Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4585-4601.doi: 10.3864/j.issn.0578-1752.2023.23.003

• SPECIAL FOCUS: FIBER DEVELOPMENT IN COTTON • Previous Articles     Next Articles

Genome-Wide Identification and Expression Analysis of β-tubulin Family in Cotton Fiber Development

DANG YuanYue1,2(), MA JianJiang2, YANG ShuXian2, SONG JiKun1,2, JIA Bing1,2, FENG Pan2, CHEN QuanJia1(), YU JiWen1,2()   

  1. 1 College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi 830052
    2 Institute of Cotton Research of Chinese Academy of Agricultural Sciences/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang 455000, Henan
  • Received:2022-12-10 Accepted:2023-02-22 Online:2023-12-04 Published:2023-12-04
  • Contact: CHEN QuanJia, YU JiWen

Abstract:

【Objective】β-tubulin is the basic structural unit of cotton fiber, regulates fiber cell morphogenesis, and plays a vital role in fiber development. But there is less understood how β-tubulin gene influenced the distinct characteristic of fiber quality traits in cotton. In this study, members of the β-tubulin gene family were identified in cotton, their expression profiles were analyzed, and role of β-tubulin genes were explored for fiber quality. 【Method】BLAST method was used to identify members of the β-tubulin gene family in the genomes of four cotton species. ProtParam tool was utilized to analyze physicochemical properties, MEGA7.0 to construct phylogenetic tree, Mapchart2.2 to draw chromosomal localization map, MEME to analyze conserved motif, and PlantCARE to analyze promoter cis-acting elements. Expression levels of β-tubulin genes were characterized by using transcriptome data from 39 studies on fiber development. Spearman correlation analysis was used to identify candidate genes for fiber quality traits. 【Result】Importantly, 36, 37, 19 and 18 β-tubulin genes were identified in the genomes of Gossypium hirsutum (AD1), Gossypium barbadense (AD2), Gossypium arboretum (A2) and Gossypium raimondii (D5), respectively. The number of β-tubulin genes in tetraploid cotton species is almost double than that of diploid cotton species. Phylogenetic analysis classified these genes into 5 main clusters. Phylogenetic and collinearity analysis revealed that β-tubulin genes in Gossypium barbadense is closely related to Gossypium arboretum and Gossypium raimondii as compared to Gossypium hirsutum. Furthermore, all genes have typical conservative domains with Tubulin and Tubulin-C. The genes physicochemical properties showed amino acids range from 421 to 508 with isoelectric point of 4.68 to 5.09. The analysis of promoter cis-acting elements identified growth responsive, hormone responsive, and stress responsive elements which showed β-tubulin mediates various mechanisms of cell growth regulation. Interestingly, cluster analysis on 36 β-tubulin gene expression profiles showed 42% genes in cluster П had dominant expression in fiber. In particular, 1, 6, and 11 β-tubulin genes exhibited significant correlation with fiber micronaire value, fiber strength, and fiber length, respectively. Four genes were found to influence fiber length and fiber strength traits simultaneously. 【Conclusion】A total of 110 β-tubulin gene family members were identified in the four cotton species. Their physicochemical properties and sequences of amino acids were highly conserved and the promoter sequence had diverse regulatory elements. This study characterized the expression profiles as well as molecular function of β-tubulin gene family in cotton fiber. Further discovered the potential candidate genes that probably regulate fiber quality traits in cotton. Our results may have great potential for cotton fiber quality improvement by genetic engineering.

Key words: cotton, β-tubulin gene family, bioinformatics, expression analysis, fiber development

Fig. 1

Phylogenetic tree of β-tubulin family in cotton"

Table 1

Basic physicochemical properties of β-tubulin gene family in cotton"

物种
Species
基因ID
Gene ID
等电点
pI
分子量
Molecular weight (kDa)
蛋白长度
<BOLD>P</BOLD>rotein length (aa)
亚细胞定位
Subcellular localization
陆地棉
Gossypium hirsutum
GH_A01G1087 4.74 50.65 452 细胞质Cytoplasm
GH_A03G0257 4.76 50.13 445 细胞核Nucleus
GH_A03G0258 4.76 50.07 445 细胞核Nucleus
GH_A03G0260 5.09 55.66 495 叶绿体Chloroplast
GH_A03G0596 4.75 50.00 444 细胞核Nucleus
GH_A03G0911 4.73 50.21 447 细胞质Cytoplasm
GH_A05G0919 4.74 50.30 446 细胞核Nucleus
GH_A05G1119 4.76 50.01 445 细胞质Cytoplasm
GH_A05G1860 4.70 50.50 450 细胞核Nucleus
GH_A05G2570 4.80 50.66 449 细胞核Nucleus
GH_A06G0029 4.79 50.39 449 细胞核Nucleus
GH_A08G2076 4.76 50.00 445 细胞核Nucleus
GH_A08G2085 4.79 49.85 444 细胞核Nucleus
GH_A09G0513 4.68 50.59 448 细胞质Cytoplasm
GH_A09G1787 4.86 53.27 472 内质网Endoplasmic reticulum
GH_A09G1903 4.76 49.73 445 细胞核Nucleus
GH_A11G3495 4.75 50.30 447 细胞核Nucleus
GH_A13G2534 4.75 49.97 444 细胞核Nucleus
GH_D01G1129 4.68 50.71 452 细胞核Nucleus
GH_D02G1082 4.72 50.21 447 细胞质Cytoplasm
GH_D03G1367 4.75 50.00 444 细胞核Nucleus
GH_D03G1707 4.86 49.98 444 细胞核Nucleus
GH_D03G1709 4.76 50.10 445 细胞核Nucleus
GH_D03G1710 4.76 50.13 445 细胞核Nucleus
GH_D05G0911 4.70 50.21 446 细胞核Nucleus
GH_D05G1114 4.74 50.14 446 细胞质Cytoplasm
GH_D05G1898 4.70 50.52 450 细胞核Nucleus
GH_D06G0016 4.73 50.67 452 细胞核Nucleus
GH_D07G1281 4.77 50.26 447 细胞核Nucleus
GH_D08G2085 4.76 50.00 445 细胞核Nucleus
GH_D08G2099 4.79 49.83 444 细胞核Nucleus
GH_D09G0508 4.71 50.36 447 细胞核Nucleus
GH_D09G1737 4.89 53.36 472 细胞质Cytoplasm
GH_D09G1854 4.80 49.82 445 细胞核Nucleus
GH_D11G3501 4.75 50.30 447 细胞核Nucleus
GH_D13G2529 4.75 49.95 444 细胞核Nucleus
海岛棉
Gossypium barbadense
GB_A01G1091 4.72 50.65 452 细胞质Cytoplasm
GB_A03G0251 4.76 50.13 445 细胞核Nucleus
GB_A03G0252 4.76 50.07 445 细胞核Nucleus
GB_A03G0254 4.85 49.88 444 细胞核Nucleus
GB_A03G0586 4.75 50.01 444 细胞核Nucleus
GB_A03G0919 4.75 50.18 447 叶绿体Chloroplast
GB_A05G0927 4.70 50.24 446 细胞核Nucleus
GB_A05G1127 4.76 50.01 445 细胞质Cytoplasm
GB_A05G1887 4.70 50.50 450 细胞核Nucleus
GB_A05G2602 4.77 50.66 449 细胞核Nucleus
GB_A06G0033 4.77 50.78 452 细胞核Nucleus
GB_A08G2182 4.76 50.00 445 细胞核Nucleus
GB_A08G2191 4.79 49.85 444 细胞核Nucleus
GB_A09G0575 4.68 50.59 448 细胞质Cytoplasm
GB_A09G1907 4.86 53.27 472 内质网Endoplasmic reticulum
GB_A09G2018 4.76 49.72 445 细胞核Nucleus
GB_A11G3569 4.75 50.30 447 细胞核Nucleus
GB_A13G2683 4.75 49.97 444 细胞核Nucleus
GB_D01G1171 4.68 50.71 452 细胞核Nucleus
GB_D02G1129 4.75 50.80 452 细胞质Cytoplasm
GB_D03G1389 4.75 50.00 444 细胞核Nucleus
GB_D03G1742 4.86 49.98 444 细胞核Nucleus
GB_D03G1744 4.76 50.10 445 细胞核Nucleus
GB_D03G1745 4.76 50.13 445 细胞核Nucleus
GB_D05G0908 4.70 50.21 446 细胞核Nucleus
GB_D05G1112 4.74 50.14 446 细胞质Cytoplasm
GB_D05G1913 4.70 50.52 450 细胞核Nucleus
GB_D05G2606 4.76 47.37 421 细胞核Nucleus
GB_D06G0034 4.73 50.67 452 细胞核Nucleus
GB_D07G1286 4.81 50.33 447 细胞核Nucleus
GB_D08G2163 4.76 50.00 445 细胞核Nucleus
GB_D08G2175 4.79 49.83 444 细胞核Nucleus
GB_D09G0514 4.70 50.44 447 细胞核Nucleus
GB_D09G1750 4.86 53.38 472 细胞质Cytoplasm
GB_D09G1866 4.80 49.82 445 细胞核Nucleus
GB_D11G3544 5.08 57.42 508 叶绿体Chloroplast
GB_D13G2621 4.75 49.97 444 细胞核Nucleus
亚洲棉
Gossypium arboretum
Ga01G1198 4.72 48.89 436 细胞核Nucleus
Ga01G2180 4.75 50.00 444 细胞核Nucleus
Ga01G2554 4.76 50.13 445 细胞核Nucleus
Ga01G2555 4.76 50.08 445 细胞核Nucleus
Ga01G2557 4.85 49.86 444 细胞核Nucleus
Ga03G1117 4.73 50.21 447 细胞质Cytoplasm
Ga05G0964 4.70 48.91 433 细胞质Cytoplasm
Ga05G1174 4.76 50.01 445 细胞质Cytoplasm
Ga05G1974 4.70 50.52 450 细胞核Nucleus
Ga05G2720 4.79 50.70 449 细胞核Nucleus
Ga06G0039 4.77 50.78 452 细胞核Nucleus
Ga07G1306 4.81 50.32 447 细胞核Nucleus
Ga08G2131 4.76 50.00 445 细胞核Nucleus
Ga08G2143 4.79 49.85 444 细胞核Nucleus
Ga09G0571 4.68 50.58 448 细胞核Nucleus
Ga09G1894 4.76 49.71 445 细胞核Nucleus
Ga09G1948 4.76 50.19 445 细胞核Nucleus
Ga11G0323 4.75 50.30 447 细胞核Nucleus
Ga13G2741 4.75 49.97 444 细胞核Nucleus
雷蒙德氏棉
Gossypium raimondii
Gorai.001G132500 4.81 50.32 447 细胞核Nucleus
Gorai.002G123400 4.68 50.71 452 细胞核Nucleus
Gorai.003G126300 4.75 50.00 444 细胞核Nucleus
Gorai.003G159100 4.86 49.98 444 细胞核Nucleus
Gorai.003G159300 4.76 50.07 445 细胞核Nucleus
Gorai.003G159400 4.76 50.12 445 细胞核Nucleus
Gorai.004G210600 4.76 50.00 445 细胞核Nucleus
Gorai.004G211800 4.79 49.83 444 细胞核Nucleus
Gorai.005G118100 4.72 50.20 447 细胞质Cytoplasm
Gorai.006G049000 4.70 50.51 448 细胞核Nucleus
Gorai.006G179900 4.86 53.38 472 细胞质Cytoplasm
Gorai.006G191900 4.80 49.74 445 细胞核Nucleus
Gorai.007G351900 4.75 50.30 447 细胞核Nucleus
Gorai.009G094600 4.70 50.21 446 细胞核Nucleus
Gorai.009G115600 4.74 50.14 446 细胞质Cytoplasm
Gorai.009G194500 4.70 50.52 450 细胞核Nucleus
Gorai.010G003800 4.73 50.67 452 细胞核Nucleus
Gorai.013G261300 4.75 49.95 444 细胞核Nucleus

Fig. 2

Chromosomal localization of β-tubulin genes in four cotton A: G. arboretum; B: G. raimondii; C: G. hirsutum; D: G. barbadense"

Fig. 3

Analysis of synteny among multiple Gossypium genomes A: Synteny analysis among G. arboreum, G. hirsutum (A-subgenome), and G. barbadense (A-subgenome); B: Synteny analysis among G. raimondii, G. hirsutum (D-subgenome), and G. barbadense (D-subgenome)"

Fig. 4

Gene structure and protein domain analyses of β-tubulin genes A: The exon-intron structure of β-tubulin genes; B: β-tubulin protein domain prediction; C: The motifs of β-tubulin genes"

Fig. 5

β-tubulin gene promoter cis-acting element in cotton"

Fig.6

Expression pattern of 36 GhTUBs gene in different tissues of upland cotton"

Fig. 7

Correlation analysis of 5, 10 and 15 DPA fiber transcriptome data of 13 genes with Micronone value, fiber strength and fiber length"

[1]
肖水平, 宋国立, 余进祥. 棉花纤维品质相关基因挖掘及功能基因研究进展. 棉花科学, 2020, 42(2): 3-14.
XIAO S P, SONG G L, YU J X. Research progress of cotton fiber quality related gene mining and functional genes. Cotton Sciences, 2020, 42(2): 3-14. (in Chinese)
[2]
杨君, 马峙英, 王省芬. 棉花纤维品质改良相关基因研究进展. 中国农业科学, 2016, 49(22): 4310-4322.

doi: 10.3864/j.issn.0578-1752.2016.22.005
YANG J, MA Z Y, WANG X F. Progress in studies on genes related to fiber quality improvement of cotton. Scientia Agricultura Sinica, 2016, 49(22): 4310-4322. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.22.005
[3]
DIXON D C, SEAGULL R W, TRIPLETT B A. Changes in the accumulation of [alpha]- and [beta]-tubulin isotypes during cotton fiber development. Plant Physiology, 1994, 105(4): 1347-1353.

pmid: 12232289
[4]
KOST B, CHUA N H. The plant cytoskeleton: Vacuoles and cell walls make the difference. Cell, 2002, 108(1): 9-12.

pmid: 11792316
[5]
HE X C, QIN Y M, XU Y, HU C Y, ZHU Y X. Molecular cloning, expression profiling, and yeast complementation of 19 β-tubulin cDNAs from developing cotton ovules. Journal of Experimental Botany, 2008, 59(10): 2687-2695.

doi: 10.1093/jxb/ern127
[6]
NIEUWENHUIS J, BRUMMELKAMP T R. The tubulin detyrosination cycle: Function and enzymes. Trends in Cell Biology, 2019, 29(1): 80-92.

doi: S0962-8924(18)30141-7 pmid: 30213517
[7]
MEIRING J C M, SHNEYER B I, AKHMANOVA A. Generation and regulation of microtubule network asymmetry to drive cell polarity. Current Opinion in Cell Biology, 2020, 62: 86-95.

doi: S0955-0674(19)30091-2 pmid: 31739264
[8]
MCKEAN P G, VAUGHAN S, GULL K. The extended tubulin superfamily. Journal of Cell Science, 2001, 114(15): 2723-2733.

doi: 10.1242/jcs.114.15.2723
[9]
SEAGULL R W. Cytoskeletal stability affects cotton fiber initiation. International Journal of Plant Sciences, 1998, 159(4): 590-598.

doi: 10.1086/297577
[10]
OAKLEY R V, WANG Y S, RAMAKRISHNA W, HARDING S A, TSAI C J. Differential expansion and expression of α- and β-tubulin gene families in Populus. Plant Physiology, 2007, 145(3): 961-973.

doi: 10.1104/pp.107.107086
[11]
MUBEEN H, SHOAIB M W, RAZA S. In silico analysis and comparison of alpha tubulin gene with other tubulin families. Journal of Advance in Biology & Biotecnology, 2016, 7(4): 1-7.
[12]
LI Y L, SUN J, LI C H, ZHU Y Q, XIA G X. Specific expression of a β-tubulin gene (GhTub1) in developing cotton fibers. Science in China Series C: Life Sciences, 2003, 46(3): 235-242.

doi: 10.1360/03yc9025
[13]
SNUSTAD D P, HAAS N A, KOPCZAK S D, SILFLOW C D. The small genome of Arabidopsis contains at least nine expressed beta-tubulin genes. The Plant Cell, 1992, 4(5): 549-556.
[14]
CHENG Z G, CARTER J V. Temporal and spatial expression patterns of TUB9, a β-tubulin gene of Arabidopsis thaliana. Plant Molecular Biology, 2001, 47(3): 389-398.

doi: 10.1023/A:1011628024798
[15]
杨建霞. TUB4对拟南芥生长发育的影响和TAO1基因新功能分析[D]. 兰州: 兰州大学, 2015.
YANG J X. The effects of TUB4 on Arabidopsis growth and development and the analysis of the new role of TAO1[D]. Lanzhou: Lanzhou University, 2015. (in Chinese)
[16]
GAVAZZI F, PIGNA G, BRAGLIA L, GIANÌ S, BREVIARIO D, MORELLO L. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development. BMC Plant Biology, 2017, 17(1): 237.

doi: 10.1186/s12870-017-1186-0
[17]
睢金凯, 饶国栋, 张建国. 柳树β微管蛋白基因家族的克隆和序列分析. 西北植物学报, 2016, 36(5): 902-909.
SUI J K, RAO G D, ZHANG J G. Cloning and sequence analysis of β-tubulin gene families in willows. Acta Botanica Boreali- Occidentalia Sinica, 2016, 36(5): 902-909. (in Chinese)
[18]
黄胜雄, 胡尚连, 孙霞, 蒋瑶. 慈竹β-tubulin基因片段的克隆及序列分析. 福建林业科技, 2009, 36(1): 7-10, 42.
HUANG S X, HU S L, SUN X, JIANG Y. Cloning and sequence analysis of β-tubulin gene fragments of Neosinocalamus affinis. Fujian Forestry Science and Technology, 2009, 36(1): 7-10, 42. (in Chinese)
[19]
王亚婷, 林玉玲, 曾丽兰, 赖钟雄. 龙眼胚性愈伤组织微管蛋白基因β-tubulin克隆及序列分析. 福建农林大学学报(自然科学版), 2014, 43(1): 49-54.
WANG Y T, LIN Y L, ZENG L L, LAI Z X. Cloning and sequence analysis of β-tubulin gene from embryogenic callus in Dimocarpus longan Lour. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2014, 43(1): 49-54. (in Chinese)
[20]
LI X B, CAI L, CHENG N H, LIU J W. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiology, 2002, 130(2): 666-674.

doi: 10.1104/pp.005538
[21]
QIN Y, SUN H R, HAO P B, WANG H T, WANG C C, MA L, WEI H L, YU S X. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines. BMC Genomics, 2019, 20(1): 633.

doi: 10.1186/s12864-019-5986-5
[22]
曾志锋. GhTUB7在棉纤维发育中的功能[D]. 重庆: 西南大学, 2016.
ZENG Z F. The function of GhTUB7 in cotton fiber development[D]. Chongqing: Southwest University, 2016. (in Chinese)
[23]
李彩丽. 毛竹细胞骨架微管蛋基因PeTua3PeTub3研究[D]. 北京: 中国林业科学研究院, 2012.
LI C L. Study on PeTua3 and PeTub3 encoding micro tuhulin of cvtoskeleton in moso bamboo (Phyllostachys edulis)[D]. Beijing: Chinese Academy of Forestry, 2012. (in Chinese)
[24]
DU X M, HUANG G, HE S P, YANG Z E, SUN G F, MA X F, LI N, ZHANG X Y, SUN J L, LIU M, JIA Y H, PAN Z E, GONG W F, LIU Z H, ZHU H Q, MA L, LIU F Y, YANG D G, WANG F, FAN W, GONG Q, PENG Z, WANG L R, WANG X Y, XU S J, SHANG H H, LU C R, ZHENG H K, HUANG S W, LIN T, ZHU Y X, LI F G. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics, 2018, 50(6): 796-802.

doi: 10.1038/s41588-018-0116-x pmid: 29736014
[25]
PATERSON A H, WENDEL J F, GUNDLACH H, GUO H, JENKINS J, JIN D C, LLEWELLYN D, SHOWMAKER K C, SHU S Q, UDALL J, YOO M J, BYERS R, CHEN W, DORON-FAIGENBOIM A, DUKE M V, GONG L, GRIMWOOD J, GROVER C, GRUPP K, HU G J, LEE T H, LI J P, LIN L F, LIU T, MARLER B S, PAGE J T, ROBERTS A W, ROMANEL E, SANDERS W S, SZADKOWSKI E, TAN X, TANG H B, XU C M, WANG J P, WANG Z N, ZHANG D, ZHANG L, ASHRAFI H, BEDON F, BOWERS J E, BRUBAKER C L, CHEE P W, DAS S, GINGLE A R, HAIGLER C H, HARKER D, HOFFMANN L V, HOVAV R, JONES D C, LEMKE C, MANSOOR S, UR RAHMAN M, RAINVILLE L N, RAMBANI A, REDDY U K, RONG J K, SARANGA Y, SCHEFFLER B E, SCHEFFLER J A, STELLY D M, TRIPLETT B A, VAN DEYNZE A, VASLIN M F S, WAGHMARE V N, WALFORD S A, WRIGHT R J, ZAKI E A, ZHANG T Z, DENNIS E S, MAYER K F X, PETERSON D G, ROKHSAR D S, WANG X Y, SCHMUTZ J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492(7429): 423-427.

doi: 10.1038/nature11798
[26]
HU Y, CHEN J D, FANG L, ZHANG Z Y, MA W, NIU Y C, JU L Z, DENG J Q, ZHAO T, LIAN J M, BARUCH K B, FANG D, LIU X, RUAN Y L, RAHMAN M U, HAN J L, WANG K, WANG Q, WU H T, MEI G F, ZANG Y H, HAN Z G, XU C Y, SHEN W J, YANG D F, SI Z F, DAI F, ZOU L F, HUANG F, BAI Y L, ZHANG Y G, BRODT A, BEN-HAMO H, ZHU X F, ZHOU B L, GUAN X Y, ZHU S J, CHEN X Y, ZHANG T Z. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51(4): 739-748.

doi: 10.1038/s41588-019-0371-5
[27]
LETUNIC I, DOERKS T, BORK P. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Research, 2015, 43(D1): D257-D260.

doi: 10.1093/nar/gku949
[28]
LARKIN M A, BLACKSHIELDS G, BROWN N P, CHENNA R, MCGETTIGAN P A, MCWILLIAM H, VALENTIN F, WALLACE I M, WILM A, LOPEZ R, THOMPSON J D, GIBSON T J, HIGGINS D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21): 2947-2948.

doi: 10.1093/bioinformatics/btm404 pmid: 17846036
[29]
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.

doi: 10.1093/molbev/msw054 pmid: 27004904
[30]
BJELLQVIST B, BASSE B, OLSEN E, CELIS J E. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis, 1994, 15(3/4): 529-539.

doi: 10.1002/elps.v15:1
[31]
VOORRIPS R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1): 77-78.

doi: 10.1093/jhered/93.1.77 pmid: 12011185
[32]
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[33]
KRZYWINSKI M, SCHEIN J, BIROL I, CONNORS J, GASCOYNE R, HORSMAN D, JONES S J, MARRA M A. Circos: An information aesthetic for comparative genomics. Genome Research, 2009, 19(9): 1639-1645.

doi: 10.1101/gr.092759.109 pmid: 19541911
[34]
BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J Y, LI W W, NOBLE W S. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(supp1_2): W202- W208.

doi: 10.1093/nar/gkp335
[35]
LESCOT M, DÉHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN DE PEER Y, ROUZÉ P, ROMBAUTS S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327.
[36]
YOSHIKAWA M, YANG G X, KAWAGUCHI K, KOMATSU S. Expression analyses of β-tubulin isotype genes in rice. Plant and Cell Physiology, 2003, 44(11): 1202-1207.

doi: 10.1093/pcp/pcg150
[37]
RAO G D, ZENG Y F, HE C Y, ZHANG J G. Characterization and putative post-translational regulation of α- and β-tubulin gene families in Salix arbutifolia. Scientific Reports, 2016, 6: 19258.

doi: 10.1038/srep19258
[38]
CHEN B J, ZHAO J J, FU G Y, PEI X X, PAN Z E, LI H G, AHMED H, HE S P, DU X M. Identification and expression analysis of Tubulin gene family in upland cotton. Journal of Cotton Research, 2021, 4(3): 229-238.
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[5] PAN FengYing, QU JunJie, LIU LuLu, SUN DaYun, GUO ZeXi, WEI XiaoLi, WEI ShuMei, YIN Ling. Expression and Functional Analysis of Glycosyl Hydrolase Genes from Plasmopara viticola [J]. Scientia Agricultura Sinica, 2023, 56(5): 879-891.
[6] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[7] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[8] WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit [J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
[9] TANG LiYuan, CAI Xiao, WANG HaiTao, LI XingHe, ZHANG SuJun, LIU CunJing, ZHANG JianHong. Genome-Wide Identification of Cotton FLA Gene Family and Functional Analysis of GhFLA05 in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4602-4620.
[10] ZANG XinShan, WANG KangWen, ZHANG XianLiang, WANG XuePing, WANG Jun, LIANG Yu, PEI XiaoYu, REN Xiang, LÜ YuLong, GAO Yu, WANG XingXing, PENG YunLing, MA XiongFeng. Research Advances of Map-Based Cloning Genes in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4635-4647.
[11] ZHANG YaLin, JIANG Yan, ZHAO LiHong, FENG ZiLi, FENG HongJie, WEI Feng, ZHOU JingLong, ZHU HeQin, MA ZhiYing. Effect of Temperature on the Occurrence of Cotton Verticillium Wilt and Host Defense Response [J]. Scientia Agricultura Sinica, 2023, 56(23): 4671-4683.
[12] HAN XiaoWen, HAN Shuo, HU YiFeng, WANG MengRu, CHEN ZhongYi, ZHU YongXing, YIN JunLiang. Genome-Wide Identification of AP2/ERF Gene Family in Alternanthera philoxeroides and Its Expression Patterns Under Herbicide Stresses [J]. Scientia Agricultura Sinica, 2023, 56(20): 4021-4034.
[13] LIU Fang, XU MengBei, WANG QiaoLing, MENG Qian, LI GuiMing, ZHANG HongJu, TIAN HuiDan, XU Fan, LUO Ming. Cloning and Functional Characterization of the Promoter of GhSLD1 Gene That Predominantly Expressed in Cotton Fiber [J]. Scientia Agricultura Sinica, 2023, 56(19): 3712-3722.
[14] DING GuoHua, XIAO GuangHui, ZHU LiPing. Genome-Wide Identification and Expression Analysis of NLP (NIN- Like Protein) Transcription Factor Gene Family in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(19): 3723-3746.
[15] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!