Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (10): 1763-1771.doi: 10.3864/j.issn.0578-1752.2017.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Production and Identification of F1 Interspecific Hybrid Between Sesamum indicum and Wild Relative S. Indicatum

YANG MinMin, LIU HongYan, ZHOU Ting, QU HongHao, YANG YuanXiao, WEI Xin, ZUO Yang, ZHAO YingZhong   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062
  • Received:2016-12-16 Online:2017-05-16 Published:2017-05-16

Abstract:

 Objective The progenies of Sesamum indicum and wild species were obtained by interspecific hybridization in order to improve charcoal rot disease (Macrophomina phaseolina) resistance of sesame cultivars. Method No.3 wild sesame (S. indicatum) (P3), Zhongzhi 14 (P1) and autotetraploid of Zhongzhi 14 (P2) were used as reciprocal cross parents, the F1 plants of interspecific hybrids were obtained using the immature embryo culture technique. First, the authenticity of F1 progenies were confirmed by using phenotypic, cytological and SSR marker methods in order to screen out the true hybrids . Then the three parents of the interspecific hybrids (No.3 wild sesame, Zhongzhi 14 and autotetraploid of Zhongzhi 14 )and hybrids of F1 lines resistance to Macrophomina phaseolina was identified by artificial inoculations. ResultThe seedling ratios of immature embryos between reciprocal combinations existed significant difference. The 773 immature embryos were inoculated of which 155 embryos developed into seedlings and the average seedling rate was 20.05%. The seedling ratios of combinations (P3×P1 32.75%, P3×P2 21.11%) were higher than those of reciprocal combinations (P1×P3 8.84%, P2×P3 13.41%). This indicates that the genotype of the parent affects the seedling rate of distant hybridization to a large extent. The number of chromosomes in the F1 plants of (P3 × P1, P1 × P3) was 42 and in the F1 plants of (P3 × P2, P2 × P3) was 55. The majority of the pollen grains of the F1 hybrids were regular but no inclusions, all of which were highly sterile. HS142 primer with a better polymorphism could be clearly amplified two specific types in Zhongzhi14 (about 460 bp and 500 bp) and the one in No.3 wild sesame(about 380 bp) .Then, it could be used to identify twelve hybrid progenies and their parents. There are ten of F1 progenies with three male and female-specific markers of the parents, the other two plants only appeared in the female parent or male parent type which was the fake hybrids. The infected lesion length of progenies from interspecific hybridization P3×P1, P3×P2, using No.3 wild sesame with high charcoal rot resistance as female parent, was 9.35 cm and 6.65 cm, respectively, while 9.90 cm and 8.90 cm from reciprocal combinations. The resistance to Macrophomina phaseolina of progenies from all combinations was higher than their cultivated parents (P1 14.30 cm and P2 11.46 cm), but weaker than wild relative (P3 4.80 cm). Conclusion New germplasms with high charcoal rot resistance can be created through interspecific hybridization combined with immature embryo culture, which provides important materials for genetic improvement of sesame with charcoal rot resistance.

Key words: sesame, wild species, interspecific hybridization, molecular marker, charcoal rot resistance

[1]    孙建, 乐美旺, 饶月亮, 颜廷献, 颜小文, 周红英. 江西芝麻产业现状、限制因素、发展潜力与对策分析. 江西农业学报, 2010, 22(9): 10-15.
Sun J, Le M W, Rao Y L, Yan T X, Yan X W, Zhou H Y. Current situation, limiting factors, developmental potential and counter measures of sesame industry in Jiangxi. Acta Agriculturae Jiangxi, 2010, 22(9): 10-15. (in Chinese)
[2]    Suriachandraselvan M, Seetharaman K. Survial of Macrophomina phaseolina, the causal agent of charcoal rot of Sunflower in soil, seed and plant debris. Journal of Mycology and Plant Pathology, 2000, 30(3): 402-405.
[3]    Songa W, Hillocks R J. Survival of Macrophomina phaseolina in bean seed and crop residue. International Journal of Pest Management, 1998, 44(2): 109-114.
[4]    李丽丽, 王圣玉, 方小平, 黄早花, 汪山涛, 李民良, 崔苗青. 我国芝麻种质资源抗茎点枯病鉴定. 中国油料, 1991(1): 3-6.
Li L L, Wang S Y, Fang X P, Huang Z H, Wang S T, Li M L, Cui M Q. Identification of sesame germplasm resources resistance to charcoal rot in China. Oil Crops in China, 1991(1): 3-6. (in Chinese)
[5]    岳文娣, 魏利斌, 张体德, 李春, 苗红梅, 张海洋. 芝麻种质资源SSR标记遗传多样性与群体结构分析. 作物学报, 2012, 38(12): 2286-2296.
Yue W D, Wei L B, Zhang T D, Li C, Miao H M, Zhang H Y. Genetic diversity and population structure of germplasm resources in sesame (Sesamum indicum L.) by SSR markers. Acta Agronomica Sinica, 2012, 38(12): 2286-2296. (in Chinese)
[6]    Ashri A. Sesame (Sesamum indicum L.)//Singh R J. Genetics Resources, Chromosome Engineering, and Crop Improvement. Boca Raton: CRC Press, USA, 2007, 4: 231-290.
[7]    冯祥运, 张秀荣, 刘越英. 芝麻优良种质资源的深化鉴定与综合评价. 中国油料, 1996, 18(3): 63-66.
Feng X Y, Zhang X R, Liu Y Y. Deepen identification and comprehensive evaluation of elite sesame germplasm resources. Oil Crops in China, 1996, 18(3): 63-66. (in Chinese)
[8]    崔苗青, 李义芝, 高新国, 韩玉枝. 芝麻种质资源抗茎点枯病鉴定与评价. 作物品种资源, 1999(2): 36-37.
Cui M Q, Li Y Z, Gao X G, Han Y Z. Identification and evaluation of sesame germplasm resources resistance to charcoal rot. Crop Germplasm Resources, 1999(2): 36-37. (in Chinese)
[9]    Kulkarni V V. Studies on interspecific hybridization with particular reference to development of male sterility in sesame (Sesamum indicum L.)[D]. Dharwad: University of Agricultural Sciences, India, 2006.
[10]   Nimmakayala P, Perumal R, Mulpuri S, Reddy U K. Sesamum // Kole C. Wild Corp Relatives: Genomic and Breeding Resources Oilseeds. Berlin Heidelberg: Springer-Verlag Press, 2011: 261-273.
[11]   刘红艳, 赵应忠. 芝麻野生种与栽培种种间杂交亲和性研究. 中国农学通报, 2011, 27(9): 156-159.
Liu H Y, Zhao Y Z. Studies on the hybridization compatibility between cultivated sesame and its wild species. Chinese Agricultural Science Bulletin, 2011, 27(9): 156-159. (in Chinese)
[12]   石淑稳. 芝麻野生种与栽培种的交配能力. 中国油料, 1993(2): 18-21.
Shi S W. The crossability between wild and cultivated species in sesame. Oil Crops in China, 1993(2): 18-21. (in Chinese)
[13]   Rajeswari S, Thiruvengadam V, Ramaswamy N M. Production of Interspecific hybrids between Sesamum alatum Thonn and Sesamum indicum L. through ovule culture and screening for phyllody disease resistance. South African Journal of Botany, 2010, 76(2): 252-258.
[14]   Prabakaran A J. Cytoplasmic male sterility in sesame from the species cross // Martínez J F. Sesamum malabaricum × S. indicum: I. Substitution Backcrosses. Sesame and Safflower Newsletter. Córdoba: IAS Press, Spain, 1998: 1-6.
[15]   张海洋, 苗红梅, 张体德, 魏利斌, 李春, 王慧丽, 段迎辉, 琚铭. 芝麻栽培种与野生种(Sesamum schinzianum Asch、Sesamum radiatum Schum & Thonn)种间杂交后代的生物学特性. 中国农业科学, 2013, 46(19): 3965-3977.
Zhang H Y, Miao H M, Zhang T D, WEI L B, LI C, WANG H L, DUAN Y H, JU M. Biological characters of interspecific hybrid progenies between Sesamum indicum L. and wild relatives (Sesamum schinzianum Asch, Sesamum radiatum Schum & Thonn). Scientia Agricultura Sinica, 2013, 46(19): 3965-3977. (in Chinese)
[16]   Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter, 1999, 11(2): 122-127.
[17]   Wu K, Yang M, Liu H, Tao Y, Mei J, Zhao Y. Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and simple sequence repeat (SSR) markers. BMC Genetics, 2014, 15: 35.

[18]   王建方. 芝麻种质资源茎点枯病抗性及药剂防治研究[D]. 郑州: 郑州大学, 2013.
Wang J F. identification of resistance to charcoal rot of the sesame germplasm and chemical control of the disease [D]. Zhengzhou : Zhengzhou University, 2013. (in Chinese)
[19]   江诗洋, 黎冬华, 张艳欣, 王林海, 高媛, 张秀荣. 芝麻种质对不同茎点枯病致病菌株的抗性鉴定. 华北农学报, 2015, 30: 251-256.
Jiang S Y, LI D H, ZHANG Y X, WANG L H, GAO Y, ZHANG X R. Resistance identification for sesame germplasm to different pathogen strains of Macrophomina phaseolina. 2015, 30: 251-256. (in Chinese)
[20]   Joshi A B. Sesamum. Hyderabad: Examiner Press, 1961.
[21]   Kulkarni V, Sridevi O. In vivo studies on pollen germination, tube growth and micropylar penetration in interspecific crosses of sesame (Sesamum indicum L.). International Journal of Plant Sciences, 2009, 4(1): 250-254.
[22]   瞿桢, 吴新镛, 夏伏建. 芝麻远缘杂种胚胎的营救和植株再生. 中国油料, 1994, 16(1): 33-35.
Qu Z, Wu X Y, Xia F J. Embryo rescue and plant regeneration of interspecific hybridization between S. indicum and a wild species S. schinzianum. Chinese Oil Crops, 1994, 16(1): 33-35. (in Chinese)
[23]   Dasharath K, Sridevi O, Salimath P M, Ramesh T. Production of interspecific hybrids in sesame through embryo rescue. Indian Journal of Crop Science, 2007, 2: 193-196.
[24]   Rajeswari S, Ramaswamy N M. Pollen tube growth and embryology of ovule abortion in Sesamum alatum and S. indicum crosses. Journal of Genetics and Breeding, 2004, 58: 113-118.
[25]   方嘉禾, 常汝镇. 中国作物及其野生近缘植物(经济作物卷). 北京: 中国农业出版社, 2010: 186-187.
Fang J H, Chang R Z. Crops and Genetic Resources of Wild Relatives in China (Economic crop roll). Beijing: China Agriculture Press, 2010: 186-187. (in Chinese)
[26]   Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution, 2003, 29(3): 365-379.
[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[4] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[5] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[6] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[7] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[8] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[9] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[10] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[11] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[12] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[13] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[14] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[15] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!