Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2568-2582.doi: 10.3864/j.issn.0578-1752.2024.13.006

• PLANT PROTECTION • Previous Articles     Next Articles

Stem Rust Resistance Genes Identification and Evaluation of 88 Wheat Cultivars (Lines) in Heilongjiang Province

GAO Fu1(), WANG Rui1(), LIU DongJun2, SUN HuiYan1, WANG ZiYe1, SONG WeiFu2, LI TianYa1()   

  1. 1 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866
    2 Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086
  • Received:2024-01-21 Accepted:2024-02-16 Online:2024-07-09 Published:2024-07-09
  • Contact: LI TianYa

Abstract:

【Objective】 In recent years, the new races of Puccinia graminis f. sp. tritici (Pgt), Ug99, TKTTF, and TTRTF, have emerged and continuously spread. Heilongjiang Province is an area where wheat stem rust occurred frequently. The aim of this study is to analyze the resistance genes contained in wheat cultivars in this region and their resistance to predominant races of Pgt, and to provide a theoretical basis for the rational regional layout of resistance genes and the breeding of disease resistant cultivars in China. 【Method】 Based on the response types of 43 monogenic lines and 88 wheat cultivars (lines) to 7 different virulence races (21C3CTTSC, 21C3CTHQM, 34MKQSM, 34C3MTGQM, 34MKGQM, 34MTGSM, and RTGRM) of Pgt, the stem rust resistance genes contained in these 88 cultivars (lines) were postulated; Further, the presence of Sr31, Sr24, Sr25, Sr26, and Sr38 in the tested cultivars (lines) was detected by using molecular markers closely linked with these five genes. At the same time, the resistance of these cultivars (lines) to two predominant races 21C3CTHQM and 34MKGQM was evaluated at the adult-plant stage during the period of 2021-2022.【Result】 The results of gene postulation showed that 37 wheat cultivars might contain one or more of the wheat stem rust resistance genes Sr9e, Sr11, Sr17, Sr23, Sr30, Sr35, Sr37, Sr39, Sr40, and SrWld. In addition, molecular testing confirmed that 10 wheat cultivars (Kenmai 16, Longchun 204, Longfumai 8171, Longmengmai 2305, Longfumai 7166, Longchun 218, Longmai 95, Longfumai 19-92, Kechun 171286, and Longfumai 194) contained the resistance gene Sr31, but none of wheat cultivars (lines) carried Sr24, Sr25, Sr26, and Sr38. In field trials in 2021 and 2022, 86 (97.7%) and 83 (94.3%) wheat cultivars showed resistance to race 21C3CTHQM and 34MKGQM, respectively. Among them, 62 (70.5%) wheat cultivars showed good resistance to both tested races for two consecutive years, while the other cultivars (lines) showed different degrees of susceptibility to a single race.【Conclusion】 Wheat cultivars (lines) in Heilongjiang Province have good resistance to the tested races at adult-plant stage, and 37 wheat cultivars may carry one or more of the 10 resistance genes (Sr9e, Sr11, Sr17, Sr23, Sr30, Sr35, Sr37, Sr39, Sr40, and SrWld). There are 10 cultivars (lines) containing Sr31, and no wheat cultivars (lines) containing Sr24, Sr25, Sr26 and Sr38 resistance genes were detected.

Key words: wheat stem rust, Puccinia graminis f. sp. tritici (Pgt), molecular marker, resistance gene, cultivar

Table 1

PCR primers used for molecular markers"

抗性基因
Sr gene
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
参考文献
Reference
Sr24 Sr24#50 CCCAGCATCGGTGAAAGAA
ATGCGGAGCCTTCACATTTT
[18]
Sr25 Xwmc221 ACGATAATGCAGCGGGGAAT
GCTGGGATCAAGGGATCAAT
[19]
Sr26 Sr26#43 AATCGTCCACATTGGCTTCT
CGCAACAAAATCATGCACTA
[18]
Sr31 SCSS30.2576 GTCCGACAATACGAACGATT
CCGACAATACGAACGCCTTG
[20]
Iag95 CTCTGTGGATAGTTACTTGATCGA
CCTAGAACATGCATGGCTGTTACA
[21]
Sr38 VENTRIUP-LN2 AGGGGCTACTGACCAAGGCT
TGCAGCTACAGCAGTATGTACACAAAA
[22]

Table 2

PCR amplification conditions for Sr genes molecular marker"

抗性基因
Sr gene
引物名称
Primer name
PCR扩增条件PCR amplification condition
温度Temperature (℃)/时间Time 循环数Number of cycles
Sr24 Sr24#50 94/3 min 1
94/30 s; 57/30 s; 72/40 s 30
20/1 min 1
Sr25 Xwmc221 94/3 min 1
94/30 s; 60/30 s; 72/40 s 30
20/1 min 1
Sr26 Sr26#43 94/3 min 1
94/30 s; 56/30 s; 72/40 s 30
20/1 min 1
Sr31
SCSS30.2576 95/5 min 1
95/1 min; 60/1 min; 72/30 s 35
72/10 min 1
Iag95 94/3 min 1
94/30 s; 55/1 min; 72/70 s 30
25/1 min 1
Sr38 VENTRIUP-LN2 94/45 s 1
94/45 s; 65/30 s; 72/1 min 30
72/7 min 1

Table 3

Resistance levels of 88 wheat cultivars (lines) to races 21C3CTHQM, and 34MKGQM of Pgt at adult-plant stage"

品种(系)
Cultivar (line)
抗性水平Resistance level
34MKGQM 21C3CTHQM
2021 2022 2021 2022
龙麦51 Longmai 51 5R5 5R5 10R10 10R10
龙麦61 Longmai 61 0 0 0 0
龙麦62 Longmai 62 100MR100 100MR100 0 0
龙麦63 Longmai 63 0 0 0 0
龙麦64 Longmai 64 0 0 0 0
龙麦65 Longmai 65 0 0 0 0
龙麦60 Longmai 60 0 0 0 5R5
龙麦67 Longmai 67 0 0 0 0
龙麦68 Longmai 68 0 0 0 0
龙麦69 Longmai 69 50R10 50R10 0 0
龙麦70 Longmai 70 0 0 0 0
克旱5 Kehan 5 50MR30 50MR50 80R80 80R80
克旱7 Kehan 7 0 0 80R80 80R80
垦红14 Kenhong 14 0 5R5 80R80 80R80
龙麦19 Longmai 19 50R50 50R50 0 5R5
龙麦28 Longmai 28 0 0 0 0
龙麦77 Longmai 77 0 0 0 0
龙麦94 Longmai 94 70MS100 80MS80 5MR10 50R50
龙麦7574 Longmai 7547 0 0 0 0
龙麦89 Longmai 89 0 0 0 0
龙麦7765 Longmai 7765 50MR70 50MR70 0 0
龙麦7202 Longmai 7202 0 0 0 0
龙麦87 Longmai 87 0 0 0 0
龙麦92 Longmai 92 50MS30 50MS50 0 0
龙麦96 Longmai 96 0 0 0 0
龙麦97 Longmai 97 0 0 0 0
龙麦93 Longmai 93 0 80NIM80 50R50 50R50
龙麦90 Longmai 90 0 0 0 0
龙麦H336 Longmai H336 0 0 0 0
龙麦85 Longmai 85 0 0 0 0
龙麦81 Longmai 81 0 0 0 0
龙麦7117 Longmai 7117 30MR70 30MR70 0 0
龙麦86 Longmai 86 0 0 0 0
龙麦7507 Longmai 7507 0 0 0 0
龙麦91 Longmai 91 0 0 0 0
龙麦95 Longmai 95 0 0 0 0
龙麦76 Longmai 76 0 0 0 0
2021 2022 2021 2022
龙麦15 Longmai 15 0 0 0 0
龙麦29 Longmai 29 70S10 70S10 0 0
垦大3号 Kenda 3 100MS100 100MS80 30S50 80S80
克旱6号 Kehan 6 0 0 80R80 80R80
龙10-0632 Long 10-0632 0 5R5 0 0
龙麦20 Longmai 20 0 0 0 0
龙春2 Longchun 2 0 0 0 0
东农173547 Dongnong 173547 0 0 0 0
克春140891 Kechun 140891 0 0 0 0
克春150397 Kechun 150397 0 0 50R50 50R50
克春1501185 Kechun 1501185 0 0 0 0
克春151350 Kechun 151350 0 0 0 0
克春161727 Kechun 161727 0 0 80R50 80R50
克春1601038 Kechun 1601038 0 0 0 50R50
克春160478 Kechun 160478 0 0 0 0
克春170250 Kechun 170250 0 0 0 0
克春170375 Kechun 170375 0 0 0 5R5
克春171286 Kechun 171286 0 0 0 0
克春171470 Kechun 171470 0 0 0 0
克春18Z762 Kechun 18Z762 0 0 0 0
龙辐麦194 Longfumai 194 0 0 0 0
龙辐麦159 Longfumai 159 0 0 0 50R10
龙辐麦97 Longfumai 97 0 0 0 0
龙辐麦7166 Longfumai 7166 0 0 0 0
龙辐麦8171 Longfumai 8171 0 0 0 0
龙辐麦8396 Longfumai 8396 0 0 50R50 50R50
龙辐麦196 Longfumai 196 0 0 0 0
龙辐17-232 Longfu 17-232 0 0 100S100 100S80
龙辐麦19-92 Longfumai 19-92 0 0 0 0
龙辐19-285 Longfu 19-285 0 0 0 0
龙麦8511 Longmai 8511 0 0 0 0
龙麦8267 Longmai 8267 0 0 0 0
龙蒙麦7255 Longmengmai 7255 0 0 0 0
龙蒙麦8654 Longmengmai 8654 0 0 0 0
龙蒙麦2305 Longmengmai 2305 0 0 0 0
龙麦4062 Longmai 4062 0 0 0 0
龙麦8156 Longmai 8156 0 0 0 0
龙麦8159 Longmai 8159 0 0 0 0
2021 2022 2021 2022
龙麦2018 Longmai 2018 0 0 0 0
垦麦17 Kenmai 17 50MS80 50MS80 0 0
垦麦16 Kenmai 16 0 0 0 0
龙春175 Longchun 175 0 0 0 0
龙春201 Longchun 201 0 0 0 0
龙春203 Longchun 203 0 0 0 0
龙春204 Longchun 204 0 0 0 0
龙春208 Longchun 208 0 0 0 0
龙春211 Longchun 211 0 0 0 0
龙春212 Longchun 212 0 0 0 0
龙春215 Longchun 215 0 0 0 0
龙春216 Longchun 216 0 0 0 0
龙春218 Longchun 218 0 0 0 0

Fig. 1

The amplification results of some wheat cultivars (lines) in Heilongjiang Province with primers Iag95 and SCSS30.2576"

Table 4

Infection type of seven tested races to monogenic line wheat cultivars (Host A)"

单基因系
Monogenic line
侵染型Infection type
34MTGSM 34C3MTGQM 34MKQSM 21C3CTTSC 21C3CTHQM RTGRM 34MKGQM
Sr5 4 4 4 0 1 4 4
Sr21 2 0 4 1 0 4 1
Sr9e 2 1 1 2 0 1 ;
Sr7b 4 4 4 4 3 4 4
Sr11 3 3 0; 4 3 4 1
Sr6 4 4 4 4 4 4 4
Sr8a 4 4 4 3 4 4 4
Sr9g 4 4 4 4 4 4 4
Sr36 0 2 4 3 2 2 0
Sr9b 4 3 4 4 4 4 4
Sr30 2 2 1 4 0 1 2
Sr17 2 0 1 4 3 0 0
Sr9a 4 4 4 4 4 4 4
Sr9d 4 4 4 4 4 4 4
Sr10 4 3 4 4 0 1 1
Tmp 2 2 0 0 1 4 2
Sr24 4 4 4 0 0 4 4
Sr31 2 2 0 2 1 2 2
Sr38 2 1 1 1 0 1 1
Sr39 4 4 1 4 0 4 0;
Sr40 2 2 2 2 2 2 2
Sr44 2 2 2 2 2 2 4
Sr9f 4 4 4 4 4 4 4
Sr12 4 4 4 4 4 4 4
Sr13 4 4 2 4 4 3 4
Sr15 4 4 2 4 4 4 4
Sr16 4 4 4 4 4 4 4
Sr18 4 4 0 4 4 4 4
Sr19 4 4 2 4 4 4 4
Sr22 4 4 3 4 4 4 4
Sr23 3 4 2 4 1 4 4
Sr25 2 3 4 4 0 1 4
Sr26 4 3 0 4 2 2 4
Sr27 4 4 2 4 0 4 4
Sr28 4 4 3 4 4 4 4
Sr32 4 4 3 4 4 4 4
Sr33 0 2 1 1 0 2 2
Sr34 4 4 3 4 4 4 4
Sr35 4 4 4 3 0 4 4
Sr37 4 2 4 3 1 4 4
Tt-3 0 1 2 2 2 2 2
Wld 3 2 4 2 1 3 4
dp-2 4 4 4 4 4 4 4

Table 5

Infection type of seven tested races to 88 wheat cultivars (lines) (Host B)"

品种(系)
Cultivar (line)
侵染型Infection type
34 34C3 21C3
MTGSM MKGQM MKQSM MTGQM CTTSC CTHQM RTGRM
龙麦70 Longmai 70 0; 2 1 1 1 0 0;
龙麦7117 Longmai 7117 0; 1 2 1 1 3 1
龙麦90 Longmai 90 0; 2 1 2 2 0 2
龙麦81 Longmai 81 0; 1 1 0; 2 0 0
龙麦51 Longmai 51 0; 1 1 1 1 0 0;
龙麦97 Longmai 97 3 2 1 2 3 0 1
龙麦68 Longmai 68 2 2 1 1 2 0 1
龙麦15 Longmai 15 3 1 2 1 2 0 0;
龙麦65 Longmai 65 0; 1 0 1 1 0 0;
龙麦93 Longmai 93 0; 0 1 0 0 0 1
龙麦76 Longmai 76 2 3 2 1 3 0 2
龙麦H336 Longmai H336 0 1 0; 0 0 0 0
龙麦7547 Longmai 7547 3 2 1 1 1 0 1
龙麦96 Longmai 96 0; 2 0 2 1 0 1
龙麦60 Longmai 60 0; 2 1 1 1 0 0;
龙麦19 Longmai 19 0; 0; 0 0; 0; 0 0
龙麦63 Longmai 63 0; 0; 1 1 1 0 1
龙麦87 Longmai 87 4 4 4 4 4 2 1
龙麦7202 Longmai 7202 0; 1 1 1 2 0 0;
龙麦29 Longmai 29 1 1 1 1 1 2 1
克旱7 Kehan 7 1 3 4 1 3 0 3
龙麦7507 Longmai 7507 1 2 3 1 1 0; 3
垦大3号 Kenda 3 0; 1 2 2 2 0; 3
龙麦86 Longmai 86 1 3 3 3 3 0; 3
龙麦62 Longmai 62 0; 1 1 1 0 0; 2
龙麦28 Longmai 28 0; 1 0 1 0; 0; 0
龙麦85 Longmai 85 0; 0 1 0 1 0 2
龙麦92 Longmai 92 2 4 4 4 1 0 4
龙麦7765 Longmai 7765 2 4 4 4 3 0 3
龙麦64 Longmai 64 2 3 1 1 1 0 0;
龙麦94 Longmai 94 0; 3 0; 1 1 0; 3
龙10-0632 Long 10-0632 2 3 1 1 2 0; 3
龙春2号 Longchun 2 0; 4 2 3 2 0 3
龙麦89 Longmai 89 0; 0; 0; 0; 0 0 0
龙麦20 Longmai 20 0 0 1 0 4 0 0
克旱5 Kehan 5 4 4 4 4 4 0; 4
克春150397 Kechun 150397 2 4 0; 2 1 0; 0;
克春170375 Kechun 170375 0 4 0 3 2 0 2
龙春201 Longchun 201 1 4 0; 0 2 0; 2
克春160478 Kechun 160478 0 1 0 2 1 0 0;
龙麦61 Longmai 61 3 1 4 3 1 0 1
克旱6 Kehan 6 3 1 4 3 1 0 2
龙春215 Longchun 215 4 1 4 4 1 0; 3
龙麦77 Longmai 77 4 2 4 2 3 0; 2
垦麦17 Kenmai 17 2 3 3 2 3 0 2
龙麦95 Longmai 95 1 3 0 2 2 0 2
龙春208 Longchun 208 0 0; 0 4 0 0 3
龙春203 Longchun 203 3 3 3 1 0; 0 0
龙麦2018 Longmai 2018 0 0 0; 0 0 0 0
龙蒙麦8654 Longmengmai 8654 0; 1 3 1 0; 0 0
垦麦16 Kenmai 16 0 0 0 0 0 2 0
龙辐19-92 Longfu 19-92 0 0 0 0 0 4 0
克春171286 Kechun 171286 0 1 0 2 1 0 0
克春171470 Kechun 171470 0 2 0 2 0 0 0
龙辐17-232 Longfu 17-232 0 0; 0 1 0 0 0
龙麦67 Longmai 67 4 4 4 2 3 0 1
克春18Z762 Kechun 18Z762 0 2 0 0; 0 0 0
东农173547 Dongnong 173547 3 3 4 2 2 0 0;
龙春175 Longchun 175 0 0 0 0 0 0 0
龙麦4062 Longmai 4062 3 3 0 3 3 0 3
龙麦8519 Longmai 8519 0 0 0 0 0 0 0
龙春204 Longchun 204 2 2 1 0; 2 1++ 0
龙麦91 Longmai 91 2 1 4 1 3 3 1
龙春216 Longchun 216 3 2 4 2 4 0 0;
龙辐麦194 Longfumai 194 0; 2 0 2 2 2 0;
龙辐麦196 Longfumai 196 4 2 4 2 3 0 1
龙麦8156 Longmai 8156 0 3 0 1 2 0 0
龙辐19-285 Longfu 19-285 0; 0; 0 1 3 0 0;
龙辐麦8396 Longfumai 8396 1 0 1 2 0; 0 0;
龙春211 Longchun 211 2 4 4 1 2 0 0
龙辐麦8171 Longfumai 8171 2 0; 2 1 1 0 1
克春1501185 Kechun 1501185 4 4 3 4 4 4 4
克春161727 Kechun 161727 4 1 4 3 3 1 2
龙蒙麦7255 Longmengmai 7255 0; 0 0; 0 1 0 0
龙蒙麦2305 Longmengmai 2305 1 2 2 2 1+ 0 0;
龙辐麦7166 Longfumai 7166 2 1 0 0; 2 0 0;
龙麦69 Longmai 69 3 2 3 2 4 0 2
龙麦8511 Longmai 8511 3 1 2 1 2 0 1
龙辐麦159 Longfumai 159 3 1 1 1 2 0 1
克春170250 Kechun 170250 0 0 0 0; 0 0 0
龙春212 Longchun 212 0 2 0 2 4 0 2
龙辐麦97 Longfumai 97 0 2 0 1 4 0 3
龙春218 Longchun 218 0 1 1 0 0 0 0
垦红14 Kenhong 14 3 3 3 0 1 3 2
克春140891 Kechun 140891 0 2 1 2 1 0 0
克春1601038 Kechun 1601038 0 0 1 1- 1 0 0
龙麦8267 Longmai 8627 1 0 2 3 1 0 0
克春151350 Kechun 151350 1 0 1 0 1 1 0
[1]
United States Department of Agriculture. World agricultural producion. (2024-03-08). https://www.fas.usda.gov/data/world-agricultural-production.
[2]
BHAVANI S, HODSON D P, HUERTA-ESPINO J, RANDHAWA M S, SINGH R P. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Frontiers of Agricultural Science and Engineering, 2019, 6(3): 210-224.

doi: 10.15302/J-FASE-2019268
[3]
JIN Y, SZABO L J, PRETORIUS A, SINGH R P, WARD R, FETCH T. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Disease, 2008, 92(6): 923-926.
[4]
PRETORIUS Z A, SZABO L J, BOSHOFF W H P, HERSELMAN L, VISSER B. First report of a new TTKSF race of wheat stem rust (Puccinia graminis f. sp. tritici) in South Africa and Zimbabwe. Plant Disease, 2012, 96(4): 590.
[5]
ROUSE M N, NAVA I C, CHAO S, ANDERSON J A, JIN Y. Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2012, 125(5): 877-885.
[6]
WOLDAY A, FETCH T, HODSON D P, CAO W, BRIERE S. First report of Puccinia graminis f. sp. tritici races with virulence to wheat stem rust resistance genes Sr31 and Sr24 in Eritrea. Plant Disease, 2011, 95(12): 1591.
[7]
BHATTACHARYA S. Deadly new wheat disease threatens Europe’s crops. Nature, 2017, 542: 145-146.
[8]
FIRPO P D O, NEWCOMB M, FLATH K, SOMMERFELDT-IMPE N, SZABO L J, CARTER M, LUSTER D G, JIN Y. Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathology, 2017, 66(8): 1258-1266.
[9]
LEWIS C M, PERSOONS A, BEBBER D P, KIGATHI R N, MAINTZ J, FINDLAY K, BUENO-SANCHO V, CORREDOR- MORENO P, HARRINGTON S A, KANGARA N, et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology, 2018, 1: 13.

doi: 10.1038/s42003-018-0013-y pmid: 30271900
[10]
TSUSHIMA A, LEWIS C M, FLATH K, KILDEA S, SAUNDERS D G O. Wheat stem rust recorded for the first time in decades in Ireland. Plant Pathology, 2022, 71(4): 890-900.

doi: 10.1111/ppa.13532 pmid: 35873178
[11]
CHEN S S, ROUSE M N, ZHANG W J, ZHANG X Q, GUO Y, BRIGGS J, DUBCOVSKY J. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. The New Phytologist, 2020, 225(2): 948-959.
[12]
CHEN S S, ZHANG W J, BOLUS S, ROUSE M N, DUBCOVSKY J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genetics, 2018, 14(4): e1007287.
[13]
胡长程. 我国36个小麦品种抗秆锈基因的推导. 中国农业科学, 1988, 21(5): 45-52.
HU C C. Postulation of genes for stem rust resistance in 36 Chinese wheat cultivars. Scientia Agricultura Sinica, 1988, 21(5): 45-52. (in Chinese)
[14]
MOURAD A M I, SALLAM A, BELAMKAR V, WEGULO S, BAI G, MAHDY E, BAKHEIT B, EL-WAFA A A, JIN Y, BAENZIGER P S. Molecular marker dissection of stem rust resistance in Nebraska bread wheat germplasm. Scientific Reports, 2019, 9(1): 11694.

doi: 10.1038/s41598-019-47986-9 pmid: 31406132
[15]
LI T Y, MA Y C, WU X X, CHEN S, XU X F, WANG H, CAO Y Y, XUAN Y H. Race and virulence characterization of Puccinia graminis f. sp. tritici in China. PLoS ONE, 2018, 13(5): e0197579.
[16]
吴限鑫, 李天亚, 陈思, 王冠钦, 曹远银, 马世良, 李明菊. 139份小麦品种(系)抗秆锈性测定及其Ug99抗病基因分子检测. 中国农业科学, 2014, 47(23): 4618-4626. doi: 10.3864/j.issn.0578-1752.2014. 23.007.
WU X X, LI T Y, CHEN S, WANG G Q, CAO Y Y, MA S L, LI M J. Stem rust resistance evaluation and Ug99-resistance gene detection of 139 wheat cultivars. Scientia Agricultura Sinica, 2014, 47(23): 4618-4626. doi: 10.3864/j.issn.0578-1752.2014.23.007. (in Chinese)
[17]
ROELFS A P, SINGH R P, SAARI E E. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico: CIMMYT, 1992.
[18]
MAGO R, BARIANA H S, DUNDAS I S, SPIELMEYER W, LAWRENCE G J, PRYOR A J, ELLIS J G. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics, 2005, 111(3): 496-504.
[19]
LIU S X, YU L X, SINGH R P, JIN Y, SORRELLS M E, ANDERSON J A. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theoretical and Applied Genetics, 2010, 120(4): 691-697.
[20]
DAS B K, SAINI A, BHAGWAT S G, JAWALI N. Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat. Plant Breeding, 2006, 125(6): 544-549.
[21]
MAGO R, SPIELMEYER W, LAWRENCE G, LAGUDAH E, ELLIS J, PRYOR A. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theoretical and Applied Genetics, 2002, 104(8): 1317-1324.

doi: 10.1007/s00122-002-0879-3 pmid: 12582587
[22]
HELGUERA M, KHAN I A, KOLMER J, LIJAVETZKY D, ZHONG-QI L, DUBCOVSKY J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Science, 2003, 43: 1839-1847.
[23]
STATLER G D. Probable genes for leaf rust resistance in several hard red spring wheats. Crop Science, 1984, 24: 883-886.
[24]
STAKMAN E C, RODENHISER H A. Race 15B of wheat stem rust - What it is and what it means. Advances in Agronomy, 1959, 10: 143-165.
[25]
JIN Y. Races of Puccinia graminis identified in the United States during 2003. Plant Disease, 2005, 89(10): 1125-1127.
[26]
曹远银, 姚平, 刘维志, 吴友三, 孙梅, 张凤清. 小麦秆锈菌新致病小种21C3CTR致病谱分析. 沈阳农业大学学报, 1996, 27(1): 26-30.
CAO Y Y, YAO P, LIU W Z, WU Y S, SUN M, ZHANG F Q. Pathogenic spectrum analysis of 21C3CTR of Puccinia graminis f. sp. tritici in China. Journal of Shenyang Agricultural University, 1996, 27(1): 26-30. (in Chinese)
[27]
WU X X, ZANG C Q, ZHANG Y Z, XU Y W, WANG S, LI T Y, GAO L. Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China. Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.
[28]
OLIVERA P, NEWCOMB M, SZABO L J, ROUSE M, JOHNSON J, GALE S, LUSTER D G, HODSON D, COX J A, BURGIN L, et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013-14. Phytopathology, 2015, 105(7): 917-928.
[29]
SUN H, WANG Z, WANG R, CHEN S, NI X, GAO F, ZHANG Y, XU Y, WU X, LI T. Identification of wheat stem rust resistance genes in wheat cultivars from Hebei Province, China. Plant Science, 2023, 14: 1156936.
[30]
LIN Q J, GAO Y, WU X X, NI X Y, CHEN R Z, XUAN Y H, LI T Y. Evaluation of resistance to wheat stem rust and identification of resistance genes in wheat lines from Heilongjiang Province. PeerJ, 2021, 9: e10580.
[31]
XU X F, LI D D, LIU Y, GAO Y, WANG Z Y, MA Y C, YANG S, CAO Y Y, XUAN Y H, LI T Y. Evaluation and identification of stem rust resistance genes Sr2, Sr24, Sr25, Sr26, Sr31 and Sr38 in wheat lines from Gansu Province in China. PeerJ, 2017, 5: e4146.
[32]
李天亚, 刘梦娇, 吴昊娣, 李丹丹, 徐晓凤, 曹远银. 云南省小麦品种(系)苗期抗秆锈性评价及3个重要抗病基因的分子检测. 植物病理学报, 2017, 47(1): 128-132.
LI T Y, LIU M J, WU H D, LI D D, XU X F, CAO Y Y. Seedling resistance appraisal and detection of three important genes conferring resistance to stem rust in wheat cultivars or lines from Yunnan Province. Acta Phytopathologica Sinica, 2017, 47(1): 128-132. (in Chinese)
[33]
XU X F, YUAN D P, LI D D, GAO Y, WANG Z Y, LIU Y, WANG S T, XUAN Y H, ZHAO H, LI T Y, WU Y H. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers. PeerJ, 2018, 6: e4882.
[34]
LI Z F, XIA X C, HE Z H, LI X, ZHANG L J, WANG H Y, MENG Q F, YANG W X, LI G Q, LIU D Q. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Disease, 2010, 94: 45-53.

doi: 10.1094/PDIS-94-1-0045 pmid: 30754399
[35]
CAO Y Y, SI B B, ZHU G Q, XU X F, LI W H, CHEN S, ZHAO J, LI T Y. Race and virulence of asexual and sexual populations of Puccinia graminis f. sp. tritici in China from 2009 to 2015. European Journal of Plant Pathology, 2019, 153: 545-555.
[36]
JAIN S K, PRASHAR M, BHARDWAJ S C, SINGH S B, SHARMA Y P. Emergence of virulence to Sr25 of Puccinia graminis f. sp. tritici on wheat in India. Plant Disease, 2009, 93(8): 840.
[37]
LI T Y, CAO Y Y, WU X X, XU X F, WANG W L. Seedling resistance to stem rust and molecular marker analysis of resistance genes in wheat cultivars of Yunnan, China. PLoS ONE, 2016, 11(10): e0165640.
[38]
姜玉英, 陈万权, 赵中华, 曾娟. 新型小麦秆锈病菌Ug99对我国小麦生产的威胁和应对措施. 中国植保导刊, 2007, 27(8): 14-16.
JIANG Y Y, CHEN W Q, ZHAO Z H, ZENG J. Threat of new Puccinia graminis f. sp. tritici race Ug 99 to wheat production in China and counter measure. China Plant Protection, 2007, 27(8): 14-16. (in Chinese)
[1] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[2] WU QiBin, XIE WanJie, ZHONG Hui, FENG ChunYan, PAN HaoRan, QI YiYing, ZHANG JiSen, WANG HengBo. Identification of the Bru1 Genomic Region for Brown Rust Resistance and Functional Analysis of Candidate Resistance Genes in Sugarcane [J]. Scientia Agricultura Sinica, 2024, 57(5): 855-867.
[3] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
[4] TIAN LongBing, SHEN ZhaoYin, ZHAO XiaoTian, ZHANG Fang, HOU WenFeng, GAO Qiang, WANG Yin. Interactive Effects of Planting Density and Nitrogen Application Rate on Plant Grain Yield and Water Use Efficiency of Two Maize Cultivars [J]. Scientia Agricultura Sinica, 2024, 57(21): 4221-4237.
[5] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[6] GUI CuiLin, MA Liang, WANG YinYing, XIE FuGui, ZHAO CaiHong, WANG WenMiao, LI Xin, WANG Qing, GAO XiQuan. Identification of Resistant Germplasms and Mining of Candidate Genes Associated with Resistance to Stalk Rot Caused by Synergistic Infection with Fusarium spp. in Maize [J]. Scientia Agricultura Sinica, 2024, 57(13): 2509-2524.
[7] LEI MengLin, LIU Xia, WANG YanZhen, CUI GuoQing, MU ZhiXin, LIU LongLong, LI Xin, LU LaHu, LI XiaoLi, ZHANG XiaoJun. Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2024, 57(10): 1845-1856.
[8] LIU Hua, ZENG FanPei, WANG Qian, CHEN GuoQuan, MIAO LiJuan, QIN Li, HAN SuoYi, DONG WenZhao, DU Pei, ZHANG XinYou. Development and Identification of an Interspecific Hexaploid Hybrid Between an A. hypogaea Cultivar and a Wild Species Arachis sp. 30119 in Peanut [J]. Scientia Agricultura Sinica, 2024, 57(10): 1870-1881.
[9] ZHOU JingWei, YE BoWei, ZHANG PengFei, ZHANG YuQing, HAO Min, YIN YuRuo, YUAN Chan, LI ZhiKang, LI ShunDa, XIA XianChun, HE ZhongHu, ZHANG HongJun, LAN CaiXia. Identification and Evaluation of Stripe Rust Resistance in 153 Wheat Collections [J]. Scientia Agricultura Sinica, 2024, 57(1): 18-33.
[10] BAI Bin, ZHANG HuaiZhi, DU JiuYuan, ZHANG XiaoYang, HE Rui, WU Ling, ZHANG Zhe, ZHANG YaoHui, CAO ShiQin, LIU ZhiYong. Current Situation and Strategy of Stripe Rust Resistance Genes Untilization in Winter Wheat Cultivars of Northwestern Oversummering Region for Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2024, 57(1): 4-17.
[11] XU JunFeng, ZHANG XueMei, YANG Jun, GUO ZiKang, HUANG Cui, DING YuLan, HUANG Ning, SUN RuiQing, TIAN Hui, WANG ZhaoHui, SHI Mei. Relationship Between Grain Nitrogen Content and Yield Formation, Uptake and Partitioning of NPK of High-Yielding Wheat Cultivars in Drylands [J]. Scientia Agricultura Sinica, 2023, 56(24): 4880-4894.
[12] ZANG XinShan, WANG KangWen, ZHANG XianLiang, WANG XuePing, WANG Jun, LIANG Yu, PEI XiaoYu, REN Xiang, LÜ YuLong, GAO Yu, WANG XingXing, PENG YunLing, MA XiongFeng. Research Advances of Map-Based Cloning Genes in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4635-4647.
[13] ZHANG ZeYuan, LI Yue, ZHAO WenSha, GU JingJing, ZHANG AoYan, ZHANG HaiLong, SONG PengBo, WU JianHui, ZHANG ChuanLiang, SONG QuanHao, JIAN JunTao, SUN DaoJie, WANG XingRong. QTL Mapping and Molecular Marker Development of Traits Related to Grain Weight in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(21): 4137-4149.
[14] YANG Hao, HUANG YanYan, YI ChunLin, SHI Jun, TAN ChuTian, REN WenRui, WANG WenMing. Development and Application of Specific Molecular Markers for Six Homologous Rice Blast Resistance Genes in Pi9 Locus of Rice [J]. Scientia Agricultura Sinica, 2023, 56(21): 4219-4233.
[15] DONG JiZi, CHEN LinQu, GUO HaoRu, ZHANG MengYu, LIU ZhiXiao, HAN Lei, TIAN ZhaoSaShuang, XU NingHao, GUO QingJie, HUANG ZhenJie, YANG AoYu, ZHAO ChunHua, WU YongZhen, SUN Han, QIN Ran, CUI Fa. Analysis of Genetic and Breeding Selection Effects of A Major QTL-qSl-2D for Wheat Spike Length [J]. Scientia Agricultura Sinica, 2023, 56(20): 3917-3930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!