Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (20): 4045-4056.doi: 10.3864/j.issn.0578-1752.2024.20.010

• SPECIAL FOCUS: OCCURRENCE AND CONTROL OF MIGRATORY PESTS • Previous Articles     Next Articles

The Increasing Temperature Accelerated the Population Growth of Rhopalosiphum padi and Sitobion avenae by Wheat Rhizosphere Microorganisms

JIANG YaNan1(), QI FangJian1, LI WeiWei1, CHEN JuLian1, TAN XiaoLing1,2()   

  1. 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, Henan
  • Received:2024-03-11 Accepted:2024-04-05 Online:2024-10-16 Published:2024-10-24
  • Contact: TAN XiaoLing

Abstract:

【Objective】Climate warming can affect the occurrence and damage caused by wheat aphids. Rhopalosiphum padi and Sitobion avenae as the main pests of wheat in the Huang-Huai-Hai region of China, their population development and reproduction are affected by warming. This study aims to investigate whether climate warming will change the wheat rhizosphere microorganisms, which would indirectly affect the development and reproduction of R. padi and S. avenae.【Method】At the Yuanyang experimental station in Henan Province, infrared radiation heaters were hung to simulate a temperature increased by 2 ℃, and the number of wheat aphids occurring was investigated after the wheat returned to the greening stage. During the wheat jointing stage, rhizosphere microorganisms were collected and then brought to the laboratory to obtain the mixed microbial solution. The population dynamics and age-stage two-sex life table of two aphid species were tested by irrigating wheat with mixed solution. The mixture of rhizosphere microorganism was irrigated, and then aphids were inoculated. The number of aphids was recorded after 5 consecutive observations. For life table experiments, individual aphid of two wheat aphid species was fixed onto the 2nd leaf of wheat using ecological boxes, and the molting, instar and mortality of nymphal aphid were observed and recorded every day. At the same time, the reproduction and mortality of adult aphid were also recorded.【Result】Under different treatments, the population dynamics of R. padi and S. avenae were increasing continuously. With increasing investigation frequency, the increase of aphids gradually increased with irrigating the rhizosphere microorganisms of the elevated field compared with that at the ambient field. Rhizosphere microorganisms in the elevated field significantly increased the total mean number of R. padi and S. avenae, and compared with S. avenae, the increase of R. padi was greater, which increased by 4.49 times of S. avenae. The results of the population life table showed that the rhizosphere microorganisms in the elevated field significantly shortened the mean generation time, population doubling time, preadult duration, and oviposition duration of R. padi, while significantly increasing its intrinsic rate of increase, finite rate of increase and offspring. In addition, rhizosphere microorganisms in the elevated field significantly improved the survival rates of S. avenae at all developmental stages.【Conclusion】Warming promotes the growth, development, and reproduction of R. padi, enhances the survival rate of S. avenae, and accelerates the population growth of both aphid species, respectively, by affecting rhizosphere microorganisms, which may lead to changes in the migratory behavior of the aphids. These findings provide initial insights into the outbreak mechanism of wheat aphids under climate warming, and offer valuable references for predicting and assessing wheat aphid occurrences under future climate warming.

Key words: climate warming, rhizosphere microorganism, wheat aphid, life table, population development

Fig. 1

Population dynamics (a) and average occurrence (b) of R. padi and S. avenae under irrigating different mixtures of rhizosphere microorganisms"

Table 1

Population life parameters of two aphid species under irrigating different mixtures of rhizosphere microorganisms"

种群参数
Population parameter
禾谷缢管蚜R. padi 麦长管蚜S. avenae
A-Rp E-Rp A-Sa E-Sa
内禀增长率Intrinsic rate of increase (r, d-1) 0.395±0.003b 0.409±0.004a 0.238±0.014a 0.256±0.010a
周限增长率Finite rate of increase (λ, d-1) 1.485±0.004b 1.506±0.007a 1.268±0.018a 1.292±0.012a
净增殖率Net reproductive rate (R0) 76.025±1.012a 78.429±0.919a 30.789±5.520a 36.882±3.899a
平均世代周期Mean generation time (T, d) 10.95±0.06a 10.65±0.11b 14.41±0.35a 14.08±0.41a
种群加倍时间Population doubling time (td, d) 1.75±0.01a 1.69±0.02b 2.92±0.19a 2.71±0.10a

Table 2

Life history parameters of two aphid species under irrigating different mixtures of rhizosphere microorganisms"

生活史参数
Life parameter
禾谷缢管蚜R. padi 麦长管蚜S. avenae
A-Rp E-Rp A-Sa E-Sa
1龄发育历期1st instar duration (d) 2.08±0.07a 1.81±0.07b 1.89±0.07a 2.06±0.06a
2龄发育历期2nd instar duration (d) 1.38±0.08a 1.24±0.07a 1.63±0.13b 1.94±0.06a
3龄发育历期3rd instar duration (d) 1.40±0.08a 1.43±0.08a 1.76±0.13a 1.56±0.12a
4龄发育历期4th instar duration (d) 1.15±0.06a 1.17±0.06a 2.88±0.12a 2.59±0.15a
若蚜发育历期Preadult duration (d) 6.00±0.04a 5.64±0.07b 8.13±0.20a 8.35±0.17a
总繁殖前期Total preoviposition period (d) 6.10±0.05a 6.05±0.09a 8.88±0.21a 8.80±0.14a
产蚜历期Oviposition days (d) 14.20±0.33a 13.31±0.26b 14.33±1.69a 15.31±1.13a
日产蚜量Offspring per day 5.45±0.13b 5.97±0.12a 2.59±0.16a 2.55±0.12a
产蚜总量Total number of offspring 76.03±1.01a 78.43±0.92a 36.56±5.49a 36.88±3.90a
成虫寿命Adult longevity (d) 25.58±0.45a 26.48±0.41a 20.00±2.78a 22.94±2.41a
总寿命Total longevity (d) 31.58±0.45a 32.12±0.42a 28.13±2.67a 31.29±2.36a

Fig. 2

Age-stage specific survival rates of R. padi and S. avenae under irrigating different mixtures of rhizosphere microorganisms"

Fig. 3

Age-stage specific survival and fecundity rates of R. padi and S. avenae under irrigating different mixtures of rhizosphere microorganisms"

Fig. 4

Age-stage life expectancy of R. padi and S. avenae under irrigating different mixtures of rhizosphere microorganisms"

Fig. 5

Age-stage reproductive value of R. padi and S. avenae under irrigating different mixtures of rhizosphere microorganisms"

Fig. 6

Population dynamics prediction of R. padi and S. avenae within the next 60 d under irrigating different mixtures of rhizosphere microorganisms"

[1]
XIAO D P, TAO F, LIU Y J, SHI W J, WANG M, LIU F S, ZHANG S, ZHU Z. Observed changes in winter wheat phenology in the North China Plain for 1981-2009. International Journal of Biometeorology, 2013, 57: 275-285.
[2]
LI W W, WANG Y, JAWORSKI C C, CHENG Y M, MIAO J, CHEN J L, TAN X L. Effects of experimental warming on competition between Rhopalosiphum padi and Sitobion avenae mediated by plant water content. Journal of Pest Science, 2024, 97: 1623-1632.
[3]
WANG Y, YAN J, SUN J R, SHI W P, HARWOOD J D, MONTICELLI L S, TAN X L, CHEN J L. Effects of field simulated warming on feeding behavior of Sitobion avenae (Fabricius) and host defense system. Entomologia Generalis, 2021, 41(6): 567-578.
[4]
SUN J X, TAN X L, LI Q, FRANCIS F, CHEN J L. Effects of different temperatures on the development and reproduction of Sitobion miscanthi from six different regions in China. Frontiers in Ecology and Evolution, 2022, 10: 794495.
[5]
ZHANG Q, MEN X, HUI C, GE F, OUYANG F. Wheat yield losses from pests and pathogens in China. Agriculture, Ecosystems & Environment, 2022, 326: 107821.
[6]
谭晓玲, 闫甲, 苗进, 孙靖轩, 陈巨莲. 小麦间作豌豆和挥发物释放结合不同器械施药对麦田害虫和天敌的影响. 中国生物防治学报, 2021, 37(5): 904-913.

doi: 10.16409/j.cnki.2095-039x.2021.09.012
TAN X L, YAN J, MIAO J, SUN J X, CHEN J L. Effects of wheat-pea intercropping with volatile release combined with different device application on wheat pests and natural enemies in wheat field. Chinese Journal of Biological Control, 2021, 37(5): 904-913. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2021.09.012
[7]
HAN Z L, TAN X L, WANG Y, XU Q X, ZHANG Y, HARWOOD J D, CHEN J L. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields. Pest Management Science, 2019, 75(12): 3252-3259.
[8]
HULLÉ M, CHAUBET B, TURPEAU E, SIMON J C. Encyclop’ Aphid: A website on aphids and their natural enemies. Entomologia Generalis, 2020, 40(1): 97-101.
[9]
张艳静, 李丹阳, 郭慧娟, 孙玉诚. 蚜虫传播非持久性病毒的取食行为调控机制. 植物保护学报, 2020, 47(5): 949-961.
ZHANG Y J, LI D Y, GUO H J, SUN Y C. The regulatory mechanism of aphid feeding behaviors associated with the transmission of nonpersistent viruses. Journal of Plant Protection, 2020, 47(5): 949-961. (in Chinese)
[10]
潘明真, 张毅, 曹贺贺, 王杏杏, 刘同先. 我国主要农作物蚜虫生物防治的研究进展、应用与展望. 植物保护学报, 2022, 49(1): 146-172.
PAN M Z, ZHANG Y, CAO H H, WANG X X, LIU T X. Research progresses, application, and prospects in aphid biological control on main crops in China. Journal of Plant Protection, 2022, 49(1): 146-172. (in Chinese)
[11]
VAN EMDEN H F, HARRINGTON R. Aphids as Crop Pests. Oxford: Oxford University Press, 2007: 196-213.
[12]
KUMARI A, DASH M, SINGH S K, JAGADESH M, MATHPAL B, MISHRA P K, PANDEY S K, VERMA K K. Soil microbes: A natural solution for mitigating the impact of climate change. Environmental Monitoring and Assessment, 2023, 195(12): 1436.
[13]
CHEN W J, ZHOU H K, WU Y, LI Y Z, QIAO L L, WANG J, ZHAI J Y, SONG Y H, ZHAO Z W, ZHANG Z H, LIU G B, ZHAO X Q, YOU Q M, XUE S. Plant-mediated effects of long-term warming on soil microorganisms on the Qinghai-Tibet Plateau. CATENA, 2021, 204: 105391.
[14]
Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers//LEE H, ROMERO J. Climate Change 2023:Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, IPCC, 2023: 1-34.
[15]
中国气象局气候变化中心. 中国气候变化蓝皮书. 北京: 科学出版社, 2023.
CMA Climate Change Centre. Blue Book on Climate Change in China. Beijing: Science Press, 2023. (in Chinese)
[16]
BALE J S, MASTERS G J, HODKINSON I D, AWMACK C, BEZEMER T M, BROWN V K, BUTTERFIELD J, BUSE A, COULSON J C, FARRAR J, et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 2002, 8(1): 1-16.
[17]
ZHAO F, ZHANG W, HOFFMANN A A, MA C S. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. Journal of Animal Ecology, 2014, 83(4): 769-778.

doi: 10.1111/1365-2656.12196 pmid: 24372332
[18]
DONG Z K, HOU R X, OUYANG Z, ZHANG R. Tritrophic interaction influenced by warming and tillage: A field study on winter wheat, aphids and parasitoids. Agriculture, Ecosystems & Environment, 2013, 181: 144-148.
[19]
SABLE M G, RANA D K. Impact of global warming on insect behavior - A review. Agricultural Reviews, 2016, 37(1): 81-84.
[20]
YAMAMURA K, KIRITANI K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology, 1998, 33(2): 289-298.
[21]
HARRINGTON R, FLEMING R A, WOIWOD I P. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agricultural and Forest Entomology, 2001, 3(4): 233-240.
[22]
BRABEC M, HONEK A, PEKAR S, MARTINKOVA Z. Population dynamics of aphids on cereals: Digging in the time-series data to reveal population regulation caused by temperature. PLoS ONE, 2014, 9(9): e106228.
[23]
CANARINI A, KIAER L P, DIJKSTRA F A. Soil carbon loss regulated by drought intensity and available substrate: A meta-analysis. Soil Biology and Biochemistry, 2017, 112: 90-99.
[24]
THAKUR M P, DEL REAL I M, CESARZ S, STEINAUER K, REICH P B, HOBBIE S, CIOBANU M, RICH R, WORM K, EISENHAUER N. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 2019, 135: 184-193.
[25]
ALLISON S D, TRESEDER K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 2008, 14(12): 2898-2909.
[26]
ALI R S, POLL C, KANDELER E. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil Biology and Biochemistry, 2018, 127: 60-70.
[27]
FREY S D, DRIJBER R, SMITH H, MELILLO J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry, 2008, 40(11): 2904-2907.
[28]
WARDLE D A, BARDGETT R D, KLIRONOMOS J N, SETALA H, VAN DER PUTTEN W H, WALL D H. Ecological linkages between aboveground and belowground biota. Science, 2004, 304(5677): 1629-1633.

doi: 10.1126/science.1094875 pmid: 15192218
[29]
BARDGETT R D, WARDLE D A. Aboveground-belowground Linkages. Oxford: Oxford University Press, 2010.
[30]
VAN DER PUTTEN W H, BARDGETT R D, BEVER J D, BEZEMER T M, CASPER B B, FUKAMI T, KARDOL P, KLIRONOMOS J N, KULMATISKI A, SCHWEITZER J A, SUDING K N, VAN DE VOORDE T F, WARDLE D A. Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology, 2013, 101(2): 265-276.
[31]
KOS M, TUIJL M A B, DE ROO J, MULDER P P, BEZEMER T M. Species-specific plant-soil feedback effects on above-ground plant-insect interactions. Journal of Ecology, 2015, 103(4): 904-914.
[32]
VAN OOSTEN V R, BODENHAUSEN N, REYMOND P, VAN PELT J A, VAN LOON L C, DICKE M, PIETERSE C M. Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Molecular Plant-Microbe Interactions, 2008, 21(7): 919-930.
[33]
GARCIA J A L, DOMENECH J, SANTAMARIA C, CAMACHO M, DAZA A, MAÑERO F J G. Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: Relationship with microbial community structure and biological activity of its rhizosphere. Environmental and Experimental Botany, 2004, 52(3): 239-251.
[34]
EGERTON-WARBURTON L, ALLEN M F. Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): Patterns of root colonization and effects on seedling growth. Mycorrhiza, 2001, 11: 283-290.
[35]
EFRON B, TIBSHIRANI R J. An Introduction to the Bootstrap. New York, USA: Chapman & Hall, 1993.
[36]
STRES B, DANEVCIC T, PAL L, FUKA M M, RESMAN L, LESKOVEC S, HACIN J, STOPAR D, MAHNE I, MANDIC- MULEC I. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiology Ecology, 2008, 66(1): 110-122.

doi: 10.1111/j.1574-6941.2008.00555.x pmid: 18710395
[37]
CONANT R T, RYAN M G, ÅGREN G I, BIRGE H E, DAVIDSON E A, ELIASSON P E, EVANS S E, FREY S D, GIARDINA C P, HOPKINS F M, et al. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Global Change Biology, 2011, 17(11): 3392-3404.
[38]
BRADFORD M A. Thermal adaptation of decomposer communities in warming soils. Frontiers in Microbiology, 2013, 4: 333.

doi: 10.3389/fmicb.2013.00333 pmid: 24339821
[39]
GAO Z L, KARLSSON I, GEISEN S, KOWALCHUK G, JOUSSET A. Protists: Puppet masters of the rhizosphere microbiome. Trends in Plant Science, 2019, 24: 165-176.

doi: S1360-1385(18)30244-9 pmid: 30446306
[40]
MARDUKHI B, REJALI F, DAEI G, ARDAKANI M R, MALAKOUTI M J, MIRANSARI M. Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. Comptes Rendus Biologies, 2011, 334(7): 564-571.

doi: 10.1016/j.crvi.2011.05.001 pmid: 21784366
[41]
SAUBIDET M I, FATTA N, BARNEIX A J. The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant and Soil, 2002, 245(2): 215-222.
[42]
MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013, 37(5): 634-663.

doi: 10.1111/1574-6976.12028 pmid: 23790204
[43]
AZIZ M, NADIPALLI R K, XIE X, SUN Y, SUROWIEC K, ZHANG J L, PARE P W. Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling. Frontiers in Plant Science, 2016, 7: 458.
[44]
PIETERSE C M J, ZAMIOUDIS C, BERENDSEN R L, WELLER D M, VAN WEES S C, BAKKER P A. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 2014, 52: 347-375.

doi: 10.1146/annurev-phyto-082712-102340 pmid: 24906124
[45]
PINEDA A, KAPLAN I, BEZEMER T M. Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science, 2017, 22(9): 770-778.

doi: S1360-1385(17)30139-5 pmid: 28757147
[46]
RASHID M H O, CHUNG Y R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Frontiers in Plant Science, 2017, 8: 1816.
[47]
ELEFTHERIANOS I, VAMVATSIKOS P, WARD D, GRAVANIS F. Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. Journal of Applied Entomology, 2006, 130(1): 15-19.
[48]
刘向东, 翟保平, 张孝羲. 蚜虫迁飞的研究进展. 昆虫知识, 2004, 41(4): 301-307.
LIU X D, ZHAI B P, ZHANG X X. Advance in the studies of migration of aphids. Entomological Knowledge, 2004, 41(4): 301-307. (in Chinese)
[49]
VAN DIJK L J A, ABDELFATTAH A, EHRLEN J, TACK A J M. Soil microbiomes drive aboveground plant-pathogen-insect interactions. Oikos, 2022, 2022(12): e09366.
[50]
WANG Y, JAWORSKI C C, ZI H Y, CHEN J L, DESNEUX N, TAN X L. Increased ladybird predation and metabolism do not counterbalance increased field aphid population growth under experimental warming. Functional Ecology, 2024, 38(5): 1134-1145.
[51]
SPAINK H P. Root nodulation and infection factors produced by rhizobial bacteria. Annual Review of Microbiology, 2000, 54: 257-288.

pmid: 11018130
[52]
HARRISON M J. Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of Microbiology, 2005, 59: 19-42.

pmid: 16153162
[53]
VAN WEES S C M, VAN DER ENT S, PIETERSE C M J. Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 2008, 11(4): 443-448.

doi: 10.1016/j.pbi.2008.05.005 pmid: 18585955
[54]
SEGARRA G, VAN DER ENT S, TRILLAS I, PIETERSE C M J. MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biology, 2009, 11(1): 90-96.

doi: 10.1111/j.1438-8677.2008.00162.x pmid: 19121118
[55]
HOSSAIN M T, KHAN A, CHUNG E J, RASHID M H O, CHUNG Y R. Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. The Plant Pathology Journal, 2016, 32(3): 228-241.
[1] ZHANG GuiFen, WAN Kun, PAN MengNi, WANG Long, HUANG Cong, WANG YuSheng, ZHANG YiBo, XIAN XiaoQing, YANG NianWan, GUI FuRong, LIU WanXue, WAN FangHao. Population Colonization, Re-Establishment and Development of the Tomato Leafminer (Tuta absoluta) [J]. Scientia Agricultura Sinica, 2024, 57(3): 514-524.
[2] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[3] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[4] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
[5] XinHua LI,DengJie WANG,ZhongRen LEI,HaiHong WANG. Comparison of Life Tables for Experimental Populations of Individual- Rearing and Group-Rearing Frankliniella occidentalis [J]. Scientia Agricultura Sinica, 2021, 54(5): 959-968.
[6] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[7] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[8] CHEN YiQu, XIANG Xin, GONG ChangWei, WANG XueGui. Effects of Sublethal Doses of Chlorantraniliprole on the Detoxification Enzymes Activities and the Growth and Reproduction of Spodoptera exigua [J]. Scientia Agricultura Sinica, 2017, 50(8): 1440-1451.
[9] WANG ZeHua, FAN JiaMin, CHEN JinCui, GONG YaJun, WEI ShuJun . Sublethal Effects of Sulfoxaflor on the Growth and Reproduction of the Green Peach Aphid Myzus persicae [J]. Scientia Agricultura Sinica, 2017, 50(3): 496-503.
[10] WANG Xiao-yu, YANG Xiao-guang, Lü Shuo, CHEN Fu. The Possible Effects of Global Warming on Cropping Systems in China Ⅻ. The Possible Effects of Climate Warming on Geographical Shift in Safe Planting Area of Rice in Cold Areas and the Risk Analysis of Chilling Damage [J]. Scientia Agricultura Sinica, 2016, 49(10): 1859-1871.
[11] ZHAO Jing, XIAO Da, ZHANG Fan, WANG Su. Life Tables of Harmonia axyridis Pallas Under Laboratory Constant and Greenhouse Fluctuating Temperatures [J]. Scientia Agricultura Sinica, 2015, 48(16): 3176-3185.
[12] LU Wei-ting, YU Huan, CAO Sheng-nan, CHEN Chang-qing. Effects of Climate Warming on Growth Process and Yield of Summer Maize in Huang-Huai-Hai Plain in Last 20 Years [J]. Scientia Agricultura Sinica, 2015, 48(16): 3132-3245.
[13] LIN Ying, SONG Li-wei, ZANG Lian-sheng, RUAN Chang-chun, SHI Shu-sen. Parasitism Potential of Three Indigenous Trichogramma Species on the Eggs of Soybean Pod Borer (Leguminivora glycinivorella) [J]. Scientia Agricultura Sinica, 2014, 47(19): 3810-3816.
[14] WANG Deng-jie, ZANG Lian-sheng, ZHANG Ye, WANG Hai-hong, LEI Zhong-ren. Sublethal Effects of Beauveria bassiana Balsamo on Life Table Parameters of Subsequent Generations of Bemisia tabaci Gennadius [J]. Scientia Agricultura Sinica, 2014, 47(18): 3588-3595.
[15] CHEN Qun, GENG Ting, HOU Wen-Jia, CHEN Chang-Qing. Impacts of Climate Warming on Growth and Yield of Spring Maize in Recent 20 Years in Northeast China [J]. Scientia Agricultura Sinica, 2014, 47(10): 1904-1916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!