Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4391-4401.doi: 10.3864/j.issn.0578-1752.2024.22.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Composition Analysis of a New High Quality and High Yield Wheat Cultivar Taikemai33

QI XiaoLei1(), WANG Jun2, LÜ GuangDe1, MU QiuHuan1, MI Yong1, SUN YingYing1, YIN XunDong1, QIAN ZhaoGuo1(), WANG RuiXia1, WU Ke1   

  1. 1 Tai’an Academy of Agricultural Sciences, Taian 271000, Shandong
    2 Tai'an Agricultural and Rural Bureau, Taian 271000, Shandong
  • Received:2024-05-09 Accepted:2024-05-15 Online:2024-11-16 Published:2024-11-22
  • Contact: QIAN ZhaoGuo

Abstract:

【Objective】Taikemai33, derived from a cross between Zhengmai366 and Huaiyin9908, is a new released wheat cultivar with high quality, high yield, and excellent disease resistance, which has a broad genetic base, and a high potential for application in wheat production. The objective of this study is to dissect the genetic composition of Taikemai33 to provide information for parental selection to use this cultivar to develop more new wheat cultivars. 【Method】Taikemai33 and its pedigree parents including Zhengmai366, Huaiyin9908, Yumai47, PH82-2-2, Yumai13, Yumai 2 hao, Bainong3217, Yanda24, Xiannong39, Fengchan 3 hao and Funo were screened using the 55K wheat SNP chip to dissect the genomic composition of Taikemai33 to evaluate the genetic contributions of each parental line to Taikemai33. 【Result】The similarity coefficient between Taikemai33 and its pedigree parents ranged from 0.72 to 0.93, and the genetic composition of Taikemai33 was highly similar to Zhengmai366, the pedigree mother parent, with a genetic similarity coefficient of 0.93. SNP marker analysis showed that the pedigree parents contributed different proportion to the genome of Taikemai33, with the pedigree mother contributed 66.57%, whereas the pedigree father contributed 33.43%, indicating that Taikemai 33 inherits more genetic materials from the maternal lineage. Furthermore, the pedigree mother contributed 71.0%, 85.0% and 49.4% to subgenome A, B and D of Taikeimai33, whereas those were 29.0%, 15.0% and 50.6% contributed by the pedigree father. For each chromosome, the pedigree mother contributed more on chromosome 1A, 2A, 3A, 4A, 7A, 1B to 7B, 1D and 2D, whereas the pedigree father contributed more on chromosome 5A, 4D, 6D and 7D. The contributions of the pedigree parents on 6A, 3D and 5D were equal. Taikemai33 genotype map showed that the contribution loci of the pedigree mother were distributed in clusters on chromosome 1A, 5A, 7A, 2B, 7B, 2D, with those from the pedigree father were on chromosome 4A, 5A, 6D, 7D. Interestingly, among the polymorphic SNP loci, between Zhenmai366 and Huaiyin9908, Taikemai33 showed 109 loci that were absent in both parents, distributing on 19 chromosomes except 1A and 6A. Chromosome 4A, 2B, 6B and 7D of Taikemai33 confer most of the polymorphic SNPs in clusters with cluster number of 10, 9, 11, and 9. 【Conclusion】We constructed the genotype map and dissected the genetic composition of Taikemai33, determined the loci contributed by the pedigree parents and identified that Taikemai33 inherited more genetic materials from the pedigree mother and conferring some specific loci different with the pedigree parents.

Key words: wheat, genetic map, pedigree parents, SNP, genetic components

Table 1

Varieties, their pedigrees and released time"

品种(品系)
Variety (line) name
系谱
Pedigree
审(认)定年份
Released time
泰科麦33 Taikemai33 郑麦366/淮阴9908 Zhengmai366/Huaiyin9908 2018
郑麦366 Zhengmai366 豫麦47/PH82-2-2 Yumai47/PH82-2-2 2005
淮阴9908 Huaiyin9908 豫麦13/淮阴83209 Yumai13/Huaiyin83209
豫麦47 Yumai47 豫麦2号/百泉3199 Yumai2hao/Baiquan3199 1997
PH82-2-2 长穗偃麦草/普通小麦混合授粉 Elytrigia elongata/Wheat mixed pollination 1991
豫麦13 Yumai13 百农3217/9612-2 Bainong3217/9612-2 1989
豫麦2号Yumai2 hao 65(14)3/抗辉红 65(14)3/Kanghuihong 1990
百农3217 Bainong3217 阿夫/内乡5号//咸农39/3/西农64/偃大24 Funo/Neixiang5hao//Xiannong39/3/Xinong64/Yanda24 1984
偃大24 Yanda24 郑州6号/丰产3号 Zhengzhou6hao/Fengchan3 hao 1970
咸农39 Xiannong39 西农6028/水源86 Xinong6028/Suwon86 1964
丰产3号Fengchan3hao 丹麦1号/西农6028 Danmai1hao/Xinong6028 1971
阿夫Funo Duecentodieci/Damiano 1956

Fig. 1

UPGMA cluster trees of Taikemai33 and its pedigree parents"

Table 2

Genetic contribution of Taikemai33’parents toTaikemai33 with SNP markers"

系谱母本
Pedigree mother
差异位点总数
No. of total differential loci
差异位点数
No. of differential loci
贡献率
Contribution rate (%)
系谱父本
Pedigree father
差异位点总数
No. of total differential loci
差异位点数
No. of differential loci
贡献率
Contribution rate (%)
郑麦366
Zhengmai366
1370 912 66.57 淮阴9908
Huaiyin9908
1370 458 33.43
PH82-2-2 1370 348 25.40 豫麦13 Yumai13 1370 295 21.53
豫麦47
Yumai47
1370 783 57.15 百农3217
Bainong3217
1370 227 16.57
豫麦2号
Yumai 2 hao
1370 592 43.21 偃大24
Yanda24
1370 191 13.94
丰产3号
Fengchan 3 hao
1370 267 19.49 丰产3号
Fengchan 3 hao
1370 173 12.63
咸农39
Xiannong39
1370 345 25.18 咸农39
Xiannong39
1370 173 12.63
阿夫 Funo 1370 170 12.41

Fig. 2

Percentages of the pedigree parents contributions to Taikemai33 on different chromosomes and genomes based on SNP data"

Fig. 3

Genotypic maps of Taikemai33"

Table 3

The number of SNP, genome (A, B and D) distribution and homoeologous groups (H1-H7) distribution in different parent cultivars"

系谱亲本
Parent cultivars
名称
Name
总数
Total
A B D H1 H2 H3 H4 H5 H6 H7
系谱母本
Pedigree mother
郑麦366 Zhengmai366 79 4 50 25 21 5 3 3 44 2 1
PH82-2-2 40 6 24 10 4 4 7 3 18 0 4
豫麦47 Yumai47 134 27 64 43 18 29 26 11 14 10 26
豫麦2号Yumai 2 hao 102 18 50 34 6 41 7 5 6 10 27
丰产3号Fengchan 3 hao 50 8 37 5 6 2 10 1 20 2 9
咸农39 Xiannong39 80 17 9 54 9 10 4 4 6 4 43
系谱父本
Pedigree father
淮阴9908 Huaiyin9908 154 45 27 82 20 19 8 9 60 25 13
豫麦13 Yumai13 65 19 13 33 11 5 5 12 16 11 5
百农3217 Bainong3217 25 1 0 24 0 0 0 0 1 3 21
偃大24 Yanda24 5 1 0 4 0 0 0 0 2 0 3
丰产3号Fengchan 3 hao 15 4 2 9 0 0 2 0 4 0 9
咸农39 Xiannong39 4 0 2 2 0 1 0 0 1 1 1
阿夫Funo 0 0 0 0 0 0 0 0 0 0 0
泰科麦33 Taikemai33 109 23 52 34 8 20 12 22 12 18 17
[1]
何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 99-106.
HE Z H, ZHUANG Q S, CHENG S H, YU Z W, ZHAO Z D, LIU X. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(1): 99-106. (in Chinese)
[2]
赵春华, 樊小莉, 王维莲, 张玮, 韩洁, 陈梅, 纪军, 崔法, 李俊明. 小麦候选骨干亲本科农9204遗传构成及其传递率. 作物学报, 2015, 41(4): 574-584.
ZHAO C H, FAN X L, WANG W L, ZHANG W, HAN J, CHEN M, JI J, CUI F, LI J M. Genetic composition and its transmissibility analysis of wheat candidate backbone parent Kenong 9204. Acta Agronomica Sinica, 2015, 41(4): 574-584. (in Chinese)
[3]
郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 刘于斌, 蒲宗君. 利用小麦660K SNP芯片分析川麦44在其衍生后代中的遗传贡献. 麦类作物学报, 2019, 39(11):1293-1300.
ZHENG J M, LUO J T, WAN H S, LI S Z, YANG M Y, LI J, LIU Y B, PU Z J. Genetic contribution of Chuanmai 44 to its derivatives analyzed by a wheat 660K SNP array. Journal of Triticeae Crops, 2019, 39(11):1293-1300. (in Chinese)
[4]
李俊, 万洪深, 杨武云, 王琴, 朱欣果, 胡晓蓉, 魏会廷, 汤永禄, 李朝苏, 彭正松, 周永红. 小麦新品种川麦104的遗传构成分析. 中国农业科学, 2014, 47(12): 2281-2291. doi: 10.3864/j.issn.0578-1752.2014.12.001.
LI J, WAN H S, YANG W Y, WANG Q, ZHU X G, HU X R, WEI H T, TANG Y L, LI C S, PENG Z S, ZHOU Y H. Dissection of genetic components in the new high-yielding wheat cultivar Chuanmai 104. Scientia Agricultura Sinica, 2014, 47(12): 2281-2291. doi: 10.3864/j.issn.0578-1752.2014.12.001. (in Chinese)
[5]
杨子博, 王安邦, 冷苏凤, 顾正中, 周羊梅. 小麦新品种淮麦33的遗传构成分析. 中国农业科学, 2018, 51(17): 3237-3248. doi: 10.3864/j.issn.0578-1752.2018.17.001.
YANG Z B, WANG A B, LENG S F, GU Z Z, ZHOU Y M. Genetic analysis of the novel high-yielding wheat cultivar Huaimai 33. Scientia Agricultura Sinica, 2018, 51(17): 3237-3248. doi: 10.3864/j.issn.0578-1752.2018.17.001. (in Chinese)
[6]
RUSSO M A, FICCO D B M, LAIDÒ G, MARONE D, PAPA R, BLANCO A, GADALETA A, DE VITA P, MASTRANGELO A M. A dense durum wheat × T. dicoccum linkage map based on SNP markers for the study of seed morphology. Molecular Breeding, 2014, 34(4): 1579-1597.
[7]
AVNI R, NAVE M, EILAM T, SELA H, ALEKPEROV C, PELEG Z, DVORAK J, KOROL A, DISTELFELD A. Ultra-dense genetic map of durum wheat ×wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Molecular Breeding, 2014, 34(4): 1549-1562.
[8]
李聪, 马建, 刘航, 丁浦洋, 杨聪聪, 张涵, 秦娜娜, 兰秀锦. 基于小麦55K SNP芯片检测小麦穗长和株高性状QTL. 麦类作物学报, 2019, 39(11): 1284-1292.
LI C, MA J, LIU H, DING P Y, YANG C C, ZHANG H, QIN N N, LAN X J. Detection of QTLs for spike length and plant height in wheat based on 55K SNP array. Journal of Triticeae Crops, 2019, 39(11): 1284-1292. (in Chinese)
[9]
HU Z Y, HUA W, HUANG S M, YANG H L, ZHAN G M, WANG X F, LIU G H, WANG H Z. Discovery of pod shatter-resistant associated SNPs by deep sequencing of a representative library followed by bulk segregant analysis in rapeseed. PLoS ONE, 2012, 7(4): e34253.
[10]
刘易科, 朱展望, 陈泠, 邹娟, 佟汉文, 朱光, 何伟杰, 张宇庆, 高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性. 作物学报, 2020, 46(2): 307-314.
LIU Y K, ZHU Z W, CHEN L, ZOU J, TONG H W, ZHU G, HE W J, ZHANG Y Q, GAO C B. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers. Acta Agronomica Sinica, 2020, 46(2): 307-314. (in Chinese)
[11]
亓晓蕾, 李兴锋, 吕广德, 王瑞霞, 王君, 孙宪印, 孙盈盈, 陈永军, 钱兆国, 吴科. 基于SNP分子标记的泰山/泰科麦系列小麦遗传解析. 作物杂志, 2021(5): 64-71.
QI X L, LI X F, G D, WANG R X, WANG J, SUN X Y, SUN Y Y, CHEN Y J, QIAN Z G, WU K. Genetic analysis of Taishan/taikemai serial wheat based on SNP molecular markers. Crops, 2021(5): 64-71. (in Chinese)
[12]
王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析. 作物学报, 2023, 49(6): 1584-1600.

doi: 10.3724/SP.J.1006.2023.21033
WANG H, SUN N N, WANG C, XIAO L N, XIAO B, LI D, LIU J, QIN R, WU Y Z, SUN H, ZHAO C H, LI L Z, CUI F, LIU W. Genetic basis analysis of high-yielding in Yannong wheat varieties. Acta Agronomica Sinica, 2023, 49(6): 1584-1600. (in Chinese)

doi: 10.3724/SP.J.1006.2023.21033
[13]
王超, 徐加利, 吴科, 王瑞霞, 孙宪印, 钱兆国. 强筋高产小麦新品种泰科麦33选育技术分析. 分子植物育种, 2021, 19(16): 5562-5568.
WANG C, XU J L, WU K, WANG R X, SUN X Y, and QIAN Z G. Analysis on breeding techniques of new wheat variety ‘Taikemai33’ with strong gluten and high yield. Molecular Plant Breeding, 2021, 19(16): 5562-5568. (in Chinese)
[14]
ROHIF F J. NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.2. New York: Exeter Software, 2009.
[15]
邹少奎, 殷贵鸿, 唐建卫, 韩玉林, 李楠楠, 李顺成, 黄峰, 王丽娜, 张倩, 高艳. 小麦新品种周麦23号的遗传构成分析及其特异引物筛选. 中国农业科学, 2015, 48(19): 3941-3951. doi: 10.3864/j.issn.0578-1752.2015.19.016.
ZOU S K, YIN G H, TANG J W, HAN Y L, LI N N, LI S C, HUANG F, WANG L N, ZHANG Q, GAO Y. Genetic analysis of new wheat variety Zhoumai 23 and screening of specific primers. Scientia Agricultura Sinica, 2015, 48(19): 3941-3951. doi: 10.3864/j.issn.0578-1752.2015.19.016. (in Chinese)
[16]
吴胜男, 李英壮, 王娜, 刘录祥, 谢彦周, 王成社. 小麦新品种陕农33的遗传构成分析. 麦类作物学报, 2021, 41(2): 134-139.
WU S N, LI Y Z, WANG N, LIU L X, XIE Y Z, WANG C S. Dissection of genetic components in the new high-yielding wheat cultivar Shannong 33. Journal of Triticeae Crops, 2021, 41(2): 134-139. (in Chinese)
[17]
李式昭, 王琴, 郑建敏, 朱华忠, 李俊, 万洪深, 罗江陶, 刘泽厚, 伍玲. 利用基因芯片分析西南麦区主栽小麦品种川麦104的遗传构成. 麦类作物学报, 2021, 41(6): 665-672.
LI S Z, WANG Q, ZHENG J M, ZHU H Z, LI J, WAN H S, LUO J T, LIU Z H, WU L. Analysis of genetic components in the major wheat cultivar Chuanmai 104 in southwest wheat region based on three wheat SNP arrays. Journal of Triticeae Crops, 2021, 41(6): 665-672. (in Chinese)
[18]
WANG R X, HAI L, ZHANG X Y, YOU G X, YAN C S, XIAO S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai 3 Yu8679. Theoretical and Applied Genetics, 2009, 118(2): 313-325.
[19]
CHEN Z Y, CHENG X J, CHAI L L, WANG Z H, DU D J, WANG Z H, BIAN R L, ZHAO A J, XIN M M, GUO W L, HU Z R, PENG H R, YAO Y Y, SUN Q X, NI Z F. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133(6): 1825-1838.
[20]
HUANG X Q, KEMPF H, GANAL M W, RÖDER M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109(5): 933-943.
[21]
陈建省, 陈广凤, 李青芳, 张晗, 师翠兰, 孙彩铃, 邓志英, 刘凯, 谷植群, 田纪春. 利用基因芯片技术进行小麦遗传图谱构建及粒重QTL 分析. 中国农业科学, 2014, 47(24): 4769-4779. doi:10.3864/j.issn.0578-1752.2014.24.001.
CHEN J S, CHEN G F, LI Q F, ZHANG H, SHI C L, SUN C L, DENG Z Y, LIU K, GU Z Q, TIAN J C. Construction of genetic map using genotyping chips and QTL analysis of grain weight. Scientia Agricultura Sinica, 2014, 47(24): 4769-4779. doi:10.3864/j.issn.0578-1752.2014.24.001. (in Chinese)
[22]
SUN X C, MARZA F, MA H X, CARVER B F, BAI G H. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theoretical and Applied Genetics, 2010, 120(5): 1041-1051.
[23]
WANG J S, LIU W H, WANG H, LI L H, WU J, YANG X M, LI X Q, GAO A N. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 2011, 177(2): 277-292.
[24]
GUPTA P K, BALYAN H S, SHARMA S, KUMAR R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133(5): 1569-1602.
[25]
MCCARTNEY C A, SOMERS D J, HUMPHREYS D G, LUKOW O, AMES N, NOLL J, CLOUTIER S, MCCALLUM B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48(5): 870-883.
[26]
ZHAO C H, ZHANG N, WU Y Z, SUN H, LIU C, FAN X L, YAN X M, XU H X, JI J, CUI F. QTL for spike-layer uniformity and their influence on yield-related traits in wheat. BMC Genetics, 2019, 20(1): 23.
[27]
PINTO R S, REYNOLDS M P, MATHEWS K L, MCINTYRE C L, OLIVARES-VILLEGAS J J, CHAPMAN S C. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics, 2010, 121(6): 1001-1021.

doi: 10.1007/s00122-010-1351-4 pmid: 20523964
[28]
KUMAR N, KULWAL P L, BALYAN H S, GUPTA P K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecular Breeding, 2007, 19(2): 163-177.
[29]
CUTHBERT J L, SOMERS D J, BRÛLÉ-BABEL A L, BROWN P D, CROW G H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2008, 117(4): 595-608.
[30]
REIF J C, MAURER H P, KORZUN V, EBMEYER E, MIEDANER T, WÜRSCHUM T. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theoretical and Applied Genetics, 2011, 123(2): 283-292.

doi: 10.1007/s00122-011-1583-y pmid: 21476040
[31]
ZHANG P P, LAN C X, ASAD M A, GEBREWAHID T W, XIA X C, HE Z H, LI Z F, LIU D Q. QTL mapping of adult-plant resistance to leaf rust in the Chinese landraces Pingyuan 50/Mingxian 169 using the wheat 55K SNP array. Molecular Breeding, 2019, 39(7): 98.
[32]
TSILO T J, HARELAND G A, SIMSEK S, CHAO S, ANDERSON J A. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theoretical and Applied Genetics, 2010, 121(4): 717-730.

doi: 10.1007/s00122-010-1343-4 pmid: 20425103
[33]
CARTER A H, GARLAND-CAMPBELL K, KIDWELL K K. Genetic mapping of quantitative trait loci associated with important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ × ‘Penawawa’. Crop Science, 2011, 51(1): 84-95.
[34]
SUN X Y, WU K, ZHAO Y, KONG F M, HAN G Z, JIANG H M, HUANG X J, LI R J, WANG H G, LI S S. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165(3): 615-624.
[35]
HUANG X Q, CLOUTIER S, LYCAR L, RADOVANOVIC N, HUMPHREYS D G, NOLL J S, SOMERS D J, BROWN P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113(4): 753-766.
[36]
WAJDZIK K, GOŁĘBIOWSKA G, DYDA M, GAWROŃSKA K, RAPACZ M, WĘDZONY M. The QTL mapping of the important breeding traits in winter TriticaleTriticosecale wittm.). Cereal Research Communications, 2019, 47(3): 395-408
[37]
CHEN W G, SUN D Z, YAN X, LI R Z, WANG S G, SHI Y G, JING R L. QTL analysis of wheat kernel traits, and genetic effects of qKW-6A on kernel width. Euphytica, 2019, 215: 11.
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[7] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!