Acta Agronomica Sinica, 2015, 41(5): 758-765. (in Chinese)
[13]
李虹桥, 赖莹, 母娜, 严红梅, 汤维群, 蒋小灵, 高雯, 吴永成. 密度对不同株高油菜冠层结构与群体光合能力的影响. 浙江农业学报, 2022, 34(3): 419-427.

doi: 10.3969/j.issn.1004-1524.2022.03.01
LI H Q, LAI Y, MU N, YAN H M, TANG W Q, JIANG X L, GAO W, WU Y C. Effect of plant density on canopy structure and population photosynthetic capacity of rapeseed with different plant heights. Acta Agriculturae Zhejiangensis, 2022, 34(3): 419-427. (in Chinese)

doi: 10.3969/j.issn.1004-1524.2022.03.01
[14]
刘万代, 尹钧, 朱高纪. 剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响. 中国农业科学, 2007, 40(7): 1353-1360.
LIU W D, YIN J, ZHU G J. Effects of leaf removal on dry matter accumulation and grain yield in different spike-type wheat varieties. Scientia Agricultura Sinica, 2007, 40(7): 1353-1360. (in Chinese)
[15]
郭天财, 盛坤, 冯伟, 徐丽娜, 王晨阳. 种植密度对2种穗型小麦品种分蘖期茎蘖生理特性的影响. 西北植物学报, 2009, 29(2): 350-355.
GUO T C, SHENG K, FENG W, XU L N, WANG C Y. Effects of plant density on physiological characteristics of different stems during tillering stage in two spike-types winter wheat cultivars. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(2): 350-355. (in Chinese)
[16]
GAJU O, REYNOLDS M P, SPARKES D L, MAYES S, RIBAS-VARGAS G, CROSSA J, FOULKES M J. Relationships between physiological traits, grain number and yield potential in a wheat DH population of large spike phenotype. Field Crops Research, 2014, 164: 126-135.
[17]
董明辉, 顾俊荣, 陈培峰, 韩立宇, 乔中英. 麦秸还田与氮肥互作对大穗型杂交粳稻不同部位枝梗和颖花形成的影响. 中国农业科学, 2015, 48(22): 4437-4449. doi: 10.3864/j.issn.0578-1752.2015.22.005.
DONG M H, GU J R, CHEN P F, HAN L Y, QIAO Z Y. Effects of interaction of wheat straw residue with field and nitrogen applications on branches and spikelets formation at different positions in large panicle hybrid rice. Scientia Agricultura Sinica, 2015, 48(22): 4437-4449. doi: 10.3864/j.issn.0578-1752.2015.22.005.doi:10.3864/j.issn.0578-1752.2015.22.005. (in Chinese)
[18]
梁太波, 尹燕枰, 蔡瑞国, 闫素辉, 李文阳, 耿庆辉, 王平, 王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较. 作物学报, 2008, 34(1): 150-156.
LIANG T B, YIN Y P, CAI R G, YAN S H, LI W Y, GENG Q H, WANG P, WANG Z L. Starch accumulation and related enzyme activities in superior and inferior grains of large spike wheat. Acta Agronomica Sinica, 2008, 34(1): 150-156. (in Chinese)
[19]
PASION E A, BADONI S, MISRA G, ANACLETO R, PARWEEN S, KOHLI A, SREENIVASULU N. OsTPR boosts the superior grains through increase in upper secondary Rachis branches without incurring a grain quality penalty. Plant Biotechnology Journal, 2021, 19(7): 1396-1411.
[20]
NAGAOKA I, SASAHARA H, MATSUSHITA K, MAEDA H, FUKUOKA S, YAMANOUCHI U. Genetic studies for breeding of rice cultivars with superior grain appearance and lodging resistance from the rice cultivar ‘Emi-no-kizuna’. Plant Production Science, 2019, 22(4): 546-553.
[21]
田敏, 钟颖, 王红妮, 王学春, 杨国涛, 张敏, 陈永军, 彭友林, 胡运高. 不同品种油菜产量构成、倒伏特征及品质特性对弱光胁迫的响应. 湖南师范大学自然科学学报, 2021, 44(3): 40-46.
TIAN M, ZHONG Y, WANG H N, WANG X C, YANG G T, ZHANG M, CHEN Y J, PENG Y L, HU Y G. Differences in yield, lodging and quality of oilseed rape in response to low light stresses. Journal of Natural Science of Hunan Normal University, 2021, 44(3): 40-46. (in Chinese)
[22]
郁寅良, 吴正贵, 吴玉珍, 陆增根, 周培南, 魏水男, 顾福男. 密度和施肥水平对双低油菜“苏油1号”产量及分枝习性的影响. 中国油料作物学报, 2001, 23(1): 41-45.
YU Y L, WU Z G, WU Y Z, LU Z G, ZHOU P N, WEI S N, GU F N. Effect of density and nitrogen on the yield and branch characteristics of double low rapeseed (Brassica napus L.) Suyou No.1. Chinese Journal of Oil Crop Sciences, 2001, 23(1): 41-45. (in Chinese)
[23]
冷锁虎, 惠飞虎, 左青松, 唐瑶. 施氮对宁杂1号油菜各枝序角果性状的调控. 中国油料作物学报, 2003, 25(4): 60-63.
LENG S H, HUI F H, ZUO Q S, TANG Y. Regulations of N application on pod qualities of different branches in rapeseed. Chinese Journal of Oil Crop Sciences, 2003, 25(4): 60-63. (in Chinese)
[24]
OZER H. The effect of plant population densities on growth, yield and yield components of two spring rapeseed cultivars. Plant, Soil and Environment, 2003, 49(9): 422-426.
[25]
马霓, 张春雷, 李俊, 李光明. 种植密度对直播油菜结实期源库关系及产量的调节. 中国油料作物学报, 2009, 31(2): 180-184.
MA N, ZHANG C L, LI J, LI G M. Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.). Chinese Journal of Oil Crop Sciences, 2009, 31(2): 180-184. (in Chinese)
[26]
陈爱武, 夏起昕, 胡曼, 吴海亚, 周广生. 迟播油菜绿色增产增效技术研究. 湖北农业科学, 2017, 56(11): 2011-2015.
CHEN A W, XIA Q X, HU M, WU H Y, ZHOU G S. Research on green cultivation measures to increase the yield and efficiency of late sowing rapeseed. Hubei Agricultural Sciences, 2017, 56(11): 2011-2015. (in Chinese)
[27]
王红光, 李东晓, 李雁鸣, 李瑞奇. 河北省10000 kg·hm-2以上冬小麦产量构成及群个体生育特性. 中国农业科学, 2015, 48(14): 2718-2729. doi: 10.3864/j.issn.0578-1752.2015.14.004.
WANG H G, LI D X, LI Y M, LI R Q. Yield components and population and individual characteristics of growth and development of winter wheat over 10 000 kg·hm-2 in Hebei Province. Scientia Agricultura Sinica, 2015, 48(14): 2718-2729. doi: 10.3864/j.issn.0578-1752.2015.14.004. (in Chinese)
[28]
XU H C, DAI X L, CHU J P, WANG Y C, YIN L J, MA X, DONG S X, HE M R. Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat. Journal of Integrative Agriculture, 2018, 17(2): 315-327.

doi: 10.1016/S2095-3119(17)61805-7
[29]
LIU Y, LIAO Y C, LIU W Z. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. The Crop Journal, 2021, 9(2): 412-426.
[30]
陈惠哲, 朱德峰, 饶龙兵, 林贤青, 张玉屏. 强化栽培对水稻后期群体质量及产量形成的影响. 华中农业大学学报, 2006, 25(5): 483-487.
CHEN H Z, ZHU D F, RAO L B, LIN X Q, ZHANG Y P. Effects of SRI technique on population quality after heading stage and yield formation in rice. Journal of Huazhong Agricultural University (Natural Science Edition), 2006, 25(5): 483-487. (in Chinese)
[31]
PAN S G, WEN X C, WANG Z M, ASHRAF U, TIAN H, DUAN M Y, MO Z W, FAN P S, TANG X R. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Research, 2017, 203: 139-149.
[32]
何跃华, 薛占奎, 徐晶晶, 施佳炜, 金丽, 刘慧芳. 不同缓释肥料用量及运筹方式对杂交晚稻农艺性状及产量的影响. 浙江农业科学, 2024, 65(1): 37-40.

doi: 10.16178/j.issn.0528-9017.20221095
HE Y H, XUE Z K, XU J J, SHI J W, JIN L, LIU H F. Effects of different slow-release fertilizer application rate and management on agronomic traits and yield of hybrid late rice. Journal of Zhejiang Agricultural Sciences, 2024, 65(1): 37-40. (in Chinese)

doi: 10.16178/j.issn.0528-9017.20221095
[33]
左青松, 黄海东, 曹石, 杨士芬, 廖庆喜, 冷锁虎, 吴江生, 周广生. 不同收获时期对油菜机械收获损失率及籽粒品质的影响. 作物学报, 2014, 40(4): 650-656.
ZUO Q S, HUANG H D, CAO S, YANG S F, LIAO Q X, LENG S H, WU J S, ZHOU G S. Effects of harvesting date on yield loss percentage of mechanical harvest and seed quality in rapeseed. Acta Agronomica Sinica, 2014, 40(4): 650-656. (in Chinese)
[1] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[2] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[3] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[4] MA YuHe, PU YuanYuan, WANG JinXiong, WU JunYan, YANG Gang, ZHAO CaiXia, MA Li, LIU LiJun, WANG WangTian, MIAO ChunQing, GUAN ZhouBo, FAN TingTing, WANG XingRong, MA Rui, LIAN YinTao, SUN WanCang. Analysis of Glucosinolate Content and Component in Brassica rapa L. [J]. Scientia Agricultura Sinica, 2024, 57(21): 4308-4327.
[5] YANG HaoRong, JIA Fan, HU Xu, MU Rong, LIU WeiNa, LIU ChangYun, WANG ShanZhi, SUN XianChao, MA GuanHua, CHEN GuoKang. BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(19): 3799-3809.
[6] HUANG FangYuan, BIAN XiaoHua, JIANG Zhan, XIAO XiaoLu, DUAN Bo, CHEN Chang, MA Ni, GUAN ZhouBo. Characteristics of Root Growth, Carbon and Nitrogen Accumulation and Distribution in Winter Rapeseed in Different Ecological Regions [J]. Scientia Agricultura Sinica, 2024, 57(12): 2404-2423.
[7] PENG WenLi, WANG Rui, CHEN XiaoLei, LIU AHui, ZHENG WeiDong. Effects of Varied Rapeseed Varieties and Cultivation Measures on Harvest Index [J]. Scientia Agricultura Sinica, 2023, 56(17): 3331-3346.
[8] LI Jing, QIAN Chen, LIN GuoBing, WANG Long, LI YiYang, ZHENG JingDong, YOU JingJing, LENG SuoHu, ZUO QingSong. Studies on the Suitable Nitrogen Supply Level of Rapeseed Blanket Seedling for Mechanized Transplanting [J]. Scientia Agricultura Sinica, 2023, 56(16): 3100-3109.
[9] LIU ZiGang, WEI JiaPing, CUI JunMei, WU ZeFeng, FANG Yan, DONG XiaoYun, ZHENG GuoQiang. Status, Existing Problems and Strategy Discussion on Northward Expansion of Winter Rapeseed in China [J]. Scientia Agricultura Sinica, 2023, 56(15): 2854-2862.
[10] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
[11] LÜ LiHua, HAN JiangWei, ZHANG JingTing, DONG ZhiQiang, MENG Jian, JIA XiuLing. Analysis of Common Characteristics of Widely Adaptation Wheat Cultivars [J]. Scientia Agricultura Sinica, 2023, 56(11): 2064-2077.
[12] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[13] XIONG ShuPing, GAO Ming, ZHANG ZhiYong, QIN BuTan, XU SaiJun, FU XinLu, WANG XiaoChun, MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[14] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[15] BAI Fei, BAI GuiPing, WANG ChunYun, LI Zhen, GONG DePing, HUANG Wei, CHENG YuGui, WANG Bo, WANG Jing, XU ZhengHua, KUAI Jie, ZHOU GuangSheng. Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed [J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!