Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (20): 4057-4070.doi: 10.3864/j.issn.0578-1752.2024.20.011

• SPECIAL FOCUS: OCCURRENCE AND CONTROL OF MIGRATORY PESTS • Previous Articles     Next Articles

AQPs Characteristics of Megoura crassicauda and Their Expression Changes in Response to High Relative Humidity Stress

SUN SiSi1,3(), MA Wu2, SI HuiRu2, WANG XianZhong2, LIU Qiang4, LUO YanLin2, CHEN XiaoYuLong1(), TANG Bin2()   

  1. 1 College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025
    2 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121
    3 Guizhou Mountainous Meteorological Science Research Institute, Guiyang 550002
    4 Guizhou Tobacco Company Qiandongnan Tobacco Branch Company, Kaili 556000, Guizhou
  • Received:2024-07-02 Accepted:2024-08-22 Online:2024-10-16 Published:2024-10-24
  • Contact: CHEN XiaoYuLong, TANG Bin

Abstract:

【Objective】At present, crop pests are more adaptable to high relative humidity. Aquaporin (AQP) is a membrane protein that is necessary for insects to maintain water balance in the body. The objectives of this study are to screen two McAQP sequence structures by transcriptome sequencing through high relative humidity stress, clarify the AQP characteristics of Megoura crassicauda and the expression changes in response to high relative humidity stress combined with real-time fluorescence quantitative PCR (qRT-PCR) verification, and to provided a theoretical basis for further exploring the gene function of AQP.【Method】The environmental relative humidity (RH) of 60%, 75% and 90% were set to cultivate M. crassicauda. The growth and development were observed, the relative expression of genes and the content of related substances in the body were detected. Based on two McAQP sequences (named as McAQP X1 and McAQP X2, respectively) obtained from comparative transcriptome sequencing of M. crassicauda, the physicochemical property, sequence structure, and the homology with other insects were analyzed by bioinformatics methods. Finally, qRT-PCR was used to determine the relative expression of AQP X1, AQP X2, Vg and VgR under long-term stable high relative humidity stress and 24 h emergency high relative humidity stress.【Result】Compared with RH 60% and RH 75%, the fecundity of M. crassicauda under RH 90% was significantly reduced, but there was no significant difference in development duration and survival rate. With the increase of relative humidity, the water content of M. crassicauda decreased, and the special phenotype phenomena such as body color change and long wing appeared. The molecular weights of McAQP X1 and McAQP X2 are 33.89 and 28.94 kDa, the theoretical isoelectric points are 5.36 and 5.32, and the protein lengths are 308 and 272 aa, respectively. On the multistage structure, McAQP is arranged by six long alpha helices via counterclockwise rotation to form a barrel channel, whereas four monomers form a tetramer to exercise function. The relative expression of McAQPs quantified by qRT-PCR showed that both McAQP X1 and McAQP X2 were up-regulated with increasing relative humidity, which was generally consistent with the transcriptome sequencing results. Meanwhile, under long-term stable high humidity stress, both Vg and VgR were up-regulated under RH 75% and down-regulated under RH 90%. Under 24 h emergency high humidity stress, Vg expression level was down-regulated with increasing humidity, while VgR was up-regulated under RH 90%.【Conclusion】High humidity environment affects the reproduction, water content and body color of M. crassicauda. The aquaporin sequence structure in subfamily II is relatively conservative, without strong species-specific differentiation. NPA site is important for the function of aquaporin, and the asparagine residue plays a structural role for water molecules through the central channel. It is speculated that the expression change of AQPs may be an important means for M. crassicauda to cope with humidity changes.

Key words: Megoura crassicauda, high relative humidity stress, reproduction, aquaporin (AQP), protein structure, bioinformatics

Table 1

Primers used for qRT-PCR"

基因名称<BOLD>G</BOLD>ene name 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
McAQP X1 TGTGTTTGACGCACCAATGTC AACGCAGTGCCAAACAGTTC
McAQP X2 AACCGGGACAAGGATTCGTC TAGATGGGCGGCAGCAATAG
McVg GCATTAGCCACTATGTTTCA CGTATTGCTCCATTGTTGT
McVgR AGATTGATTGCCACGACGGT TTCCGTCACATCTCCACGTC
McActin GATCATTGCCCCACCAGAAC TTTACGGTGGACAATGCCTG

Fig. 1

Growth and physiological development of M. crassicauda Data were presented as mean±SE. Different lowercases on the columns indicated significant differences (P<0.05). The same as below"

Fig. 2

Phenotype and water content of M. crassicauda under each humidity"

Table 2

The expression of aquaporin’ transcripts in M. crassicauda"

基因
Gene
基因ID
Gene ID
RH 60% vs RH 75% RH 60% vs RH 90% RH 75% vs RH 90%
log2FC PP value log2FC PP value log2FC PP value
McAQP X1 PB.6653.1 0.4487 5.62E-07 0.1090 0.2594 -0.3282 6.01E-05
McAQP X2 PB.17934.1 0.4067 0.5397 0.5026 0.4215 0.1111 0.8436
PB.13731.1 -0.3547 0.1984 0.5392 0.0317 0.9044 6.57E-05
PB.26879.1 NA NA 5.3254 0.0122 5.2597 0.0170
PB.11356.1 -0.1972 0.4002 -0.5149 0.0297 -0.3053 0.1182

Table 3

Basic physicochemical properties of McAQP sequences"

基因
Gene
登录号
Accession number
分子量
Molecular weight (kDa)
理论等电点
Theoretical pI
长度
Length (aa)
原子总数
Total number of atoms
脂肪系数
Aliphatic index
不稳定系数
Instability index
McAQP X1 PP908450 33.89 5.36 308 4806 108.93 39.27
McAQP X2 PP908451 28.94 5.32 272 4078 107.21 22.79

Fig. 3

Phylogenetic tree of McAQPs and aquaporins from other insect species based on amino acid sequence"

Fig. 4

Alignment of partial sequences from the three branches of the AQP multiple sequence evolution tree"

Fig. 5

The secondary structure prediction of McAQP X1 (A) and McAQP X2 (B) The blue represents α-helix and the red represents β-sheet"

Fig. 6

Three-dimensional structure prediction of McAQP X1 and McAQP X2"

Fig. 7

The relative expression level of McAQP X1, McAQP X2 under long-term stable high humidity and 24 h emergency stress"

Fig. 8

The relative expression level of Vg and VgR under long-term stable high humidity and 24 h emergency stress"

[1]
许淳皓. 棉蚜(Hap1型)对不同湿度的响应及抗旱机制研究[D]. 扬州: 扬州大学, 2023.
XU C H. Study on the response to different humidity and drought resistance mechanism in Aphis gossypii (Hap1 type)[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[2]
蔡小双. 温度、相对湿度和光照度对白纹伊蚊生物学参数的影响研究[D]. 广州: 暨南大学, 2020.
CAI X S. A study on the effect of temperature, relative humidity and illuminance on the entomological parameters of Aedes albopictus[D]. Guangzhou: Jinan University, 2020. (in Chinese)
[3]
MORAN N A. The evolution of aphid life cycles. Annual Review of Entomology, 1992, 37: 321-348.
[4]
陆明星, 潘丹丹, 徐静, 刘杨, 王桂荣, 杜予州. 昆虫水通道蛋白的研究进展. 环境昆虫学报, 2017, 39(5): 983-991.
LU M X, PAN D D, XU J, LIU Y, WANG G R, DU Y Z. Research progress in insect aquaporins. Journal of Environmental Entomology, 2017, 39(5): 983-991. (in Chinese)
[5]
JIANG K, PAN Z, PAN F, TEULING A J, HAN G, AN P, CHEN X, WANG J, SONG Y, CHENG L, et al. Combined influence of soil moisture and atmospheric humidity on land surface temperature under different climatic background. iScience, 2023, 26(6): 106837.
[6]
佟蕾, 刘子超, 郭城玮, 汤雯靖, 邓文虎, 董大志. 体重、环境温度和相对湿度对大胡蜂蜂王越冬的影响. 生物资源, 2021, 43(6): 633-637.
TONG L, LIU Z C, GUO C W, TANG W J, DENG W H, DONG D Z. Effects of body weight, temperature and relative humidity on the overwintering of Vespa magnifica queen. Biotic Resources, 2021, 43(6): 633-637. (in Chinese)
[7]
桑文. 赤拟谷盗与四纹豆象对物理因子胁迫的响应机制研究[D]. 武汉: 华中农业大学, 2016.
SANG W. Response mechanisms of Tribolium castaneum and Callosobruchus maculatus exposure to physical agents[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[8]
石旺鹏, 李傲梅, 邢永杰, 沈杰. 昆虫病原微生物对其寄主行为的调控作用研究进展. 微生物学报, 2018, 58(6): 1049-1063.
SHI W P, LI A M, XING Y J, SHEN J. Effects of entomopathogens on host behavior. Acta Microbiologica Sinica, 2018, 58(6): 1049-1063. (in Chinese)
[9]
任柯昱, 张帅, 雒珺瑜, 崔金杰. 棉蚜水通道蛋白基因的克隆与序列分析//中国植物保护学会2016年学术年会. 北京: 中国农业科学技术出版社, 2016: 394.
REN K Y, ZHANG S, LUO J Y, CUI J J. Cloning and sequence analysis of aquaporin genes in Aphis gossypii//2016 Annual Meeting of the Chinese Plant Protection Society. Beijing: China Agricultural Science and Technology Press, 2016: 394. (in Chinese)
[10]
WANG J, QU Z, MA X, OLAJIDE J S, CAI J. Cloning, expression, and functional identification of aquaporin genes from Eimeria tenella. Veterinary Parasitology, 2024, 328: 110153.
[11]
JING X, WHITE T A, YANG X, DOUGLAS A E. The molecular correlates of organ loss: The case of insect Malpighian tubules. Biology Letters, 2015, 11(5): 20150154.
[12]
BENOIT J B, HANSEN I A, ATTARDO G M, MICHALKOVÁ V, MIREJI P O, BARGUL J L, DRAKE L L, MASIGA D K, AKSOY S. Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success. PLoS Neglected Tropical Diseases, 2014, 8(4): e2517.
[13]
SHAKESBY A J, WALLACE I S, ISAACS H V, PRITCHARD J, ROBERTS D M, DOUGLAS A E. A water-specific aquaporin involved in aphid osmoregulation. Insect Biochemistry and Molecular Biology, 2009, 39(1): 1-10.

doi: 10.1016/j.ibmb.2008.08.008 pmid: 18983920
[14]
VAN EKERT E, CHAUVIGNÉ F, FINN R N, MATHEW L G, HULL J J, CERDÀ J, FABRICK J A. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects. Insect Biochemistry and Molecular Biology, 2016, 77: 39-51.
[15]
MADSEN S S, ENGELUND M B, CUTLER C P. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes. The Biological Bulletin, 2015, 229(1): 70-92.

pmid: 26338871
[16]
CLÉMENT T, RODRIGUEZ-GRANDE B, BADAUT J. Aquaporins in brain edema. Journal of Neuroscience Research, 2020, 98(1): 9-18.

doi: 10.1002/jnr.24354 pmid: 30430614
[17]
DASDELEN D, MOGULKOC R, BALTACI A K. Aquaporins and roles in brain health and brain injury. Mini Reviews in Medicinal Chemistry, 2020, 20(6): 498-512.

doi: 10.2174/1389557519666191018142007 pmid: 31656150
[18]
FOGUESATTO K, BOYLE R T, ROVANI M T, FREIRE C A, SOUZA M M. Aquaporin in different moult stages of a freshwater decapod crustacean: Expression and participation in muscle hydration control. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 2017, 208: 61-69.
[19]
王聪. 盐度胁迫下凡纳滨对虾水通道蛋白在中枢神经系统的作用研究[D]. 青岛: 青岛农业大学, 2022.
WANG C. Effects of Litopenaeus vannamei aquaporins in the central nervous system under salinity stress[D]. Qingdao: Qingdao Agricultural University, 2022. (in Chinese)
[20]
戴意. 草地贪夜蛾卵黄原蛋白及其受体对520和570 nm LED光的响应[D]. 南昌: 南昌大学, 2023.
DAI Y. Response of vitellogenin and its receptors to 520 and 570 nm LED light in Spodoptera frugiperda[D]. Nanchang: Nanchang University, 2023. (in Chinese)
[21]
COHEN E. Roles of aquaporins in osmoregulation, desiccation and cold hardiness in insects. Entomology, Ornithology & Herpetology, 2012(S1): 001.
[22]
王琳, 易传辉, 和秋菊. 柑橘凤蝶非滞育蛹、滞育蛹和滞育蛹羽化成虫水分含量变化比较. 四川林业科技, 2009, 30(2): 47-49.
WANG L, YI C H, HE Q J. Comparison of water contents among non-diapause pupae, diapause pupae and eclosion-adult from diapause pupae of Papilio xuthus L. Journal of Sichuan Forestry Science and Technology, 2009, 30(2): 47-49. (in Chinese)
[23]
徐文彦, 谭椰, 商晗武, 祝增荣. 昆虫体水分调控机制的研究进展. 科技通报, 2015, 31(11): 89-96, 158.
XU W Y, TAN Y, SHANG H W, ZHU Z R. Advances in understanding of the mechanisms of water regulation of insects. Bulletin of Science and Technology, 2015, 31(11): 89-96, 158. (in Chinese)
[24]
YANG L, DENLINGER D L, PIERMARINI P M. The diapause program impacts renal excretion and molecular expression of aquaporins in the northern house mosquito, Culex pipiens. Journal of Insect Physiology, 2017, 98: 141-148.
[25]
庞玉雪, 陈磊, 于红霞, 王洪涛. 基于高通量测序的锈腐病西洋参转录组分析. 山东农业科学, 2024, 56(7): 46-56.
PANG Y X, CHEN L, YU H X, WANG H T. Transcriptome analysis of Panax quinquefolius infected by rust root rot disease. Shandong Agricultural Sciences, 2024, 56(7): 46-56. (in Chinese)
[26]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.
[27]
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.

doi: 10.1093/molbev/msab120 pmid: 33892491
[28]
CHEN C, WU Y, LI J, WANG X, ZENG Z, XU J, LIU Y, FENG J, CHEN H, HE Y, XIA R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16: 1733-1742.
[29]
JONES D T. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 1999, 292: 195-202.

doi: 10.1006/jmbi.1999.3091 pmid: 10493868
[30]
ABRAMSON J, ADLER J, DUNGER J, EVANS R, GREEN T, PRITZEL A, RONNEBERGER O, WILLMORE L, BALLARD A J, BAMBRICK J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630(8016): 493-500.
[31]
唐斌, 沈祺达, 曾伯平, 肖仲久, 邱玲玉, 潘碧莹, 李昆, 张道伟. 褐飞虱一个新的海藻糖合成酶基因的特性、发育表达及RNAi效果分析. 中国农业科学, 2019, 52(3): 466-477. doi: 10.3864/j.issn.0578-1752.2019.03.007.
TANG B, SHEN Q D, ZENG B P, XIAO Z J, QIU L Y, PAN B Y, LI K, ZHANG D W. Characteristics, developmental expression and RNAi effect analysis of a novel trehalose-6-phosphate synthase gene in Nilaparvata lugens. Scientia Agricultura Sinica, 2019, 52(3): 466-477. doi: 10.3864/j.issn.0578-1752.2019.03.007. (in Chinese)
[32]
AGRE P, PRESTON G M, SMITH B L, JUNG J S, RAINA S, MOON C, GUGGINO W B, NIELSEN S. Aquaporin CHIP: The archetypal molecular water channel. The American Journal of Physiology, 1993, 265(4 Pt 2): F463-F476.
[33]
TANG B, WANG S, WANG S G, WANG H J, ZHANG J Y, CUI S Y. Invertebrate trehalose-6-phosphate synthase gene: Genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 2018, 9: 30.
[34]
刘霞. 寄主植物干旱胁迫与蠋蝽协同效应对马铃薯甲虫生长发育的影响[D]. 乌鲁木齐: 新疆农业大学, 2023.
LIU X. Effect of host plant drought stress and Arma chinensis synergy on the growth and development of Colorado potato beetle[D]. Wulumuqi: Xinjiang Agricultural University, 2023. (in Chinese)
[35]
JOHNSON C G. Migration and Dispersal of Insects by Flight. London: Methuen, 1969: 763.
[36]
唐广耀. 迁飞期主要气象因子对一代黏虫发生程度影响研究[D]. 郑州: 河南农业大学, 2023.
TANG G Y. Study on the influence of major meteorological factors during adult migratory flight on the occurrence extent of first generation of Mythimna separata (Walker)[D]. Zhengzhou: Henan Agricultural University, 2023. (in Chinese)
[37]
GORKI J L, LÓPEZ-MAÑAS R, SÁEZ L, MENCHETTI M, SHAPOVAL N, ANDERSEN A, BENYAMINI D, DANIELS S, GARCÍA-BERRO A, REICH M S, et al. Pollen metabarcoding reveals the origin and multigenerational migratory pathway of an intercontinental-scale butterfly outbreak. Current Biology, 2024, 34(12): 2684-2692.e6.
[38]
胡高, 高博雅, 封洪强, 江幸福, 翟保平, 吴孔明. 迁飞昆虫的个体行为、种群动态及生态效应. 中国科学基金, 2020, 34(4): 456-463.
HU G, GAO Y B, FENG H Q, JIANG X F, ZHAI B P, WU K M. Insect migration: Individual behavior, population dynamics and ecological consequences. Bulletin of National Natural Science Foundation, 2020, 34(4): 456-463. (in Chinese)
[39]
MOREIRA DA SILVA A E, FRANCO A M, FERGUSON B S, FONSECA M A. Influence of previous plane of nutrition on molecular mechanisms regulating the expression of urea and water metabolism related genes in the rumen and kidney of finishing crossbred Angus steers. Animal Nutrition, 2024, 17: 232-243.

doi: 10.1016/j.aninu.2023.12.011 pmid: 38800739
[40]
CHEN N, FAN Y, BAI Y, LI X, ZHANG Z, LIU T. Cytochrome P450 gene, CYP4G51, modulates hydrocarbon production in the pea aphid, Acyrthosiphon pisum. Insect Biochemistry and Molecular Biology, 2016, 76: 84-94.
[41]
YANG Y, LI X, LIU D, PEI X, KHOSO A G. Rapid changes in composition and contents of cuticular hydrocarbons in Sitobion avenae (Hemiptera: Aphididae) clones adapting to desiccation stress. Journal of Economic Entomology, 2022, 115(2): 508-518.
[42]
HIRAMATSU N, CHAPMAN R W, LINDZEY J K, HAYNES M R, SULLIVAN C V. Molecular characterization and expression of vitellogenin receptor from white perch (Morone americana). Biology of Reproduction, 2004, 70(6): 1720-1730.

pmid: 14766733
[43]
WOELBER-KASTNER B K, FREY S D, HOWARD D R, HALL C L. Insect reproductive behaviors are important mediators of carrion nutrient release into soil. Scientific Reports, 2021, 11: 3616.
[44]
TUFAIL M, TAKEDA M. Molecular characteristics of insect vitellogenins. Journal of Insect Physiology, 2008, 54(12): 1447-1458.

doi: 10.1016/j.jinsphys.2008.08.007 pmid: 18789336
[45]
闫欣. 番茄潜叶蛾卵巢发育与卵黄原蛋白及其受体的关系研究[D]. 贵阳: 贵州大学, 2022.
YAN X. The relationship between ovarian development and vitellogenin and their receptors in Tuta absoluta[D]. Guiyang: Guizhou University, 2022. (in Chinese)
[46]
刘真. 白眉野草螟水通道蛋白AQP基因的克隆及功能分析[D]. 泰安: 山东农业大学, 2021.
LIU Z. Cloning and functional analysis of aquaporin genes in Agriphila aeneociliella[D]. Taian: Shandong Agricultural University, 2021. (in Chinese)
[47]
ZHAO C Q, LIU Z, LIU Y, ZHAN Y D. Identification and characterization of cold-responsive aquaporins from the larvae of a crambid pest Agriphila aeneociliella (Eversmann) (Lepidoptera: Crambidae). PeerJ, 2023, 11: e16403.
[48]
ISHIBASHI K, TANAKA Y, MORISHITA Y. Perspectives on the evolution of aquaporin superfamily. Vitamins and Hormones, 2020, 112: 1-27.

doi: S0083-6729(19)30061-5 pmid: 32061337
[49]
DRAKE L L, RODRIGUEZ S D, HANSEN I A. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti. Scientific Reports, 2015, 5: 7795.

doi: 10.1038/srep07795 pmid: 25589229
[50]
周晨, 韩召军. 灰飞虱水通道蛋白基因克隆及其与杀虫剂代谢的关系. 南京农业大学学报, 2017, 40(6): 1014-1022.
ZHOU C, HAN Z J. Aquaporin gene cloning and its possible contribution to insecticide metabolism in Laodelphax striatellus. Journal of Nanjing Agricultural University, 2017, 40(6): 1014-1022. (in Chinese)
[1] PAN FengYing, QU JunJie, LIU LuLu, SUN DaYun, GUO ZeXi, WEI XiaoLi, WEI ShuMei, YIN Ling. Expression and Functional Analysis of Glycosyl Hydrolase Genes from Plasmopara viticola [J]. Scientia Agricultura Sinica, 2023, 56(5): 879-891.
[2] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[3] DANG YuanYue, MA JianJiang, YANG ShuXian, SONG JiKun, JIA Bing, FENG Pan, CHEN QuanJia, YU JiWen. Genome-Wide Identification and Expression Analysis of β-tubulin Family in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4585-4601.
[4] HAN XiaoWen, HAN Shuo, HU YiFeng, WANG MengRu, CHEN ZhongYi, ZHU YongXing, YIN JunLiang. Genome-Wide Identification of AP2/ERF Gene Family in Alternanthera philoxeroides and Its Expression Patterns Under Herbicide Stresses [J]. Scientia Agricultura Sinica, 2023, 56(20): 4021-4034.
[5] DING GuoHua, XIAO GuangHui, ZHU LiPing. Genome-Wide Identification and Expression Analysis of NLP (NIN- Like Protein) Transcription Factor Gene Family in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(19): 3723-3746.
[6] ZHANG Xin, YANG XingYu, ZHANG ChaoRan, ZHANG Chong, ZHENG HaiXia, ZHANG XianHong. Identification and Expression Analysis of Heat Shock Protein Superfamily Genes in Callosobruchus chinensis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3814-3828.
[7] YANG HuiZhen, YANG Huan, WU ZiXuan, FAN KuoHai, YIN Wei, SUN PanPan, ZHONG Jia, SUN Na, LI HongQuan. Prokaryotic Expression and Metal Binding Characterization of Metallothionein 1A and 2A of Sus scrofa [J]. Scientia Agricultura Sinica, 2023, 56(17): 3461-3478.
[8] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[9] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[10] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[11] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[12] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[13] SUN XiaoFang,LIU Min,PAN TingMin,GONG GuoShu. Mating Type and Fertility of Cochliobolus heterostrophus Causing Southern Corn Leaf Blight in Sichuan Province [J]. Scientia Agricultura Sinica, 2021, 54(12): 2547-2558.
[14] XING QiKai,LI LingXian,CAO Yang,ZHANG Wei,PENG JunBo,YAN JiYe,LI XingHong. Prediction and Analysis of Candidate Secreted Proteins from the Genome of Lasiodiplodia theobromae [J]. Scientia Agricultura Sinica, 2020, 53(24): 5027-5038.
[15] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!