Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 3917-3930.doi: 10.3864/j.issn.0578-1752.2023.20.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of Genetic and Breeding Selection Effects of A Major QTL-qSl-2D for Wheat Spike Length

DONG JiZi(), CHEN LinQu(), GUO HaoRu, ZHANG MengYu, LIU ZhiXiao, HAN Lei, TIAN ZhaoSaShuang, XU NingHao, GUO QingJie, HUANG ZhenJie, YANG AoYu, ZHAO ChunHua, WU YongZhen, SUN Han, QIN Ran(), CUI Fa()   

  1. School of Agriculture, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Yantai 264025, Shandong
  • Received:2023-04-10 Accepted:2023-05-23 Online:2023-10-16 Published:2023-10-31

Abstract:

【Objective】By analyzing the genetic and breeding selection effects of the stable major QTL for spike length in wheat, its genetic effects on yield-related traits were clarified, and the future breeding application potential was evaluated. The results could provide a basis for subsequent gene mining and molecular breeding of wheat. 【Method】A major QTL for spike length, named qSl-2D, was detected in multiple environments using a recombinant inbred lines population derived from the cross of Kenong9204 and Jing411, denoted as KJ-RIL; Two molecular markers closely linked to qSl-2D were developed by using the InDel sites in target interval. The genetic effects of yield-related traits based on KJ-RIL, MY-F2, NILs and natural mapping populations, were analyzed by combining genotype data of molecular markers or wheat 55K array, respectively. By genotyping the natural mapping population, the breeding selection effect of qSl-2D haplotype was parsed across different wheat regions and different ages. 【Result】QTL mapping results showed that qSl-2D could be detected in 7/10 sets of environmental data, and could explain 4.02%-10.10% of the phenotypic variation. The peak LOD of 5/10 sets of environmental data was positioned at 608.75 Mb. The results of genetic effect analysis showed that the enhancing allele of qSl-2D could significantly increase spike length in the four populations with different genetic backgrounds. In addition, it has positive effects on kernel number per spike and plant height, but has negative effects on thousand kernel weight, kernel weight per spike and yield per plant in most population backgrounds. Further analysis of plant height in KJ-RIL population showed that the enhancing allele had rod lowering effect on all internode lengths except the internode length below spike, which resulted in the insignificant increase in plant height. The results of qSl-2D haplotype analysis showed that the utilization rates of the long-spike haplotype Hap-AA-GG varied greatly in different wheat regions, with the highest utilization rate in the northern winter wheat region, accounting for 24%; while the short-spike haplotype Hap-CC-CC accounted for more than 30% in most wheat regions. Moreover, the utilization rate of qSl-2D long-spike haplotype showed a gradual decrease over time, while that of short-spike haplotype consistently maintained a higher selection trend. 【Conclusion】A stable major QTL-qSl-2D for spike length was identified, the enhancing allele of qSl-2D could significantly increase spike length under different genetic backgrounds, and had certain genetic effects on yield-related traits. The closely linked molecular markers developed in the target region can be used for the genetic improvement of wheat spike length and yield-related traits in wheat.

Key words: wheat (Triticum aestivum L.), spike length, major QTL, genetic effects analysis, molecular marker

Table 1

Primary mapping analysis of qSl-2D in multiple environments"

环境
Environments
位置
Position (Mb)
左端标记
Left marker
右端标记
Right marker
LOD 表型变异率
PVE (%)
加性效应
Add
E1 608.75 AX-111528013 AX-95178308 10.13 4.02 -0.20
E3 608.75 AX-111528013 AX-95178308 9.07 10.10 -0.24
E4 608.75 AX-111528013 AX-95178308 9.07 8.73 -0.25
E7 577.75 AX-109437399 AX-94823865 5.72 8.31 -0.22
E8 608.75 AX-111528013 AX-95178308 5.63 7.93 -0.21
LN-BLUE 609.75 AX-95178308 AX-108752409 8.42 9.85 -0.19
HN-BLUE 608.75 AX-111528013 AX-95178308 9.82 8.49 -0.20

Fig. 1

LODs distribution of spike length QTL-qSl-2D in multiple environments The abscissa indicates the physical position of wheat 660K SNP array in KN9204 genome. The red chromosome segment below indicates the location interval"

Fig. 2

Electrophoretic amplification results of molecular markers in Kenong 9204, Jing 411 and some KJ-RIL M: Marker; 1-46: The amplification results of parts of KJ-RIL; K: Kenong 9204; J: Jing 411"

Fig. 3

The association analysis between genotype and spike length of KJ-RIL in different environments Hap-KN9204: Genotype identical to Kenong 9204, Hap-J411: Genotype identical to Jing 411; *, **: Significant differences at P<0.05 and P<0.01 levels, respectively. The same as below"

Fig. 4

Genetic effect analysis of qSl-2D on yield-related traits in KJ-RIL population"

Table 2

Genetic effect analysis of qSl-2D on each internode length in KJ-RIL population"

基因型
Genotype
性状Traits
穗下节间长
ILBS (cm)
倒二节间长
SECITL (cm)
倒三节间长
THIITL (cm)
倒四节间长
FOUITL (cm)
倒五节间长
FIFITL (cm)
Hap-KN9204 20.71±3.82 19.78±2.11 13.55±1.37 9.50±1.34 5.78±1.28
Hap-J411 21.16±4.14 19.37±2.13 13.37±1.31 9.33±1.31 5.49±1.40

Table 3

Genetic effect analysis of qSl-2D on yield-related traits in NILs population"

基因型
Genotype
性状Traits
穗长
SL (cm)
株高
PH (cm)
穗粒数
KNPS
每穗小穗数
SNPS
单株穗数
SN
千粒重
TKW (g)
小穗密度
SD
NIL-KN9204 7.73±0.50 61.17±1.92 53.75±3.40 18.50±1.69 8.42±2.37 39.07±3.68 2.93±3.40
NIL-J411 8.5±0.57** 61.58±2.43 55.67±5.68 18.71±2.49 10.14±1.77 38.54±2.96 2.27±0.20

Table 4

Genetic effect analysis of qSl-2D on yield-related traits in MY-F2 population"

基因型
Genotype
性状Traits
穗长
SL (cm)
株高
PH (cm)
穗粒数
KNPS
每穗小穗数
SNPS
千粒重
TKW (g)
小穗密度
SD
Hap-M37 10.08±0.74** 78.33±5.90** 57.89±7.62 20.00±1.12 41.62±2.96 3.95±3.47**
Hap-YN999 9.16±0.93 74.99±5.21 55.26±7.23 19.20±1.46 41.44±4.11 2.13±0.21

Fig. 5

Genetic effects analysis of qSl-2D on yield-related traits in 190 cultivated varieties (lines) Hap-CC-CC: The short-spike haplotype; Hap-AA-GG: The long-spike haplotype; The numbers in the figure represent the mean value of each haplotype"

Fig. 6

Selection effect analysis of qSl-2D haplotype across different wheat regions"

Fig. 7

Selection effect analysis of qSl-2D haplotype in varieties approved in different ages"

Table 5

QTL mapping information of spike length reported on wheat chromosome 2D"

QTL名称 QTL name 左端标记 Left marker 右端标记 Right marker 区间 Interval (Mb) 参考文献 Reference
QSl2D-1 XGWM296 XWMC112 17.61—23.02 [36]
QSl2D-2 XCFD53 XWMC18 23.02—130.83 [36]
QSl2D-3 XGWM296 XGWM261 17.61—19.62 [36]
QSl2D-4 XGWM311.2 XBARC129.2 647.51- [36]
QSl2D-5 XWMC112 XCFD53 —23.02 [36]
QSpl.nau-2D Xcfd53 DG371 23.02— [13]
QTL wmc181 gs2a 593.74— [15]
QTL gwm261 barc168 19.62—44.74 [15]
QTL Xcfd53 Xwmc18 23.02—130.83 [37]
QTL Xwgrc1257 DG371 / [17]
QSl.sau.2D.1 AX-111096297 AX-109422526 32.97—35.02 [18]
QSl.sau.2D.2 AX-110552569 AX-111660432 602.14—606.92 [18]
qSL-2D.1 AX-111939856 AX-111497351 30.49—31.58 [19]
Qsl.nwsuaf-2D tplb0053n05_793 Kukri_c51992_290 20.77—22.45 [20]
QSL-XX.2D AX-111561744 AX-179557748 23.42—31.56 [21]
MQTL-2D-1 2243439--D GDEEGVY02I0IOX_61 2.69—8.98 [10]
MQTL-2D-2 D_contig74612 253--2243548 5.44—10.32 [10]
MQTL-2D-3 3222417--D GA8KES401CIV9Z_240 24.98—28.76 [10]
MQTL-2D-4 1282771 983316 28.88—36.42 [10]
QTL AX-109911369 AX-111087066 18.2—36.89 [38]
QSl.cas-2D.2 AX-110462142 AX-110168677 585.69—601.05 [39]
[1]
范涛, 李治, 蒋庆, 陈姝霖, 欧霞, 陈永艳, 任天恒. 小麦单位面积穗数和粒长主效QTL紧密连锁KASP标记的开发及其效应评价. 中国农业科学, 2021, 54(14): 2941-2951.

doi: 10.3864/j.issn.0578-1752.2021.14.002
FAN T, LI Z, JIANG Q, CHEN S L, OU X, CHEN Y Y, REN T H. Development and effect evaluation of KASP markers closely linked to major QTLs of spike number per unit area and grain length in wheat. Scientia Agricultura Sinica, 2021, 54(14): 2941-2951. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.14.002
[2]
刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42(6): 820-831.
LIU K, DENG Z Y, LI Q F, ZHANG Y, SUN C L, TIAN J C, CHEN J S. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agronomica Sinica, 2016, 42(6): 820-831. (in Chinese)
[3]
杨光. 四倍体和六倍体小麦穗部形态性状的比较及其演化规律研究[D]. 杨凌: 西北农林科技大学, 2021.
YANG G. Comparison of morphological characters of ear between tetraploid and hexaploid wheat and study on their evolution law[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[4]
HUANG X Q, KEMPF H, GANAL M W, RÖDER M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109(5): 933-943.

doi: 10.1007/s00122-004-1708-7
[5]
DENG S M, WU X R, WU Y Y, ZHOU R H, WANG H G, JIA J Z, LIU S B. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theoretical and Applied Genetics, 2011, 122(2): 281-289.

doi: 10.1007/s00122-010-1443-1 pmid: 20872211
[6]
CUI F, DING A M, LI J, ZHAO C H, WANG L, WANG X Q, QI X L, LI X F, LI G Y, GAO J R, WANG H G. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 2012, 186(1): 177-192.

doi: 10.1007/s10681-011-0550-7
[7]
CUI F, ZHAO C H, DING A M, LI J, WANG L, LI X F, BAO Y G, LI J M, WANG H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 2014, 127(3): 659-675.

doi: 10.1007/s00122-013-2249-8 pmid: 24326459
[8]
FAN X L, CUI F, JI J, ZHANG W, ZHAO X Q, LIU J J, MENG D Y, TONG Y P, WANG T, LI J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Frontiers in Plant Science, 2019, 10: 187.

doi: 10.3389/fpls.2019.00187 pmid: 30863417
[9]
LI T, DENG G B, SU Y, YANG Z, TANG Y Y, WANG J H, QIU X, PU X, LI J, LIU Z H, ZHANG H L, LIANG J J, YANG W Y, YU M Q, WEI Y M, LONG H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theoretical and Applied Genetics, 2021, 134(11): 3625-3641.

doi: 10.1007/s00122-021-03918-8
[10]
YANG Y, AMO A, WEI D, CHAI Y M, ZHENG J, QIAO P F, CUI C G, LU S, CHEN L, HU Y G. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 2021, 134(9): 3083-3109.

doi: 10.1007/s00122-021-03881-4 pmid: 34142166
[11]
XU H W, ZHANG R Q, WANG M M, LI L H, YAN L, WANG Z, ZHU J, CHEN X Y, ZHAO A J, SU Z Q, XING J W, SUN Q X, NI Z F. Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. Theoretical and Applied Genetics, 2022, 135(2): 389-403.

doi: 10.1007/s00122-021-03971-3
[12]
MA Z Q, ZHAO D M, ZHANG C Q, ZHANG Z Z, XUE S L, LIN F, KONG Z X, TIAN D G, LUO Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Molecular Genetics and Genomics, 2007, 277(1): 31-42.

doi: 10.1007/s00438-006-0166-0
[13]
WU X Y, CHENG R R, XUE S L, KONG Z X, WAN H S, LI G Q, HUANG Y L, JIA H Y, JIA J Z, ZHANG L X, MA Z Q. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Molecular Breeding, 2014, 33(1): 129-138.

doi: 10.1007/s11032-013-9939-4
[14]
王佳佳. 小麦基部小穗不育突变体穗部性状的QTL定位[D]. 泰安: 山东农业大学, 2014.
WANG J J. QTL mapping of panicle traits of spikelet sterile mutant at the base of wheat[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[15]
ZHANG G Z, WANG Y Y, GUO Y, ZHAO Y, KONG F M, LI S S. Characterization and mapping of QTLs on chromosome 2D for grain size and yield traits using a mutant line induced by EMS in wheat. The Crop Journal, 2015, 3(2): 135-144.

doi: 10.1016/j.cj.2014.11.002
[16]
ZHAI H J, FENG Z Y, LI J, LIU X Y, XIAO S H, NI Z F, SUN Q X. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 2016, 7: 1617.
[17]
程瑞如. 小麦粒形的分子遗传分析及穗长基因HL1的精细定位[D]. 南京: 南京农业大学, 2018.
CHENG R R. Molecular genetic analysis of wheat kernel dimensions and fine mapping of spike length QTL HL1[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[18]
李聪, 马建, 刘航, 丁浦洋, 杨聪聪, 张涵, 秦娜娜, 兰秀锦. 基于小麦55K SNP芯片检测小麦穗长和株高性状QTL. 麦类作物学报, 2019, 39(11): 1284-1292.
LI C, MA J, LIU H, DING P Y, YANG C C, ZHANG H, QIN N N, LAN X J. Detection of QTLs for spike length and plant height in wheat based on 55K SNP array. Journal of Triticeae Crops, 2019, 39(11): 1284-1292. (in Chinese)
[19]
柴岭岭. 普通小麦2D染色体株高和穗长QTL的精细定位与图位克隆[D]. 北京: 中国农业大学, 2019.
CHAI L L. Fine mapping and map-based cloning of QTL controlling plant height and spike length on chromosome 2D in common wheat (Triticum aestivum L.)[D]. Beijing: China Agricultural University, 2019. (in Chinese)
[20]
水志杰, 安沛沛, 刘天相, 吴洪启, 刘乐, 史雪, 王中华. 利用人工合成小麦RIL群体进行小麦穗长和穗宽性状的QTL分析. 麦类作物学报, 2020, 40(6): 656-664.
SHUI Z J, AN P P, LIU T X, WU H Q, LIU L, SHI X, WANG Z H. QTL analysis of spike length and width using RIL population of synthetic wheat. Journal of Triticeae Crops 2020, 40(6): 656-664. (in Chinese)
[21]
姚俭昕. 基于50K芯片的小麦穗部及籽粒相关性状的QTL定位[D]. 杨凌:西北农林科技大学, 2020. YAO J X. QTL mapping of wheat ear and kernel related traits based on 50K Chips[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
[22]
吕栋云. 基于两个RIL群体的小麦产量相关性状的QTL定位[D]. 杨凌:西北农林科技大学, 2021. LÜ D Y. QTL mapping for yield-related traits in wheat based on two RIL populations[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[23]
JI G S, XU Z B, FAN X L, ZHOU Q, YU Q, LIU X F, LIAO S M, FENG B, WANG T. Identification of a major and stable QTL on chromosome 5A confers spike length in wheat (Triticum aestivum L.). Molecular Breeding, 2021, 41(9): 56-68.

doi: 10.1007/s11032-021-01249-6
[24]
陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 2022, 42(7): 799-807.
CHEN H X, LI C, WU K Y, WANG Y, MU Y, TANG H P, TANG L W, LAN X J, MA J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. Journal of Triticeae Crops, 2022, 42(7): 799-807. (in Chinese)
[25]
胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48(6): 1346-1356.

doi: 10.3724/SP.J.1006.2022.11055
HU W J, LI D S, YI X, ZHANG C M, ZHANG Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. (in Chinese)

doi: 10.3724/SP.J.1006.2022.11055
[26]
杨在君, 彭丽娟. 小麦三雌蕊突变体主要农艺性状的遗传力分析. 西华师范大学学报(自然科学版), 2013, 34(1): 1-4.
YANG Z J, PENG L J. Heritability analysis of main agronomic traits in common wheat line three pistils. Journal of China West Normal University (Natural Science), 2013, 34(1): 1-4. (in Chinese)
[27]
CUI F, ZHANG N, FAN X L, ZHANG W, ZHAO C H, YANG L J, PAN R Q, CHEN M, HAN J, ZHAO X Q, JI J, TONG Y P, ZHANG H X, JIA J Z, ZHAO G Y, LI J M. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 2017, 7: 3788.

doi: 10.1038/s41598-017-04028-6 pmid: 28630475
[28]
CUI F, FAN X L, CHEN M, ZHANG N, ZHAO C H, ZHANG W, HAN J, JI J, ZHAO X Q, YANG L J, ZHAO Z W, TONG Y P, WANG T, LI J M. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theoretical and Applied Genetics, 2016, 129(3): 469-484.

doi: 10.1007/s00122-015-2641-7 pmid: 26660466
[29]
刘朦朦, 张萌娜, 张倩倩, 刘锡建, 郭宇航, 孙靳惠, 武亚瑞, 王素容, 吴永振, 孙晗, 崔法, 赵春华. 小麦旗叶宽主效QTL-QFlw-5B遗传效应解析. 麦类作物学报, 2019, 39(12): 1399-1405.
LIU M M, ZHANG M N, ZHANG Q Q, LIU X J, GUO Y H, SUN J H, WU Y R, WANG S R, WU Y Z, SUN H, CUI F, ZHAO C H. Genetic analysis of a major stable QTL-QFlw-5B for wheat flag leaf width. Journal of Triticeae Crops, 2019, 39(12): 1399-1405. (in Chinese)
[30]
崔俊鹏, 赵慧, 张倩倩, 宫娜, 刘朦朦, 张萌娜, 侯玉竹, 刘成, 李林志, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps-4A遗传效应解析. 分子植物育种, 2019, 17(11): 3632-3640.
CUI J P, ZHAO H, ZHANG Q Q, GONG N, LIU M M, ZHANG M N, HOU Y Z, LIU C, LI L Z, ZHOU F T, WU Y Z, SUN H, ZHAO C H, CUI F. Genetic effects analysis of major QTL-qKnps-4A for kernel per spike in common wheat. Molecular Plant Breeding, 2019, 17(11): 3632-3640. (in Chinese)
[31]
张倩倩, 闫学梅, 刘锡建, 张萌娜, 刘朦朦, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效 QTL-qKnps-2A 遗传效应解析. 分子植物育种, 2020, 18(15): 5003-5009.
ZHANG Q Q, YAN X M, LIU X J, ZHANG M N, LIU M M, ZHOU F T, WU Y Z, SUN H, ZHAO C H, CUI F. Genetic analysis of qKnps-2A: A major stable QTL for kernel number per spike in common wheat. Molecular Plant Breeding, 2020, 18(15): 5003-5009. (in Chinese)
[32]
CUI F, FAN X L, ZHAO C H, ZHANG W, CHEN M, JI J, ZHANG W, LI J M. A novel genetic map of wheat: Utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014, 15: 57.

doi: 10.1186/1471-2156-15-57 pmid: 24885313
[33]
ZHANG N, FAN X L, CUI F, ZHAO C H, ZHANG W, ZHAO X Q, YANG L J, PAN R Q, CHEN M, HAN J, JI J, LIU D C, ZHAO Z W, TONG Y P, ZHANG A M, WANG T, LI J M. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 2017, 130(6): 1235-1252.

doi: 10.1007/s00122-017-2884-6
[34]
SHI X L, CUI F, HAN X Y, HE Y L, ZHAO L, ZHANG N, ZHANG H, ZHU H D, LIU Z X, MA B, ZHENG S S, ZHANG W, LIU J J, FAN X L, SI Y Q, TIAN S Q, NIU J Q, WU H L, LIU X Y, CHEN Z, MENG D Y, ZHANG H, WANG X Y, SONG L Q, SUN L J, HAN J, ZHAO H, JI J, WANG Z G, HE X Y, LI R L, CHI X B, LIANG C Z, NIU B, XIAO J, LI J M, LING H. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Molecular Plant, 2022, 15(9): 1440-1456.

doi: 10.1016/j.molp.2022.07.008
[35]
朱志翔. 遗传分析软件QGAStation2.0和GMDR-GPU的开发[D]. 杭州: 浙江大学, 2012.
ZHU Z X. Development of the genetic analysis software QGAStation 2.0 and GMDR-GPU[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[36]
崔勇. 不同施氮期对小麦主要农艺性状影响的QTL分析[D]. 泰安: 山东农业大学, 2013.
CUI Y. QTL mapping for main agronomic traits in Wheat under various nitrogen supplying dates[D]. Taian: Shandong Agricultural University, 2013. (in Chinese)
[37]
刘书含, 侯立江, 华冠勋, 宋瑜龙, 牛娜, 马守才, 宋亚珍, 王军卫, 张改生. 大穗材料高麦1号/密小穗F2群体穗长性状的QTL初步定位. 麦类作物学报, 2016, 36(4): 409-414.
LIU S H, HOU L J, HUA G X, SONG Y L, NIU N, MA S C, SONG Y Z, WANG J W, ZHANG G S. Quantitative trait loci mapping of spike length using F2,population of Gaomai 1/Mixiaosui in Wheat (Triticum aestivum L.). Journal of Triticeae Crops, 2016, 36 (4): 409-414. (in Chinese)
[38]
XU X, LI X J, ZHANG D H, ZHAO J S, JIANG X L, SUN H L, RU Z G. Identification and validation of QTLs for kernel number per spike and spike length in two founder genotypes of wheat. BMC Plant Biology, 2022, 22(1): 146.

doi: 10.1186/s12870-022-03544-6 pmid: 35346053
[39]
LIU H, SHI Z P, MA F F, XU Y F, HAN G H, ZHANG J P, LIU D C, AN D G. Identification and validation of plant height, spike length and spike compactness loci in common wheat (Triticum aestivum L.). BMC Plant Biology, 2022, 22(1): 568.

doi: 10.1186/s12870-022-03968-0
[40]
HEDDEN P. The genes of the Green Revolution. Trends in Genetics, 2003, 19(1): 5-9.

doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241
[41]
PENG J, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH, L J, WORLAND A J, PELICA F, SUDHAKAR D, CHRISTOU P, SNAPE J W, GALE M D, HARBERD N P. “Green revolution” genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.

doi: 10.1038/22307
[1] ZHANG ZeYuan, LI Yue, ZHAO WenSha, GU JingJing, ZHANG AoYan, ZHANG HaiLong, SONG PengBo, WU JianHui, ZHANG ChuanLiang, SONG QuanHao, JIAN JunTao, SUN DaoJie, WANG XingRong. QTL Mapping and Molecular Marker Development of Traits Related to Grain Weight in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(21): 4137-4149.
[2] YANG Hao, HUANG YanYan, YI ChunLin, SHI Jun, TAN ChuTian, REN WenRui, WANG WenMing. Development and Application of Specific Molecular Markers for Six Homologous Rice Blast Resistance Genes in Pi9 Locus of Rice [J]. Scientia Agricultura Sinica, 2023, 56(21): 4219-4233.
[3] GAO GuangLiang, ZHANG KeShan, ZHAO XianZhi, XU GuoYang, XIE YouHui, ZHOU Li, ZHANG ChangLian, WANG QiGui. Identification of Molecular Markers Associated with Goose Egg Quality Through Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3894-3904.
[4] YANG ShengNan, CHENG Li, TAN YueXia, ZHU YanSong, JIANG Dong. Genome Wide Association Study for Resistance to Citrus Brown Spot Disease [J]. Scientia Agricultura Sinica, 2023, 56(18): 3642-3654.
[5] WANG JiangHao, WANG LiWei, ZHANG DongMin, GUO Rui, ZHANG QuanGuo, LI XingHua, WEI JianFeng, SONG Wei, WANG BaoQiang, LI RongGai. Molecular Marker Assisted Identification and Application of Maize Germplasms for Maize Rough Dwarf Disease Resistance [J]. Scientia Agricultura Sinica, 2023, 56(10): 1838-1847.
[6] TANG HuaPing, CHEN HuangXin, LI Cong, GOU LuLu, TAN Cui, MU Yang, TANG LiWei, LAN XiuJin, WEI YuMing, MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[8] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[9] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[10] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[11] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[12] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[13] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[14] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[15] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!