Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (21): 4219-4233.doi: 10.3864/j.issn.0578-1752.2023.21.007

• PLANT PROTECTION • Previous Articles     Next Articles

Development and Application of Specific Molecular Markers for Six Homologous Rice Blast Resistance Genes in Pi9 Locus of Rice

YANG Hao1(), HUANG YanYan1(), YI ChunLin1, SHI Jun2, TAN ChuTian1, REN WenRui1, WANG WenMing1()   

  1. 1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130
    2 Institute of Rice Research, Mianyang Academy of Agricultural Sciences/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang 621023, Sichuan
  • Received:2023-07-23 Accepted:2023-09-06 Online:2023-11-01 Published:2023-11-06
  • Contact: WANG WenMing

Abstract:

【Objective】The Pi9 resistance gene locus, conferring a broad-spectrum resistance against Magnaporthe oryzae, is consist by several tandem homologous genes. Over 10 resistance genes have been cloned from this gene locus. This study aims to clarify the R gene composition at Pi9 locus in rice resource materials and promote the application of those genes in rice resistance breeding.【Method】Comparing the DNA sequence of cloned R genes at Pi9 locus, the specific nucleotide polymorphism sites were screened as the candidate sites. Subsequently, each R gene was blasted with 155 rice genomes in the database of Rice Resource Center. The most specific nucleotide polymorphism sites were picked out from the candidate site in each gene to develop primer pair of molecular markers. The PCR product of primer pairs was used to mark indicated R gene in tested rice materials via parameter optimization. To verify the results, the R genes were cloned from indicated rice variety randomly and examined by Sanger sequencing, or analyzed the R genes from the genome database if the genome sequence of indicated rice variety exists in Rice Resource Center. The R genes in Pi9 locus have high homology, which cause same specific nucleotide polymorphism sites existing in different R genes. Therefore, some R genes are hardly identified by one molecular marker. For this case, several molecular markers were employed to identify the indicated R gene simultaneously. Moreover, some specific nucleotide polymorphism sites are single nucleotide polymorphism (SNP), in where the primers of molecular markers have a mismatched base. In order to improve the specificity of PCR amplification, the adjacent base of SNP was mutated to generate two mismatched bases at 3′ site of primer.【Result】Finally, the valid molecular markers were developed for each R gene and identified 32.09% tested materials containing R genes at Pi9 locus. Pi9, Pid4, PigmR, Piz-t, Pi2 and Pi9-type5 are present in 1, 7, 8, 14, 23 and 33 tested materials, respectively. The Pi9 only presents in monogenic line but not in rice parent lines. The other genes are usually present in two or more gene combinations in rice parent lines. The Pi9-type5 often presents in pair with Pi2 and Piz-t, and presents alone in three rice parents, Chenghui 993, HR2168 and Mianhui 365. Yuhui 38 contains the most R genes at Pi9 locus, including Pi2, Pi9-type5, PigmR and Pid4. Chuangu B, Chuannong 4B, Neixiang 6B and Shuang 1B contain Piz-t, PigmR and Pid4. Qianxiang 654B contains Piz-t and Pid4.【Conclusion】This study successfully developed specific molecular markers for six homologous rice blast resistance genes in Pi9 locus and identified the R gene composition in Pi9 locus for 110 rice parent lines that used in rice breeding in Sichuan basin. It also discovered different types of R genes combination at Pi9 locus and provided a clear reference for choosing the resistance source in rice breeding.

Key words: rice, rice blast, Pi9 locus, homologous gene, molecular marker

Table 1

The rice varieties used in this study"

编号
No.
品种
Variety
编号
No.
品种
Variety
编号
No.
品种
Variety
编号
No.
品种
Variety
1 IRBLa-A (Pi-a) 35 绵恢146 Mianhui 146 69 泰恢808 Taihui 808 103 德香074B Dexiang 074B
2 IRBLi-F5 (Pi-i) 36 绵恢725 Mianhui 725 70 五山丝苗Wushansimiao 104 赣香B Ganxiang B
3 IRBLks-F5 (Pi-ks) 37 南恢558 Nanhui 558 71 西科恢768 Xikehui 768 105 广8B Guang 8B
4 IRBLk-Ka (Pi-k) 38 南恢968 Nanhui 968 72 雅禾Yahe 106 泸香618B Luxiang 618B
5 IRBLkp-K60 (Pi-kp) 39 蜀恢257 Shuhui 257 73 雅恢2115 Yahui 2115 107 绵5B Mian 5B
6 IRBLkh-K3 (Pi-kh) 40 蜀恢308 Shuhui 308 74 雅恢2116 Yahui 2116 108 忠香B Zhongxiang B
7 IRBLz-Fu (Pi-z) 41 蜀恢451 Shuhui 451 75 雅恢2117 Yahui 2117 109 内香6B Neixiang 6B
8 IRBLz5-CA (Pi-z5) 42 蜀恢498 Shuhui 498 76 雅恢2118 Yahui 2118 110 千乡654B Qianxiang 654B
9 IRBLzt-T (Pi-zt) 43 蜀恢505 Shuhui 505 77 雅恢2119 Yahui 2119 111 荃9311B Quan 9311B
10 IRBLta-K1 (Pi-ta) 44 蜀恢548 Shuhui 548 78 雅恢2199 Yahui 2199 112 蓉18B Rong 18B
11 IRBLb-B (Pi-b) 45 蜀恢573 Shuhui 573 79 雅恢2275 Yahui 2275 113 蓉7B Rong 7B
12 IRBLt-K59 (Pi-t) 46 蜀恢586 Shuhui 586 80 雅恢2348 Yahui 2348 114 双1B Shuang 1B
13 IRBLsh-B (Pi-sh) 47 蜀恢589 Shuhui 589 81 雅恢2816 Yahui 2816 115 泰丰B Taifeng B
14 IRBL1-CL (Pi-1) 48 猪毛糯Zhumaonuo 82 雅恢2918 Yahui 2918 116 武金4B Wujin 4B
15 IRBL3-CP4 (Pi-3) 49 HR2168 83 雅恢5049 Yahui 5049 117 武香B Wuxiang B
16 IRBL5-M (Pi-5) 50 R900 84 雅恢5217 Yahui 5217 118 雅1B Ya 1B
17 IRBL7-M (Pi-7) 51 R9311 85 雨恢38 Yuhui 38 119 雅3B Ya 3B
18 IRBL9-W (Pi-9) 52 成恢19 Chenghui 19 86 岳恢9113 Yuehui 9113 120 雅7B Ya 7B
19 IRBL12-M (Pi-12) 53 乐恢188 Lehui 188 87 粤农丝苗Yuenongsimiao 121 宜香1B Yixiang 1B
20 IRBL19-M (Pi-19) 54 乐恢584 Lehui 584 88 D297B 122 泰国香稻Thai fragrant rice
21 IRBLkm-Ts (Pi-km) 55 泸恢17 Luhui 17 89 D35B 123 楚粳28 Chugeng 28
22 IRBL20-IR24 (Pi-20) 56 泸恢8258 Luhui 8258 90 D62B 124 野香B Yexiang B
23 IRBLta2-Pi (Pi-ta2) 57 绵恢523 Mianhui 523 91 D79B 125 绵恢6139 Mianhui 6139
24 IRBL11-Zh (Pi-11) 58 绵恢528 Mianhui 528 92 F-32B 126 绵恢313 Mianhui 313
25 E33 59 绵恢662 Mianhui 662 93 F59B 127 绵恢357 Mianhui 357
26 成恢3203 Chenghui 3203 60 明恢63 Minghui 63 94 G46B 128 绵恢365 Mianhui 365
27 成恢727 Chenghui 727 61 明恢86 Minghui 86 95 川106B Chuan 106B 129 绵恢821 Mianhui 821
28 成恢993 Chenghui 993 62 内恢99-14 Neihui 99-14 96 川608B Chuan 608B 130 绵恢823 Mianhui 823
29 德恢6099 Dehui 6099 63 蜀恢137 Shuhui 137 97 川谷B Chuangu B 131 绵恢837 Mianhui 837
30 多恢1号 Duohui 1 64 蜀恢208 Shuhui 208 98 川华B Chuanhua B 132 绵恢857 Mianhui 857
31 航恢1179 Hanghui 1179 65 蜀恢527 Shuhui 527 99 川农1B Chuannong 1B 133 绵恢815 Mianhui 815
32 航恢570 Hanghui 570 66 蜀恢538 Shuhui 538 100 川农4B Chuannong 4B 134 地谷B Digu B
33 华占Huazhan 67 蜀恢569 Shuhui 569 101 川种3B Chuanzhong 3B
34 乐恢433 Lehui 433 68 蜀恢882 Shuhui 882 102 德66B De 66B

Table 2

The primers of molecular markers and parameter setting of PCR amplification"

R基因
R gene
引物名称
Primer name
引物序列
Primer sequence
产物长度
Product length (bp)
退火温度
Annealing temperature (℃)
延伸时间
Extension time (s)
Pi2 Pi2/z-t-F CTCTTCGTTGTATAGGACAGTTTCA 424 57 30
Pi2-R GTTCCACCATCTGAGATTCCTG
Pi9 Pi9-F CTCTTCGTTGTAGTAGAAAGTTTGT 788 45 50
Pi9-R TTCCAACCTGCAGCAAGAG
Pi9-type5 Pi9-type5F1 CTAAGAACAATAAGAAGGGCAG 454 62 30
Pi9-type5R1 CCTACTAGACGATTCCTTTGT
Pi9-type5F2 CGTTGTATAAGAGAGCTTGAATT 709 60 50
Pi9-type5R2 GCTGATCCAAATTGAAAATCAC
Pi9-type5F3 ATCTTTCCTGAGGATTTTGAAATAC 185 55 25
Pi9-type5mR CAAGTCTTAATTTTTCCTGCAG
Piz-t Pi2/z-t-F CTCTTCGTTGTATAGGACAGTTTCA 548 57 35
Piz-t-R3 GTAGATCTTCTTCAGGTGCA
Pi2/z-t-F CTCTTCGTTGTATAGGACAGTTTCA 502 59 30
Piz-t-R2 TCCTCAAGAATTCCATCCAACAC
Piz-t-F4 CAGAGAACGCCACCGAATT 169 59 20
Piz-t-R4 CACATTGCGAGCTGACTGATTA
Pi9-type9 Pi9-type9F2 AGAATGGGAGAAATTCTATGAAAAG 230 59 25
Pi9-type9R2 TAGTCATCATCCCAACCTGC
Pi9-type9F ACCTGAAGAAGATCTACTTATTGAA 305 59 25
Pi9-type9R AATCTCCTTGAGCTTTGGAT
Pi9-type9mF ACCTGAAGAAGATCTACTTATTGTA 305 59 25
Pi9-type9mR AATCTCCTTGAGCTTTGGTT
PigmR Pigm-F2 CACCTGAAGAAGTTCTACTTACG 111 59 20
Pigm-newmR1 ATAAGAATTATGATAAAGAGAAAGGTA
Pigm-newmF1 TCCTCCTCCCCTACTTAGT 180 59 20
Pigm-newmR1 ATAAGAATTATGATAAAGAGAAAGGTA
Pigm-mF4 GGAGAAGCTAGTATTCAAAAGG 297 59 20
Pigm-mR5 TGATACCTTCGGTCACTGAC
Pigm-mF6 GTATATGGATAGCAGAAGGGTAG 98 59 20
Pigm-mR7 CATACTTCGGTTGATTAGCTCAAA
Pid4 Pid4-mF GAATCTGTTTTTCCTGACTCTACA 797 59 50
Pid4-mR GGATTGTAAAAGAAACTTAATGAGT

Fig. 1

The position and application of molecular markers of Pi2 and Piz-t The nucleotide polymorphism analysis of primer pairs, Pi2/z-t-F and Piz-t-R2, Pi2/z-t-F and Piz-t-R3, Pi2/z-t-F4 and Piz-t-R4, for the molecular markers of Piz-t. The arrows indicate the site and direction of primers. The shaded lowercase letters indicate the polymorphic nucleotide sites in homologous genes"

Table 3

The rice materials containing Pi2"

编号
No.
材料
Material
编号
No.
材料
Material
编号
No.
材料
Material
8 IRBLz5-CA 46 蜀恢586 Shuhui 586 82 雅恢2918 Yahui 2918
25 E33 50 R900 83 雅恢5049 Yahui 5049
29 德恢6099 Dehui 6099 70 五山丝苗Wushansimiao 84 雅恢5217 Yahui 5217
31 航恢1179 Hanghui 1179 72 雅禾Yahe 85 雨恢38 Yuhui 38
33 华占Huazhan 73 雅恢2115 Yahui 2115 87 粤农丝苗Yuenongsimiao
40 蜀恢308 Shuhui 308 74 雅恢2116 Yahui 2116 118 雅1B Ya 1B
43 蜀恢505 Shuhui 505 77 雅恢2119 Yahui 2119 133 绵恢815 Mianhui 815
44 蜀恢548 Shuhui 548 79 雅恢2275 Yahui 2275

Table 4

The rice materials containing Piz-t"

编号
No.
材料
Material
引物Primer
Pi2/z-t-F Piz-t-R2 Pi2/z-t-F Piz-t-R3 Piz-t-F4 Piz-t-R4
9 IRBLzt-T
42 蜀恢498 Shuhui 498
52 成恢19 Chenghui 19
56 泸恢8258 Luhui 8258
61 明恢86 Minghui 86
63 蜀恢137 Shuhui 137
64 蜀恢208 Shuhui 208
78 雅恢2199 Yahui 2199
97 川谷B Chuangu B
100 川农4B Chuannong 4B
109 内香6B Neixiang 6B
110 千乡654B Qianxiang 654B
113 蓉7B Rong 7B
114 双1B Shuang 1B
阳性对照Positive control 中花11 ZH11

Fig. 2

The nucleotide polymorphism analysis of primer pairs for the molecular markers of Pi9 and Pi9-type5 The nucleotide polymorphism analysis of primer pairs, Pi9-type5F1 and Pi9-type5R1, Pi9-type5F2 and Pi9-type5R2, Pi9-type5F3 and Pi9-type5mR, for the molecular markers of Pi9-type5. The arrows indicate the site and direction of primers. * indicates artificial mutated base in primer for improving specificity of PCR amplification. The shaded lowercase letters indicate the polymorphic nucleotide sites in homologous genes. The shaded uppercase letters indicate the primer mismatched site generated by artificial mutated base in homologous genes"

Table 5

The rice materials containing Pi9-type5"

编号
No.
材料
Material
引物Primer
Pi9-type5-F1 Pi9-type5-R1 Pi9-type5-F2 Pi9-type5-R2 Pi9-type5-F3 Pi9-type5-mR
8 IRBLz5-CA
9 IRBLzt-T
25 E33
28 成恢993 Chenghui 993
29 德恢6099 Dehui 6099
31 航恢1179 Hanghui 1179
33 华占Huazhan
40 蜀恢308 Shuhui 308
42 蜀恢498 Shuhui 498
43 蜀恢505 Shuhui 505
44 蜀恢548 Shuhui 548
46 蜀恢586 Shuhui 586
50 R900
52 成恢19 Chenghui 19
56 泸恢8258 Luhui 8258
61 明恢86 Minghui 86
63 蜀恢137 Shuhui 137
64 蜀恢208 Shuhui 208
70 五山丝苗Wushansimiao
72 雅禾Yahe
73 雅恢2115 Yahui 2115
74 雅恢2116 Yahui 2116
77 雅恢2119 Yahui 2119
78 雅恢2199 Yahui 2199
79 雅恢2275 Yahui 2275
82 雅恢2918 Yahui 2918
83 雅恢5049 Yahui 5049
84 雅恢5217 Yahui 5217
85 雨恢38 Yuhui 38
87 粤农丝苗Yuenongsimiao
118 雅1B Ya 1B
128 绵恢365 Mianhui 365
133 绵恢815 Mianhui 815

Fig. 3

The nucleotide polymorphism analysis of primer pairs for the molecular markers of PigmR The arrows indicate the site and direction of primers. * indicates artificial mutated base in primer for improving specificity of amplification. The shaded lowercase letters indicate the polymorphic nucleotide sites in homologous genes. The shaded uppercase letters indicate the primer mismatched sites generated by artificial mutated base in homologous genes"

Table 6

The rice varieties containing PigmR"

编号
No.
材料
Material
引物Primer
Pigm-F2+
Pigm-newmR1
Pigm-newmF1+
Pigm-newmR1
Pigm-mF4+
Pigm-mR5
Pigm-mF6+
Pigm-mR7
85 雨恢38 Yuhui 38
97 川谷B Chuangu B
100 川农4B Chuannong 4B
109 内香6B Neixiang 6B
112 蓉18B Rong 18 B
113 蓉7B Rong 7B
114 双1B Shuang 1B
134 地谷B Digu B
阳性对照Positive control 谷梅4号Gumei 4

Fig. 4

The position and application of molecular marker of Pid4"

Table 7

The rice varieties containing Pid4"

编号
No.
材料
Material
85 雨恢38 Yuhui 38
97 川谷B Chuangu B
100 川农4B Chuannong 4B
109 内香6B Neixiang 6B
110 千乡654B Qianxiang 654B
113 蓉7B Rong 7B
114 双1B Shuang 1B
阳性对照Positive control 地谷B Digu B

Table 8

Blast resistance gene composition at Pi9 locus in the rice parent varieties"

编号
No.
材料
Material
抗性基因Resistance gene
Pi2 Piz-t Pi9 Pi9-type5 PigmR Pid4
18 IRBL9-W
8 IRBLz5-CA
25 E33
29 德恢6099 Dehui 6099
31 航恢1179 Hanghui 1179
33 华占Huazhan
40 蜀恢308 Shuhui 308
43 蜀恢505 Shuhui 505
44 蜀恢548 Shuhui 548
46 蜀恢586 Shuhui 586
50 R900
70 五山丝苗Wushansimiao
72 雅禾Yahe
73 雅恢2115 Yahui 2115
74 雅恢2116 Yahui 2116
77 雅恢2119 Yahui 2119
79 雅恢2275 Yahui 2275
82 雅恢2918 Yahui 2918
83 雅恢5049 Yahui 5049
84 雅恢5217 Yahui 5217
85 雨恢38 Yuhui 38
87 粤农丝苗Yuenongsimiao
118 雅1B Ya 1B
133 绵恢815 Mianhui 815
9 IRBLzt-T
42 蜀恢498 Shuhui 498
52 成恢19 Chenghui 19
56 泸恢8258 Luhui 8258
61 明恢86 Minghui 86
63 蜀恢137 Shuhui 137
64 蜀恢208 Shuhui 208
78 雅恢2199 Yahui 2199
97 川谷B Chuangu B
100 川农4B Chuannong 4B
109 内香6B Neixiang 6B
113 蓉7B Rong 7B
114 双1B Shuang 1B
110 千乡654B Qianxiang 654B
28 成恢993 Chenghui 993
49 HR2168
128 绵恢365 Mianhui 365
134 地谷B Digu B
112 蓉18B Rong 18B
[1]
DENG Y, ZHAI K, XIE Z, YANG D, ZHU X, LIU J, WANG X, QIN P, YANG Y, ZHANG G, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355(6328): 962-965.

doi: 10.1126/science.aai8898 pmid: 28154240
[2]
SU J, WANG W, HAN J, CHEN S, WANG C, ZENG L, FENG A, YANG J, ZHOU B, ZHU X. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9locus. Theoretical and Applied Genetics, 2015, 128(11): 2213-2225.

doi: 10.1007/s00122-015-2579-9
[3]
XIE Z, YAN B, SHOU J, TANG J, WANG X, ZHAI K, LIU J, LI Q, LUO M, DENG Y, HE Z. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2019, 374(1767): 20180308.
[4]
黄衍焱, 李燕, 王贺, 王文明. 水稻小种特异性抗稻瘟病基因的等位性变异研究进展. 植物病理学报, 2023, doi: 10.13926/j.cnki.apps.000866.
HUANG Y Y, LI Y, WANG H, WANG W M. Allelic variation in the race-specific blast resistance genes in rice. Acta Phytopathologica Sinica, 2023, doi: 10.13926/j.cnki.apps.000866. (in Chinese)
[5]
QU S, LIU G, ZHOU B, BELLIZZI M, ZENG L, DAI L, HAN B, WANG G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172(3): 1901-1914.

doi: 10.1534/genetics.105.044891
[6]
ZHOU B, DOLAN M, SAKAI H, WANG G L. The genomic dynamics and evolutionary mechanism of the Pi2/9locus in rice. Molecular Plant-Microbe Interactions, 2007, 20(1): 63-71.

doi: 10.1094/MPMI-20-0063
[7]
ZHOU Y, LEI F, WANG Q, HE W, YUAN B, YUAN W. Identification of novel alleles of the rice blast-resistance gene Pi9 through sequence-based allele mining. Rice, 2020, 13(1): 80.

doi: 10.1186/s12284-020-00442-z
[8]
ZHOU B, QU S, LIU G, DOLAN M, SAKAI H, LU G, BELLIZZI M, WANG G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2006, 19(11): 1216-1228.

doi: 10.1094/MPMI-19-1216
[9]
CHEN Z, ZHAO W, ZHU X, ZOU C, YIN J, CHERN M, ZHOU X, YING H, JIANG X, LI Y, et al. Identification and characterization of rice blast resistance gene Pid4by a combination of transcriptomic profiling and genome analysis. Journal of Genetics and Genomics, 2018, 45(12): 663-672.

doi: 10.1016/j.jgg.2018.10.007
[10]
马军韬, 李文华, 张国民, 王永力, 张丽艳, 孟文凯. 水直播条件下黑龙江省不同稻区稻瘟病菌致病性分析. 植物保护学报, 2020, 47(5): 987-996.
MA J T, LI W H, ZHANG G M, WANG Y L, ZHANG L Y, MENG W K. Pathogenicity of Magnaporthe oryzae from different rice growing regions of Heilongjiang Province under water direct seeding. Journal of Plant Protection, 2020, 47(5): 987-996. (in Chinese)
[11]
田珂, 杨武, 李泌, 徐鑫, 刘新琼, 刘学群, 王春台. 鄂西南地区2012-2014年稻瘟病菌致病性变化分析. 华中农业大学学报, 2017, 36(5): 10-14.
TIAN K, YANG W, LI M, XU X, LIU X Q, LIU X Q, WANG C T. Pathogenicity changes of Magnaporthe oryzae in south-western Hubei Province during 2012-2014. Journal of Huazhong Agricultural University, 2017, 36(5): 10-14. (in Chinese)
[12]
马继琼, 孙一丁, 杨奕, 李进斌, 许明辉. 适用于云南粳稻种植区的稻瘟病抗性基因分析. 分子植物育种, 2021, 19(5): 1556-1568.
MA J Q, SUN Y D, YANG Y, LI J B, XU M H. Analysis of rice blast resistance genes suitable for japonica rice planting areas in Yunnan. Molecular Plant Breeding, 2021, 19(5): 1556-1568. (in Chinese)
[13]
张姝, 钟雪莲, 乔贵艳, 沈丽, 周天云, 彭云良. 川渝黔稻瘟病菌毒性的区域分化研究. 西南农业学报, 2017, 30(2): 359-365.
ZHANG S, ZHONG X L, QIAO G Y, SHEN L, ZHOU T Y, PENG Y L. Difference in virulence of Magnaporthe oryzae from Sichuan, Chongqing and Guizhou. Southwest China Journal of Agricultural Sciences, 2017, 30(2): 359-365. (in Chinese)
[14]
SHI J, LI D, LI Y, LI X, GUO X, LUO Y, LU Y, ZHANG Q, XU Y, FAN J, HUANG F, WANG W. Identification of rice blast resistance genes in the elite hybrid rice restorer line Yahui 2115. Genome, 2015, 58(3): 91-97.

doi: 10.1139/gen-2015-0005
[15]
HASSAN B, PENG Y T, LI S, YIN X X, CHEN C, GULZAR F, ZHOU S X, PU M, JI Y P, WANG Y P, ZHAO W, HUANG F, PENG Y L, ZHAO Z X, WANG W M. Identification of the blast resistance genes in three elite restorer lines of hybrid rice. Phytopathology Research, 2022, 4(1): 15.

doi: 10.1186/s42483-022-00120-6
[16]
TSUNEMATSU H, YANORIA M J T, EBRON L A, HAYASHI N, ANDO I, KATO H, IMBE T, KHUSH G S. Development of monogenic lines of rice for blast resistance. Breeding Science, 2000, 50(3): 229-234.

doi: 10.1270/jsbbs.50.229
[17]
陈嘉林, 余敏祥, 何旎清, 黄凤凰, 杨德卫. 稻瘟病抗病基因分子标记的开发与育种利用. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20220112.1946.012.html.
CHEN J L, YU M X, HE N Q, HUANG F H, YANG D W. Development and breeding application of molecular markers for rice blast resistance genes. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20220112.1946.012.html. in Chinese)
[18]
HAYASHI K, YOSHIDA H, ASHIKAWA I. Development of PCR- based allele-specific and InDel marker sets for nine rice blast resistance genes. Theoretical and Applied Genetics, 2006, 113(2): 251-260.

doi: 10.1007/s00122-006-0290-6
[19]
华丽霞, 汪文娟, 陈深, 汪聪颖, 曾烈先, 杨健源, 朱小源, 苏菁. 抗稻瘟病Pi2/9/z-t基因特异性分子标记的开发. 中国水稻科学, 2015, 29(3): 305-310.
HUA L X, WANG W J, CHEN S, WANG C Y, ZENG L X, YANG J Y, ZHU X Y, SU J. Development of specific DNA markers for detecting the rice blast resistance gene alleles Pi2/9/z-t. Chinese Journal of Rice Science, 2015, 29(3): 305-310. (in Chinese)
[20]
杨立明, 纪剑辉, 周颖君, 方继朝, 刘永锋, 罗玉明. 水稻稻瘟病抗性基因Pi2-InDel标记的开发与评价. 分子植物育种, 2017, 15(2): 594-598.
YANG L M, JI J H, ZHOU Y J, FANG J C, LIU Y F, LUO Y M. The development of the rice blast resistance genes Pi2-InDel markers and its evaluation in application. Molecular Plant Breeding, 2017, 15(2): 594-598. (in Chinese)
[21]
王芳权, 陈智慧, 许扬, 王军, 李文奇, 范方军, 陈丽琴, 陶亚军, 仲维功, 杨杰. 水稻广谱抗稻瘟病基因PigmR功能标记的开发及应用. 中国农业科学, 2019, 52(6): 955-967. doi: 10.3864/j.issn.0571-1752.2019.06.001.
WANG F Q, CHEN Z H, XU Y, WANG J, LI W Q, FAN F J, CHEN L Q, TAO Y J, ZHONG W G, YANG J. Development and application of the functional marker for the broad-spectrum blast resistance gene PigmR in rice. Scientia Agricultura Sinica, 2019, 52(6): 955-967. doi: 10.3864/j.issn.0571-1752.2019.06.001. (in Chinese)
[22]
谢旺有, 陈锦文, 谢少和, 陈惠清, 王天生, 余文昌, 侯凯强. 抗稻瘟病基因Pi9导入籼稻恢复系泉恢039的应用研究. 福建农业学报, 2022, 37(10): 1266-1274.
XIE W Y, CHEN J W, XIE S H, CHEN H Q, WANG T S, YU W C, HOU K Q. Introduction of blast resistant Pi9 in indica rice restorer line Quanhui 039. Fujian Journal of Agricultural Sciences, 2022, 37(10): 1266-1274. (in Chinese)
[23]
柳絮, 张华, 宣宁, 李平波, 张梦琦, 姚方印. 水稻抗虫(Cry1C)和抗稻瘟病(Pi1,Pi2)材料的创制. 山东农业科学, 2021, 53(2): 89-93.
LIU X, ZHANG H, XUAN N, LI P B, ZHANG M Q, YAO F Y. Breeding of new rice varieties with rice blast and insect resistances. Shandong Agricultural Sciences, 2021, 53(2): 89-93. (in Chinese)
[24]
王哉, 蒋英健, 谢留杰, 王敏天, 黄丛林, 陈嘉乐, 阮文晓. 分子标记辅助选育含Pigm抗稻瘟病基因的水稻新品系. 浙江农业科学, 2023, 64(8): 1945-1948.
WANG Z, JIANG Y J, XIE L J, WANG M T, HUANG C L, CHEN J L, RUAN W X. The new rice lines containing rice blast resistance gene Pigm were selected by molecular marker assisted breeding. Journal of Zhejiang Agricultural Sciences, 2023, 64(8): 1945-1948. (in Chinese)
[25]
于连鹏. 黑龙江省主栽水稻品种PitaPiaPiz-t抗瘟基因检测和抗性评价[D]. 大庆: 黑龙江八一农垦大学, 2017.
YU L P. Pita, Pia and Piz-t genes detection and blast resistance evaluation of main rice varieties in Heilongjiang Province[D]. Daqing: Heilongjiang Bayi Agricultural University, 2017. (in Chinese)
[26]
张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析. 中国农业科学, 2022, 55(4): 625-645. doi: 10.3864/j.issn.0578-1752.2022.04.001.
ZHANG Y L, GAO Q, ZHAO Y H, LIU R, FU Z J, LI X, SUN Y J, JIN X H. Evaluation of rice blast resistance and genetic structure analysis of rice germplasm in Heilongjiang Province. Scientia Agricultura Sinica, 2022, 55(4): 625-645. doi: 10.3864/j.issn.0578-1752.2022.04.001. (in Chinese)
[27]
陈晴晴, 杨雪, 张爱芳. 长江中下游区试水稻品种稻瘟病抗性评价及抗性基因检测. 南方农业学报, 2022, 53(1): 21-28.
CHEN Q Q, YANG X, ZHANG A F. Evaluation of rice blast resistance and detection of resistance genes of rice varieties in regional trials in the middle and lower reaches of Yangtze River. Journal of Southern Agriculture, 2022, 53(1): 21-28. (in Chinese)
[28]
董丽英, 刘树芳, 田维逵, 周伍民, 张先闻, 李迅东, 杨勤忠. 云南省稻瘟病菌群体的致病性分析及交配型分布. 植物保护学报, 2023, 50(2): 316-324.
DONG L Y, LIU S F, TIAN W K, ZHOU W M, ZHANG X W, LI X D, YANG Q Z. Pathogenicity and mating type of rice blast fungus Magnaporthe oryzae isolates in Yunnan Province. Journal of Plant Protection, 2023, 50(2): 316-324. (in Chinese)
[29]
桑世飞, 王亚男, 王君怡, 曹梦雨, 孙晓涵, 姬生栋. 9个抗稻瘟病基因在291份水稻种质资源中的分布及组合特征. 河南农业科学, 2022, 51(12): 19-27.
SANG S F, WANG Y N, WANG J Y, CAO M Y, SUN X H, JI S D. Distribution and combination features of nine blast resistant genes in 291 rice germplasm resources. Journal of Henan Agricultural Sciences, 2022, 51(12): 19-27. (in Chinese)

doi: 10.15933/j.cnki.1004-3268.2022.12.003
[30]
何弯弯, 王健康, 丁成伟, 郭荣良, 吴玉玲, 王友霜, 赵轶鹏, 胡婷婷. PibPi9Pi2Pi54Pish在粳稻品种(系)中的分布及对穗颈瘟的抗性. 西南农业学报, 2022, 35(3): 497-502.
HE W W, WANG J K, DING C W, GUO R L, WU Y L, WANG Y S, ZHAO Y P, HU T T. Distribution of Pib, Pi9, Pi2, Pi54 and Pish genes in japonica rice varieties (lines) and resistance to panicle blast. Southwest China Journal of Agricultural Sciences, 2022, 35(3): 497-502. (in Chinese)
[31]
沈浙南, 时焕斌, 邱结华, 王聪聪, 孟帅, 寇艳君. 江苏省212份水稻材料中抗稻瘟病基因Pi2/Pi9/Piz-t/Pigm的情况分析. 分子植物育种, 2023, 21(13): 4344-4351.
SHEN Z N, SHI H B, QIU J H, WANG C C, MENG S, KOU Y J. Analysis of rice blast resistance gene Pi2/Pi9/Piz-t/Pigm in 212 rice materials in Jiangsu Province. Molecular Plant Breeding, 2023, 21(13): 4344-4351. (in Chinese)
[32]
刘军化, 黄成志, 蒋静玥, 吕直文, 刘忠贤, 蔡钟亚, 雷树凡. 87份水稻材料中抗稻瘟病基因的分子检测. 西南农业学报, 2022, 35(9): 2030-2037.
LIU J H, HUANG C Z, JIANG J Y, Z W, LIU Z X, CAI Z Y, LEI S F. Molecular detection of blast resistance genes in 87 rice materials. Southwest China Journal of Agricultural Sciences, 2022, 35(9): 2030-2037. (in Chinese)
[1] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[2] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[3] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[4] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[5] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[6] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[7] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[8] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[9] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[10] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[11] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[12] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[13] XU HAI, LI XIUKUN, LU JIAHAO, JIANG KAI, MA YUE, XU ZHENGJIN, XU QUAN. The Effect of indica/Xian Pedigree Introgression in japonica/Geng Rice Breeding in China [J]. Scientia Agricultura Sinica, 2023, 56(22): 4359-4370.
[14] LI li, SUN ling, ZHANG JinHua, ZOU XiaoWei, SUN Hui, REN JinPing, JIANG ZhaoYuan, LIU XiaoMei. Evaluation of Resistance and Analysis of Utilization Value of the Major Japonica Rice Varieties in Jilin Province Based on the Physiological Race Variation of Magnaporthe oryzae [J]. Scientia Agricultura Sinica, 2023, 56(22): 4441-4452.
[15] ZHANG ZeYuan, LI Yue, ZHAO WenSha, GU JingJing, ZHANG AoYan, ZHANG HaiLong, SONG PengBo, WU JianHui, ZHANG ChuanLiang, SONG QuanHao, JIAN JunTao, SUN DaoJie, WANG XingRong. QTL Mapping and Molecular Marker Development of Traits Related to Grain Weight in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(21): 4137-4149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!