Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 18-33.doi: 10.3864/j.issn.0578-1752.2024.01.003

• SPECIAL FOCUS: IDENTIFICATION OF NEW WHEAT DISEASES RESISTANCE GENES AND BREEDING APPLICATION • Previous Articles     Next Articles

Identification and Evaluation of Stripe Rust Resistance in 153 Wheat Collections

ZHOU JingWei1(), YE BoWei1(), ZHANG PengFei1, ZHANG YuQing2, HAO Min1, YIN YuRuo1, YUAN Chan1, LI ZhiKang1, LI ShunDa1, XIA XianChun3, HE ZhongHu3, ZHANG HongJun3(), LAN CaiXia1()   

  1. 1 College of Plant Science & Technology, Huazhong Agricultural University/Hubei Hongshan Laboratory, Wuhan 430070
    2 Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430072
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Wheat Improvement Center, Beijing 100081
  • Received:2022-07-29 Accepted:2022-09-15 Online:2024-01-01 Published:2024-01-10

Abstract:

【Objective】Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), significantly reduced wheat production worldwide. Breeding resistant wheat varieties is currently considered to be one of the most economical and effective ways to control this disease. Understanding the resistance level of Chinese and International Maize and Wheat Improvement Center (CIMMYT) wheat breeding materials and the distribution of known disease resistance genes will greatly helpful for discovering the new resistance resources and improving the utilization efficiency of disease resistance genes. 【Method】In the present study, we phenotyped 153 wheat breeding lines derived from China and CIMMYT at both seedling against prevalent Chinese Pst races CYR33 and CYR34. In 2018-2019, 2019-2020 and 2020-2021, using the Pst races CYR33 and CYR34 to identify the materials at the adult plant stages in Ezhou, Hubei. In addition, we used the gene-based or closely linked molecular markers of known stripe rust resistance genes Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, Yr26, Yr29 and YrSP to genotype the whole set of wheat collections. 【Result】We found 10 lines immune against CYR33 at the seedling stage (IT: 0), including seven Chinese cultivars (Shannong 28, Luomai 163, Shimai 13, Zhongyi 6, Tanmai 98-2, Zhongmai 175, Taishan 21) and three CIMMYT lines (CIM-53, CIM-60 and CIM-71). However, only two cultivars, Tanmai 98-1 and Shannong 102, showed immune to CYR34 at the seedling stage. Based on the three years field tests, we found 64 lines showed highly resistance to stripe rust (final disease severity, FDS≤5%), including seven Chinese cultivars and 57 CIMMYT lines. The molecular marker analysis of known stripe rust resistance genes showed that there were 31, 23, 73, 2, 4, 50 and 2 lines carrying resistance genes Yr9, Yr10, Yr17, Yr18, Yr26, Yr29 and YrSP, respectively. None of any lines had Yr5 and Yr15. Based on the phenotype, only CIM-53 showed immune against two races at both seedling and adult plant stages (IT=0, FDS=0) and it might carry the known stripe rust resistance gene combination of Yr17+Yr29 based on the genotype. 【Conclusion】A total of 153 wheat collections from China and CIMMYT were showed adult plant resistance to the prevalent Pst races. Among these, Chinese wheat varieties mainly carry Yr9, Yr10 and Yr26, while CIMMYT wheat line mainly carry Yr17, Yr18 and Yr29, indicating that near-immunity resistance of CIMMYT wheat lines due to combinations of 1-2 moderate seedling resistance gene and 2-3 adult plant resistance genes resulting in durable resistance. Therefore, it is very urgent to expand the resistance sources and identify new resistance genes for pyramiding more genes biotechnology methods to develop new wheat varieties with durable rusts resistance and good agronomic traits. This plays an important role for controlling stripe rust in China by improving the resistance level of wheat variety overall.

Key words: stripe rust, seedling resistance, adult plant resistance, resistance gene, molecular marker, phenotyping of wheat disease

Table 1

Primer sequences of molecular markers for known stripe rust resistance genes and positive checks"

基因
Gene
阳性对照
Positive checks
标记名称
Molecular marker
引物序列
Primer sequence (5′-3′)
目标片段
Targeted sequence (bp)
参考文献
Reference
Yr5 Avocet S*6/Yr5 Yr5-R-gene_allele GCGCCCCTTTTCGAAAAAATA 83 [12]
Yr5-alternate_allele CTAGCATCAAACAAGCTAAATA
Yr5-common ATGTCGAAATATTGCATAACATGG
Yr9 Avocet S*6/Yr9 H20F GTTGGAAGGGAGCTCGAGCTG 1598 [13]
H20R GTTGGGCAGAAAGGTCGACATC
Yr10 Avocet S*6/Yr10 SC200-F CTGCAGAGTGACATCATACA 200 [14]
SC200-R TCGAACTAGTAGATGCTGGC
Yr15 Avocet S*6/Yr15 Y15K1_F2 GGAGATAGAGCACATTACAGAC 993 [15]
uhw301R TTTCGCATCCCACCCTACTG
Yr17 Avocet S*6/Yr17 cslVrgal3-F TTATTACCTTGATGAGAAATACAG 383 [16]
cslVrgal3-R CTGAAATTGGGACTAGCGAAATTA
Yr18 Avocet S*6/Yr18 csLv34-F GTTGGTTAAGACTGGTGATGG 150 [17]
csLv34-R TGCTTGCTATTGCTGAATAGT
Yr26 Avocet S*6/Yr26 We173-F GGGACAAGGGGAGTTGAAGC 650 [18]
We173-R GAGAGTTCCAAGCAGAACAC
Yr29 Pavon 76 csLV46-F CGAGACGTCGTCTTCTCTAAC 520 [19]
csLV46-R GTGTATGTGTTGATTCTCCTCG
YrSP Avocet S*6/YrSP YrSP-R-gene_allele GAGAAAATCAGCAGGTGG 129 [12]
YrSP-alternate_allele GAGAAAATCAGCAGGTGC
YrSP-common AGCGAGTTGAGGACATTGGT

Table 2

Phenotyping of stripe rust resistance for 153 wheat varieties (lines) at both seedling and adult plant stages"

抗病类型 Resistant types 苗期抗性CYR33
Seedling resistance
CYR33
苗期抗性CYR34
Seedling resistance
CYR34
成株期抗性 19YREZ
Adult plant resistance 19YREZ
成株期抗性 20YREZ
Adult plant resistance
20YREZ
成株期抗性 21YREZ
Adult plant resistance 21YREZ
总数
Total
国内品种Chinese wheat varieties 国际玉米小麦改良中心品系
CIMMYT wheat lines
总数
Total
国内品种Chinese wheat varieties 国际玉米小麦改良中心品系
CIMMYT wheat lines
总数
Total
国内品种Chinese wheat varieties 国际玉米小麦改良中心品系
CIMMYT wheat lines
总数
Total
国内品种Chinese wheat varieties 国际玉米小麦改良中心品系
CIMMYT wheat lines
总数
Total
国内品种
Chinese wheat varieties
国际玉米小麦改良中心品系
CIMMYT wheat lines
免疫
Immunity
10 7 3 2 2 0 28 12 16 23 2 21 17 0 17
高抗
High resistance
31 6 25 40 7 33 54 28 26 26 5 21 41 6 35
中抗
Moderate resistance
45 14 31 12 4 8 29 18 11 35 11 24 38 28 10
中感
Moderate susceptible
27 17 10 20 10 10 34 31 3 50 45 5 52 43 9
高感
High susceptible
36 34 2 68 51 17 8 8 0 18 18 0 4 4 0
缺失
Missing
4 3 1 11 7 4 0 0 0 1 0 1 1 0 1

Table 3

Correlation coefficient of stripe rust in 153 materials under different field environments for 3 years"

年份 Years 19YREZ 20YREZ
20YREZ 0.79**
21YREZ 0.75** 0.85**

Table 4

Identification of 64 advanced wheat lines with high level of resistance to stripe rust over three years field phenotyping and seedling test (mean of final disease severity (FDSM)≤5%)"

品种(系)
Variety (line)
苗期Seedling 成株期Adult 抗病基因检测Detection of Yr genes
CYR33 CYR34 19YREZ 20YREZ 21YREZ FDSM Yr5 Yr9 Yr10 Yr15 Yr17 Yr18 Yr26 Yr29 YrSP
偃高1号
Yangao 1
34 - 0 1R 1R 1 - + - - - - - - -
西昌19
Xichang 19
34 - 0 0 1R 0 - + - - - - - - -
西科麦6号 Xikemai 6 34 - 0 5R 1R 2 - + - - + - - + -
中麦9号
Zhongmai 9
34 34 1R 5MS 5MR 4 - - + - - - - - -
13213 34 1 0 0 1R 0 - - - - - - + - -
川育26
Chuanyu 26
67 56 0 1R 5R 2 - - - - + - - + -
川麦604
Chuanmai 604
56 1 0 10MS 1R 4 - - - - + - + - -
CIM-1 56 1 1R 0 0 0 - - - - + - - + -
CIM-2 56 7 0 0 1R 0 - - - - + + - + -
CIM-3 34 1 0 5R 1MR 2 - - - - + - - + +
CIM-5 56 67 1R 5MR 5MR 4 - - - - + - - + -
CIM-6 56 56 1R 5MR 1R 2 - - - - + - - + -
CIM-7 56 67 1R 1MS 0 1 - - - - + - - + -
CIM-8 56 1 1R 1R 1MS 1 - - - - + - - NA -
CIM-9 56 1 1R 1R 5R 2 - - - - + - - - -
CIM-10 56 8 1R 5R 1R 2 - - - - + - - + -
CIM-12 56 78 1R 5R 1MR 2 - - - - + - - + -
CIM-13 56 89 1R 1MR 1R 1 - - - - + - - NA -
CIM-14 56 9 1R 10MR 5R 5 - - - - + - - + -
CIM-15 56 8 1R 5MR 5MS 4 - - - - + - - + -
CIM-16 56 78 1R 10RMR 1R 4 - - - - + - - + -
CIM-17 56 1 1R 1R 1R 1 - - - - + - - - -
CIM-20 56 1 1R 1R 0 1 - - - - + - - - -
CIM-22 56 7 1R 5MR 5R 4 - - - - + - - + -
CIM-23 34 12 1R 5R 0 2 - - + - + - - + -
CIM-24 34 2 1R 1R 0 1 - - - - - - - + -
CIM-25 34 2 1R 0 1R 1 - - - - - - - + -
CIM-26 34 - 1R 0 1R 1 - - - - + - - - -
CIM-28 34 78 1R 1R 1R 1 - - - - + - - + -
CIM-29 34 45 1R 1R 0 1 - - + - + - - NA -
CIM-30 34 12 1R 5R 5R 4 - - - - + - - - -
CIM-33 34 56 1R 1R 5R 2 - - - - + - - + -
CIM-34 34 1 1R 1RMR 5R 2 - - - - + - - + -
CIM-35 34 - 1R 0 1R 1 - - - - + - - + -
CIM-36 34 67 1R 0 1MR 1 - + - - + - - + -
CIM-37 34 56 1R 1R 0 1 - - - - + - - + -
CIM-38 34 1 1R 0 1R 1 - - - - + - - + -
CIM-39 34 1 1R 0 0 0 - - - - + - - + -
CIM-40 67 89 0 0 5R 2 - - - - + + - + -
CIM-41 34 67 1RMR 1RMR 5MS 2 - - - - + - - - -
CIM-43 8 2 0 0 10MS 3 - - - - + - - + -
CIM-45 45 2 1MR 1MR 5R 2 - - - - + - - - -
CIM-46 67 6 1R 1R 0 1 - - - - + - - + -
CIM-47 34 78 1R 1R 10MS 4 - - - - + - - - -
CIM-48 56 56 0 0 1R 0 - - - - + - - - -
CIM-49 45 1 1MR 1MR 1R 1 - - - - + - - - -
CIM-50 34 1 0 0 0 0 - - - - + - - + -
CIM-51 34 1 0 0 0 0 - - - - + - - - -
CIM-52 56 1 5MS 5MS 1R 4 - - - - + - - + -
CIM-53 0 1 0 0 0 0 - - - - + - - + -
CIM-54 45 78 0 0 0 0 - - - - + - - + -
CIM-55 45 1 5MS 5MS 1R 4 - - - - + - - + -
CIM-56 6 6 0 0 5R 2 - - - - + - - - -
CIM-57 45 56 0 0 1R 0 - - - - + - - + -
CIM-58 67 12 1MR 1MR 1R 1 - - - - + - - + -
CIM-59 NA 34 0 0 0 0 - - - - + - - + -
CIM-60 0 7 0 0 1R 0 - - - - + - - - -
CIM-61 67 8 1MR 1MR 1R 1 - - - - + - - - -
CIM-63 67 1 1MR 1MR 1R 1 - - - - + - - - -
CIM-64 45 67 0 0 0 0 - - - - + - - + -
CIM-65 56 2 5R 5R 5R 5 - - - - + - - NA -
CIM-68 23 1 1R 1R 1R 1 - - - - + - - + -
CIM-70 45 89 1R 1R 0 1 - - - - + - - - -
CIM-72 78 89 0 0 1R 0 - - - - + - - + -

Fig. 1

Detection results of stripe rust resistance gene molecular markers in 153 varieties (lines) M: DNA ladder marker; +: The positive controls are Avocet S*6/Yr9, Avocet S*6/Yr10, Avocet S*6/Yr15, Avocet S*6/Yr17, Avocet S*6/Yr18, Avocet S*6/Yr26 and Pavon76; -: The negative control is Avocet-YRA; a: Amplification of wheat collection using the molecular marker H20 linked to the stripe rust resistance gene Yr9; b: Amplification of wheat collection using the molecular marker SC200 linked to Yr10; c: Amplification of wheat collection using the functional molecular marker Y15K1_F2 of Yr15; d: Amplification of wheat collection using the closely linked molecular marker csVrga13 of Yr17; e: Amplification of wheat collection using the molecular marker csLV34 closely linked to Yr18; f: Amplification of wheat collection using the molecular marker WE173 closely linked to Yr26; g: Amplification of wheat collection by using the molecular marker csLV46 closely linked to Yr29; No. 1-22, 45-66, 67-88, 89-97 same as Supplementary table 1"

Fig. 2

Amplification of wheat collection using the functional molecular marker Yr5-R-gene_allele (a) and YrSP R-gene_allele (b) for the stripe rust resistance genes Yr5 and YrSP a: Black dot: ddH2O; orange: Positive controls Avocet S*6/Yr5; blue: Negative control Avocet-YrA; green: Test material. b: Black: ddH2O; orange: Negative control Avocet-YrA; blue: Positive controls Avocet S*6/YrSP; green: Test material"

Fig. 3

The gene combinations of known stripe rust resistance gene in 153 wheat collection"

[1]
CHEN X M. Epidemiology and control of stripe rust on wheat. Canadian Journal of Plant Pathology, 2005, 27: 314-337.

doi: 10.1080/07060660509507230
[2]
苏东, 吕国强, 张弘, 彭昕华, 彭红. 2019-2020年度河南省小麦条锈病发生特点及影响因素分析. 中国植保导刊, 2021, 41(2): 44-46.
SU D, G Q, ZHANG H, PENG X H, PENG H. Analysis of the occurrence characteristics and influencing factors of wheat stripe rust in Henan province from 2019 to 2020. China Plant Protection, 2021, 41(2): 44-46. (in Chinese)
[3]
许艳云, 杨俊杰, 张求东, 谢原利, 顾辉. 湖北省2020年小麦条锈病大流行特点与关键防控对策. 中国植保导刊, 2021, 41(2): 100-103.
XU Y Y, YANG J J, ZHANG Q D, XIE Y L, GU H. Epidemic characteristics and key control strategies of wheat stripe rust in 2020 in Hubei province. China Plant Protection, 2021, 41(2): 100-103. (in Chinese)
[4]
LI J, DUNDAS I, DONG C, LI G, TRETHOWAN R, YANG Z, HOXHA S, ZHANG P. Identification and characterization of a new stripe rust resistance gene Yr83 on Rye chromosome 6R in wheat. Theoretical and Applied Genetics, 2020, 133(4): 1095-1107.

doi: 10.1007/s00122-020-03534-y
[5]
曾庆东, 沈川, 袁凤平, 王琪琳, 吴建辉, 薛文波, 詹刚明, 姚石, 陈伟, 黄丽丽, 韩德俊, 康振生. 小麦抗条锈病已知基因对中国当前流行小种的有效性分析. 植物病理学报, 2015, 45(6): 641-650.
ZENG Q D, SHEN C, YUAN F P, WANG Q L, WU J H, XUE W B, ZHAN G M. YAO S, CHEN W, HUANG L L, HAN D J, KANG Z S.The resistance evaluation of the Yr genes to the main prevalent pathotypes of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2015, 45(6): 641-650. (in Chinese)
[6]
ELLIS J G, LAGUDAH E S, SPIELMEYER W, DODDS P N. The past, present and future of breeding rust resistant wheat. Frontiers in Plant Science, 2014, 5: 13.
[7]
韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018, 44(5): 1-12.
HAN D J, KANG Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protection, 2018, 44(5): 1-12. (in Chinese)
[8]
周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30(6): 531-535.
ZHOU Y, HE Z H, ZHANG G S, XIA L Q, CHEN X M, GAO Y C, JING Z B, YU G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agronomica Sinica, 2004, 30(6): 531-535. (in Chinese)
[9]
HAN D J, WANG Q L, CHEN X M, ZENG Q D, WU J H, XUE W B, ZHAN G M, HUANG L L, KANG Z S.Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China. Plant Disease, 2015, 99(6): 754-760.

doi: 10.1094/PDIS-08-14-0865-RE
[10]
LINE R F, QAYOUM A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 1968-1987. Washington DC:U.S. Department of Agriculture, Agricultural Research Service, 1992: 1-44.
[11]
PETERSON R F, CAMPBELL A B, HANNAH A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 1948, 265): 496-500.
[12]
ROELFS A P, SINGH R P, SAARI E E. Rust Diseases of Wheat:Concepts and Methods of Disease Management. Mexico: CIMMYT Press, 1992: 49-59.
[13]
SHARP P J, KREIS M, SHEWRY P R, GALE M D. Location of beta-amylase sequences in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75: 286-290.

doi: 10.1007/BF00303966
[14]
MARCHAL C, ZHANG J P, ZHANG P, FENWICK P, STEUERNAGEL B, ADAMSKI N M, BOYD L, MCINTOSH R, WULFF B B H, BERRY S, LAGUDAH E, UAUY C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018, 4(9): 662-668.

doi: 10.1038/s41477-018-0236-4 pmid: 30150615
[15]
LIU C, YANG Z J, LI G R, ZENG Z X, ZHANG Y, ZHOU J P, LIU Z H, REN Z L. Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica, 2008, 159(1/2): 249-258.

doi: 10.1007/s10681-007-9484-5
[16]
SHAO Y T, NIU Y C, ZHU L H, ZHAI W X, XU S C, WU L R. Identification of an AFLP marker linked to the stripe rust resistance gene Yr10 in wheat. Chinese Science Bulletin, 2001(17): 60-63.
[17]
KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S S, FENG L H, FRENKEL Z, KRUGMAN T, LIDZBARSKY G, CHANG W, JAASKELAINEN M J, SCHUDOMA C, PAULIN L, LAINE P, BARIANA H, SELA H, SALEEM K, SORENSEN C K, HOVMOLLER M S, DISTELFELD A, CHALHOUB B, DUBCOVSKY J, KOROL A B, SCHULMAN A H, FAHIMA T. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications, 2018, 9: 3735.

doi: 10.1038/s41467-018-06138-9
[18]
SEAH S, BARIANA H, JAHIER J, SIVASITHAMPARAM K, LAGUDAH E S. The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence. Theoretical and Applied Genetics, 2001, 102(4): 600-605.

doi: 10.1007/s001220051686
[19]
LAGUDAH E S, MCFADDEN H, SINGH R P, HUERTA-ESPINO J, BARIANA H S, SPIELMEYER W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 2006, 114(1): 21-30.

doi: 10.1007/s00122-006-0406-z
[20]
WANG C M, ZHANG Y P, HAN D J, KANG Z S, LI G P, CAO A Z, CHEN P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2008, 159(3): 359-366.

doi: 10.1007/s10681-007-9524-1
[21]
DREISIGACKER S, SEHGAL D, REYESJAIMEZ A E, GARRIDO B L, ZAVALA S M, RIOS C N, MOLLINS J, MALL S. CIMMYT wheat molecular genetics: Laboratory protocols and applications to wheat breeding. Mexico: CIMMYT, 2016: 1-142.
[22]
康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48(17): 3439-3453. DOI: 10.3864/j.issn.0578-1752.2015.17.011.
KANG Z S, WANG X J, ZHAO J, TANG C L, HUANG L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. Tritici. Scientia Agricultura Sinica, 2015, 48(17): 3439-3453. DOI: 10.3864/j.issn.0578-1752.2015.17.011. (in Chinese)
[23]
张羽, 张先平, 李小鹏, 李云. 分子标记在小麦抗条锈病遗传育种中的应用研究进展. 分子植物育种, 2018, 16(18): 6032-6045.
ZHANG Y, ZHANG X P, LI X P, LI Y. Research progress of the application of molecular marker in genetic breeding of resistance to stripe rust in wheat. Molecular Plant Breeding, 2018, 16(18): 6032-6045. (in Chinese)
[24]
佟汉文, 杨立军, 朱展望, 刘易科, 张宇庆, 付汉红, 高春保. CIMMYT高降雨量区小麦种质资源的农艺性状和抗性评价. 湖北农业科学, 2009, 48(12): 2950-2953.
TONG H W, YANG L J, ZHU Z W, LIU Y K, ZHANG Y Q, FU H H, GAO C B. Agronomic characters and resistance evaluation on wheat germplasms for high rainfall areas from CIMMYT. Hubei Agricultural Sciences, 2009, 48(12): 2950-2953. (in Chinese)
[25]
伍玲, 夏先春, 朱华忠, 李式昭, 郑有良, 何中虎. CIMMYT 273个小麦品种抗病基因Lr34/Yr18/Pm38的分子标记检测. 中国农业科学, 2010, 43(22): 4553-4561. DOI: 10.3864/j.issn.0578-1752.2010.22.001.
WU L, XIA X C, ZHU H Z, LI S Z, ZHENG Y L, HE Z H. Molecular characterization of Lr34/Yr18/Pm38 in 273 CIMMYT wheat cultivars and lines using functional markers. Scientia Agricultura Sinica, 2010, 43(22): 4553-4561. DOI: 10.3864/j.issn.0578-1752.2010.22.001. (in Chinese)
[26]
HAFEEZ A N, ARORA S, GHOSH S, GILBERT D, BOWDEN R L, WULFF B B H. Creation and judicious application of a wheat resistance gene atlas. Molecular Plant, 2021, 14: 1053-1070.

doi: 10.1016/j.molp.2021.05.014 pmid: 33991673
[27]
ATHIYANNAN N, ABROUK M, BOSHOFF W H P, CAUET S, RODDE N, KUDRNA D, MOHAMMED N, BETTGENHAEUSER J, BOTHA K S, DERMAN S S, WING R, PRINS R, KRATTINGER S G. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nature Genetics, 2022, 54: 227-231.

doi: 10.1038/s41588-022-01022-1 pmid: 35288708
[28]
LIU T G, PENG Y L, CHEN W Q, ZHANG Z Y. First detection of virulence in Puccinia triiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Disease, 2010, 94(9): 1163.
[29]
HUANG L, XIAO X Z, LIU B, GAO L, GONG G S, CHEN W Q, ZHANG M, LIU T G. Identification of stripe Rust resistance genes in common wheat cultivars from the Huang-Huai-Hai region of China. Plant Disease, 2020, 104(6): 1763-1770.

doi: 10.1094/PDIS-10-19-2119-RE pmid: 32293996
[30]
蔚睿, 金彦刚, 吴舒舒, 吴建辉, 王琪琳, 曾庆东, 刘胜杰, 夏中华, 王晓静, 康振生, 韩德俊. 黄淮麦区小麦新品种(系)抗条锈水平与抗病基因分析. 麦类作物学报, 2020, 40(3): 278-284.
YU R, JIN Y G, WU S S, WU J H, WANG Q L, ZENG Q D, LIU S J, XIA Z H, WANG X J, KANG Z S, HAN D J. Stripe rust resistance of new warieties (Lines) from Huang-Huai valley wheat region in China. Journal of Triticeae Crops, 2020, 40(3): 278-284. (in Chinese)
[31]
YUAN C, JIANG H, WANG H, LI K, TANG H, LI X, FU D. Distribution, frequency and variation of stripe rust resistance loci Yr10, Lr34/Yr18 and Yr36in Chinese wheat cultivars. Journal of Genetics and Genomics, 2012, 39(11): 587-592.

doi: 10.1016/j.jgg.2012.03.005
[32]
LIU W, FRICK M, HUEL R, NYKIFORUK C L, WANG X, GAUDET D A, EUDES F, CONNER R L, KUZYK A, CHEN Q, KANG Z, LAROCHE A. The stripe rust resistance gene Yr10encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Molecular Plant, 2014, 7(12): 1740-1755.

doi: 10.1093/mp/ssu112
[33]
董娜, 陈向东, 胡铁柱, 李淦, 张亚娟, 茹振钢. 39份外引小麦种质抗病基因的分子标记检测及其抗病性评价. 华北农学报, 2018, 33(6): 49-55.

doi: 10.7668/hbnxb.2018.06.007
DONG N, CHEN X D, HU T Z, LI G, ZHANG Y J, RU Z G. Molecular detection and evaluation of disease resistance genes of 39 introduced wheat germplasms. Acta Agriculturae Boreali-Sinica, 2018, 33(6): 49-55. (in Chinese)

doi: 10.7668/hbnxb.2018.06.007
[34]
CHEN X M, WANG M N, WAN A M, BAI Q, LI M J, LOPEZ P F, MACCAFERRI M, MASTRANGELO A M, BARNES C W, CRUZ D F C, TENUTA A U, ESMAIL S M, ABDELRHIM A S. Virulence characterization of Puccinia striiformis f. sp. tritici collections from six countries in 2013 to 2020. Canadian Journal of Plant Pathology, 2021, 43: S308-S322.
[35]
尉法刚, 王光浩, 王长有, 张宏, 刘新伦, 田增荣, 朱建峰, 陈春环, 吉万全, 王亚娟. 400份小麦品种(系)条锈病成株期抗性鉴定与评价. 植物遗传资源学报, 2020, 21(4): 846-854.

doi: 10.13430/j.cnki.jpgr.20191009001
YU F G, WANG G H, WANG C Y, ZHANG H, LIU X L, TIAN Z R, ZHU J F, CHEN C H, JI W Q, WANG Y J. Evaluation and identification of adult resistance to stripe rust from 400 wheat varieties (lines). Journal of Plant Genetic Resources, 2020, 21(4): 846-854. (in Chinese)
[36]
戴妙飞, 穆京妹, 王晓婷, 王琪琳, 余世洲, 黄硕, 曾庆东, 吴建辉, 刘胜杰, 聂小军, 康振生, 韩德俊. ICARDA小麦种质抗条锈资源筛选和抗病基因分析. 麦类作物学报, 2019, 39(8): 934-940.
DAI M F, MU J M, WANG X T, WANG Q L, YU S Z, HUANG S, ZENG Q D, WU J H, LIU S J, NIE X J, KANG Z S, HAN D J. Screening of stripe rust resistance and molecular detection of Yr genes of wheat germplasms from ICARDA. Journal of Triticeae Crops, 2019, 39(8): 934-940. (in Chinese)
[37]
韩德俊, 张培禹, 王琪琳, 曾庆东, 吴建辉, 周新力, 王晓杰, 黄丽丽, 康振生. 1980份小麦地方品种和国外种质抗条锈性鉴定与评价. 中国农业科学, 2012, 45(24): 5013-5023. DOI: 10.3864/j.issn.0578-1752.2012.24.006.
HAN D J, ZHANG P Y, WANG Q L, ZENG Q D, WU J H, ZHOU X L, WANG X J, HUANG L L, KANG Z S. Identification and evaluation of resistance to stripe rust in 1980 wheat landraces and abroad germplasm. Scientia Agricultura Sinica, 2012, 45(24): 5013-5023. DOI: 10.3864/j.issn.0578-1752.2012.24.006. (in Chinese)
[38]
MILUS E A, LEE K D, BROWN-GUEDIRA G. Characterization of stripe rust resistance in wheat lines with resistance gene Yr17 and implications for evaluating resistance and virulence. Phytopathology, 2015, 105(8): 1123.

doi: 10.1094/PHYTO-11-14-0304-R
[39]
姚强, 王洁荣, 孟岩, 詹刚明, 黄丽丽, 康振生. 中国小麦条锈病菌CYR32和CYR33的毒性及基因型多样性. 植物保护学报, 2018, 45(1): 46-52.
YAO Q, WANG J R, MENG Y, ZHAN G M, HUANG L L, KANG Z S. Virulence and genotypic diversity of wheat stripe rust races CYR32 and CYR33 in China. Journal of Plant Protection, 2018, 45(1): 46-52. (in Chinese)
[40]
FANG T, CAMPBELL K G, LIU Z Y, CHEN X M, WAN A M, LI S, LIU Z J, CAO S H, CHEN Y H, BOWDEN R L, CARVER B F, YAN L L. Stripe rust resistance in the wheat cultivar Jagger is due to Yr17and a novel resistance gene. Crop Science, 2011, 51(6): 2455-2465.

doi: 10.2135/cropsci2011.03.0161
[41]
YE B W, SINGH R P, YUAN C, LIU D M, RANDHAWA M S, HUERTA-ESPINO J, BHAVANI S, LAGUDAH E, LAN C X. Three co-located resistance genes confer resistance to leaf rust and stripe rust in wheat variety Borlaug 100. The Crop Journal, 2022, 10(2): 490-497.

doi: 10.1016/j.cj.2021.07.004
[42]
薛文波, 许鑫, 穆京妹, 王琪琳, 吴建辉, 黄丽丽, 康振生, 韩德俊. 中国小麦主栽品种抗条锈性评价与基因分析. 麦类作物学报, 2014, 34(8): 1054-1060.
XUE W B, XU X, MU J M, WANG Q L, WU J H, HUANG L L, KANG Z S, HAN D J. Evaluation of stripe rust resistance and genes in Chinese elite wheat varieties. Journal of Triticeae Crops, 2014, 34(8): 1054-1060. (in Chinese)
[43]
KRATTINGER S G, LAGUDAH E S, SPIELMEYER W, SINGH R P, HUERTA-ESPINO J, MCFADDEN H, BOSSOLINI E, SELTER L L, KELLER B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360-1363.

doi: 10.1126/science.1166453 pmid: 19229000
[44]
刘金栋, 杨恩年, 肖永贵, 陈新民, 伍玲, 白斌, 李在峰, Garry M R, 夏先春, 何中虎. 兼抗型成株抗性小麦品系的培育、鉴定与分子检测. 作物学报, 2015, 41(10): 1472-1480.

doi: 10.3724/SP.J.1006.2015.01472
LIU J D, YANG E N, XIAO Y G, CHEN X M, WU L, BAI B, LI Z F, GARRY M R, XIA X C, HE Z H. Development, field and molecular characterization of advanced lines with pleiotropic adult-plant resistance in common wheat. Acta Agronomica Sinica, 2015, 41(10): 1472-1480. (in Chinese)

doi: 10.3724/SP.J.1006.2015.01472
[45]
徐默然, 蔺瑞明, 王凤涛, 冯晶, 徐世昌. 103份小麦品种(系)抗条锈性和遗传多样性评价及基因检测. 中国农业科学, 2020, 53(4): 748-760. DOI: 10.3864/j.issn.0578-1752.2020.04.007.
XU M R, LIN R M, WANG F T, FENG J, XU S C. Evaluation of resistance to stripe rust and genetic diversity and detection of resistance genes in 103 wheat cultivars (lines). Scientia Agricultura Sinica, 2020, 53(4): 748-760. DOI: 10.3864/j.issn.0578-1752.2020.04.007. (in Chinese)
[46]
管方念, 龙黎, 姚方杰, 王昱琦, 江千涛, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测. 中国农业科学, 2020, 53(18): 3629-3637. DOI: 10.3864/j.issn.0578-1752.2020.18.001.
GUAN F N, LONG L, YAO F J, WANG Y Q, JIANG Q T, KANG H Y, JIANG Y F, LI W, DENG M, LI H, CHEN G Y. Evaluation of resistance to stripe rust and molecular detection of important known Yr Gene(s) of 152 Chinese wheat landraces from the Huang-huai-hai. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637. DOI: 10.3864/j.issn.0578-1752.2020.18.001. (in Chinese)
[47]
LILLEMO M, ASALF B, SINGH R P, HUERTA-ESPINO J, CHEN X M, HE Z H, BJORNSTAD A. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 2008, 116: 1155-1166.

doi: 10.1007/s00122-008-0743-1
[48]
MA J X, ZHOU R H, DONG Y S, WANG L F, WANG X M, JIA J Z. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 2001, 120: 219-226.

doi: 10.1023/A:1017510331721
[49]
陈向东, 吴晓军, 胡铁柱, 李笑慧, 李淦, 侯开心, 茹振钢. 国内外小麦种质抗条锈病评价及相关基因分子检测. 河南农业科学, 2019, 48(9): 103-110.
CHEN X D, WU X J, HU T Z, LI X H, LI G, HOU K X, RU Z G. Evaluation of resistance to stripe rust and molecular detection of resistant genes in wheat germplasms at home and abroad. Journal of Henan Agricultural Sciences, 2019, 48(9): 103-110. (in Chinese)
[50]
SINGH R P, MUJEEB-KAZI A, HUERTA-ESPINO J. Lr46: A gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 1998, 88(9): 890-894.

doi: 10.1094/PHYTO.1998.88.9.890 pmid: 18944865
[51]
WILLIAM M, SINGH R P, HUERTA-ESPINO J, ISLAS S O, HOISINGTON D. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29in wheat. Phytopathology, 2003, 93: 153-159.

doi: 10.1094/PHYTO.2003.93.2.153
[52]
KOLMER J A, SU Z, BERNARDO A, BAI G H, CHAO S M. Mapping and characterization of the new adult plant leaf rust resistance gene Lr77derived from Santa Fe winter wheat. Theoretical and Applied Genetics, 2018, 131: 1553-1560.

doi: 10.1007/s00122-018-3097-3
[53]
LAGUDAH E S. Molecular genetics of race non-specific rust resistance in wheat. Euphytica, 2011, 179: 81-91.

doi: 10.1007/s10681-010-0336-3
[54]
李玮, 宋国琦, 李吉虎, 李玉莲, 张淑娟, 张荣志, 高洁, 谷田田, 李根英. 小麦四个多效抗病基因的分子检测. 麦类作物学报, 2020, 40(4): 395-400.
LI W, SONG G Q, LI J H, LI Y L, ZHANG S J, ZHANG R Z, GAO J, GU T T, LI G Y. Molecular detection of four pleiotropic disease resistance genes in wheat. Journal of Triticeae Crops, 2020, 40(4): 395-400. (in Chinese)
[55]
LAN C X, ROSEWARNE G M, SINGH R P, HERRERA-FOESSEL S A, HUERTA-ESPINO J, BASNET B R, ZHANG Y L, YANG E N. QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Molecular Breeding, 2014, 34(3): 789-803.

doi: 10.1007/s11032-014-0075-6
[56]
郝明, 张连全, 黄林, 甯顺腙, 袁中伟, 姜博, 颜泽洪, 伍碧华, 郑有良, 刘登才. 合成六倍体小麦的遗传育种. 植物遗传资源学报, 2022, 23(1): 40-48.

doi: 10.13430/j.cnki.jpgr.20210518002
HAO M, ZHANG L Q, HUANG L, NING S Z, YUAN Z W, JIANG B, YAN Z H, WU B H, ZHENG Y L, LIU D C. Genetic improvement of synthesized hexaploid wheat in breeding. Journal of Plant Genetic Resources, 2022, 23(1): 40-48. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20210518002
[57]
ZHANG H, BIAN Y, GOU X, ZHU B, XU C, QI B, LI N, RUSTGI S, ZHOU H, HAN F, JIANG J, VON WETTSTEIN D, LIU B. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3447-3452.
[58]
ABERKANE H, PAYNE T, KISHI M, SMALE M, AMRI A, JAMORA N. Transferring diversity of goat grass to farmers’ fields through the development of synthetic hexaploid wheat. Food Security, 2020, 12(5): 1017-1033.

doi: 10.1007/s12571-020-01051-w
[59]
邹裕春. 国审小麦新品种—川麦42. 中国农业信息, 2009(7): 32.
ZOU Y C. A new national wheat variety-Chuanmai42. China Agricultural Informatics, 2009(7): 32. (in Chinese)
[1] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[2] WU QiBin, XIE WanJie, ZHONG Hui, FENG ChunYan, PAN HaoRan, QI YiYing, ZHANG JiSen, WANG HengBo. Identification of the Bru1 Genomic Region for Brown Rust Resistance and Functional Analysis of Candidate Resistance Genes in Sugarcane [J]. Scientia Agricultura Sinica, 2024, 57(5): 855-867.
[3] MEI GuangYuan, LI Rong, MEI Xin, CHEN RiQiang, FAN YiGuang, CHENG JinPeng, FENG ZiHeng, TAO Ting, ZHAO Qian, ZHAO PeiQin, YANG XiaoDong. A VSURF-CA Based Hyperspectral Disease Index Estimation Model of Wheat Stripe Rust [J]. Scientia Agricultura Sinica, 2024, 57(3): 484-499.
[4] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
[5] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[6] GUI CuiLin, MA Liang, WANG YinYing, XIE FuGui, ZHAO CaiHong, WANG WenMiao, LI Xin, WANG Qing, GAO XiQuan. Identification of Resistant Germplasms and Mining of Candidate Genes Associated with Resistance to Stalk Rot Caused by Synergistic Infection with Fusarium spp. in Maize [J]. Scientia Agricultura Sinica, 2024, 57(13): 2509-2524.
[7] GAO Fu, WANG Rui, LIU DongJun, SUN HuiYan, WANG ZiYe, SONG WeiFu, LI TianYa. Stem Rust Resistance Genes Identification and Evaluation of 88 Wheat Cultivars (Lines) in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2024, 57(13): 2568-2582.
[8] LIU Hua, ZENG FanPei, WANG Qian, CHEN GuoQuan, MIAO LiJuan, QIN Li, HAN SuoYi, DONG WenZhao, DU Pei, ZHANG XinYou. Development and Identification of an Interspecific Hexaploid Hybrid Between an A. hypogaea Cultivar and a Wild Species Arachis sp. 30119 in Peanut [J]. Scientia Agricultura Sinica, 2024, 57(10): 1870-1881.
[9] BAI Bin, ZHANG HuaiZhi, DU JiuYuan, ZHANG XiaoYang, HE Rui, WU Ling, ZHANG Zhe, ZHANG YaoHui, CAO ShiQin, LIU ZhiYong. Current Situation and Strategy of Stripe Rust Resistance Genes Untilization in Winter Wheat Cultivars of Northwestern Oversummering Region for Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2024, 57(1): 4-17.
[10] ZHANG Xu, HAN JinYu, LI ChenChen, ZHANG DanDan, WU QiMeng, LIU ShengJie, JIAO HanXuan, HUANG Shuo, LI ChunLian, WANG ChangFa, ZENG QingDong, KANG ZhenSheng, HAN DeJun, WU JianHui. Identification of Adult Plant Stripe Rust Resistance Candidate Genes of YrZ501-2BL by Gene Association and Transciptome Analysis in Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2023, 56(8): 1429-1443.
[11] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[12] ZANG XinShan, WANG KangWen, ZHANG XianLiang, WANG XuePing, WANG Jun, LIANG Yu, PEI XiaoYu, REN Xiang, LÜ YuLong, GAO Yu, WANG XingXing, PENG YunLing, MA XiongFeng. Research Advances of Map-Based Cloning Genes in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4635-4647.
[13] ZHANG ZeYuan, LI Yue, ZHAO WenSha, GU JingJing, ZHANG AoYan, ZHANG HaiLong, SONG PengBo, WU JianHui, ZHANG ChuanLiang, SONG QuanHao, JIAN JunTao, SUN DaoJie, WANG XingRong. QTL Mapping and Molecular Marker Development of Traits Related to Grain Weight in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(21): 4137-4149.
[14] YANG Hao, HUANG YanYan, YI ChunLin, SHI Jun, TAN ChuTian, REN WenRui, WANG WenMing. Development and Application of Specific Molecular Markers for Six Homologous Rice Blast Resistance Genes in Pi9 Locus of Rice [J]. Scientia Agricultura Sinica, 2023, 56(21): 4219-4233.
[15] DONG JiZi, CHEN LinQu, GUO HaoRu, ZHANG MengYu, LIU ZhiXiao, HAN Lei, TIAN ZhaoSaShuang, XU NingHao, GUO QingJie, HUANG ZhenJie, YANG AoYu, ZHAO ChunHua, WU YongZhen, SUN Han, QIN Ran, CUI Fa. Analysis of Genetic and Breeding Selection Effects of A Major QTL-qSl-2D for Wheat Spike Length [J]. Scientia Agricultura Sinica, 2023, 56(20): 3917-3930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!