Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (10): 1844-1858.doi: 10.3864/j.issn.0578-1752.2016.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Characterization of the AQP Gene Family in Sesame

WU Xiang-yang1, CHENG Chao-ze2, LÜ Gao-qiang1, WANG Xin-yu1   

  1. 1College of Life Sciences, Nanjing Agricultural University, Nanjing 210095
    2National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095
  • Received:2015-12-14 Online:2016-05-16 Published:2016-05-16

Abstract: 【Objective】The present study aimed to identify the AQP gene family in the sesame genome and analyze its phylogenetic relationships in evolution, its linkage mapping, gene structure, transmembrane domain, conservation in amino acid residues and gene expression in response to Ralstonia solanacearum challenge. 【Method】AQP gene sequences were isolated in sesame genome by standard bioinformatic techniques combined with gene annotation information and verified by InterPro. AQP gene sequences from sesame, Arabidopsis and rice were aligned and compared using ClustalW2, among which, XIP members of AQP were compared between sesame and potato. Phylogenetic trees were constructed with MEGA6.0. Linkage mapping and gene structure assay were performed with MapInspect and Gene Structure Display Server 2.0, respectively. ProtParam, WoLF PSORT and TMHMM Server v2.0 were used to analyze the molecular mass and isoelectric point, the subcellular localization and the transmembrane domain respectively; multiple protein sequence alignments of AQP in sesame, Arabidopsis and rice were used to predict the NPA motif, ar/R selective filters and Froger’s Position (P1-P5). AQP gene expressions were analyzed based on the data of transcriptome of sesame upon Ralstonia solanacearum inoculation and further confirmed by qPCR. 【Result】A total of 36 AQP genes were identified in the sesame genome. Sequence comparison and phylogenetic tree analysis suggested that these AQP of sesame can be categorized into 5 subgroups: PIP (13 members), TIP (12 members), NIP (8 members), SIP (2 members) and XIP (only 1 member). 34 AQP genes were mapped onto 12 linkage groups. The gene structure, protein sequence, subcellular location and conservation in amino acids in the same subgroup were similar. Under Ralstonia solanacearum challenge, the expression of some members in PIP and TIP were up or down regulated, but the expression of members in NIP, SIP and XIP had no significant changes. SiPIP1;2, SiPIP1;3, SiPIP2;3, SiPIP2;4 were up-regulated; among them, SiPIP1;3 and SiPIP2;3 retain constant up-regulation, but SiPIP1;2 and SiPIP2;4 exhibited up-regulation at early stage of infection and down-regulation at later stage. SiPIP1;4, SiPIP2;1, SiPIP2;6, SiTIP1;1, SiTIP1;3, SiTIP2;1 and SiTIP2;2 were drastically down-regulated. The expression of these genes were confirmed by qPCR, which showed similar results to that of transcriptome sequencing. 【Conclusion】 Through whole genome analysis, 36 members of AQP genes were found in the sesame genome. These were grouped into five subgroups, and mapped onto 12 linkage groups. Most AQP genes contain 1-4 introns (though SiNIP1;2 has 7 introns). The substrates transported by each AQP group were predicted based on the types of ar/R selective filters and amino acid residues in Froger’s position. Under Ralstonia solanacearum challenge, expressions of some members in PIP and TIP were significantly up or down regulated.

Key words: sesame, AQP gene family, genome-wide identification, phylogenetic analysis, induced expression

[1]    Hove R M, Bhave M. Plant aquaporins with non-aqua functions: Deciphering the signature sequences. Plant Molecular Biology, 2011, 75(4/5): 413-430.
[2]    Maurel C, Verdoucq L, Luu D T, Santoni V. Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology, 2008, 59: 595-624.
[3]    Ge F W, Tao P, Zhang Y, Wang J B. Characterization of AQP gene expressions in Brassica napus during seed germination and in response to abiotic stresses. Biologia Plantarum, 2014, 58(2): 274-282.
[4]    Siefritz F, Otto B, Bienert G P, van der Krol A, Kaldenhoff R. The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. The Plant Journal, 2004, 37(2): 147-155.
[5]    Chaumont F, Barrieu F, Herman E M, Chrispeels M J. Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiology, 1998, 117(4): 1143-1152.
[6]   Vera-Estrella R, Barkla B J, Amezcua-Romero J C, Pantoja O. Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum. Plant, Cell and Environment, 2012, 35: 485-501.
[7]    Bots M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C. Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiology, 2005, 137(3): 1049-1056.
[8]    Nardini A, Salleo S, Andri S. Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus L. cv Margot). Plant, Cell and Environment, 2005, 28(6): 750-759.
[9]    Lovisolo C, Schubert A. Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: Evidence from a whole-plant approach. New Phytologist, 2006, 172(3): 469-478.
[10]   Yin Y X, Wang S B, Zhang H X, Xiao H J, Jin J H, Ji J J, Jing H, Chen R G, Arisha M H, Gong Z H. Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.). Gene, 2015, 563(1): 87-93.
[11]   Wei Z, Hu W, Lin Q S, Cheng X Y, Tong M J, Zhu L L, Chen R Z, He G C. Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): A proteomic approach. Proteomics, 2009, 9(10): 2798-2808.
[12]   Denker B M, Smith B L, Kuhajda F P, Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. Journal of Biological Chemistry, 1988, 263(30): 15634-15642.
[13]   Preston G M, Carroll T P, Guggino W B, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256(5055): 385-387.
[14]   Maurel C, Reizer J, Schroeder J I, Chrispeels M. The vacuolar membrane protein gamma-TIP creates water-specific channels in Xenopus oocytes. The EMBO Journal, 1993, 12(6): 2241-2247.
[15]   Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig A R, Kjellbom P. The complete set of genes encoding major intrinsic proteins in arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 2001, 126(4): 1358-1369.
[16]   Chaumont F, Barrieu F, Wojcik E, Chrispeels M J, Jung R. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 2001, 125(3): 1206-1215.
[17]   Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiology, 2005, 46(9): 1568-1577.
[18]   Gupta A B, Sankararamakrishnan R. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biology, 2009, 9:134.
[19]   Park W, Scheffler B E, Bauer P J, Campbell B T. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biology, 2010, 10:142.
[20]   Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K. Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE, 2013, 8: e79052.
[21]   Venkatesh J, Yu J W, Park S W. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiology and Biochemistry, 2013, 73: 392-404.
[22]   Zhang D Y, Ali Z, Wang C B, Xu L, Yi J X, Xu Z L, Liu X Q, He X L, Huang Y H, Khan I A, Trethowan R M, Ma H X. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS ONE, 2013, 8: e56312.
[23]   Tao P, Zhong X M, Li B Y, Wang W H, Yue Z C, Lei J L, Guo W L, Huang X Y. Genome-wide identification and characterization of aquaporin genes (AQP) in Chinese cabbage (Brassica rapa ssp. pekinensis). Molecular Genetics and Genomics, 2014, 289: 1131-1145.
[24]   Danielson J A, Johanson U. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biology, 2008, 8: 45.
[25]   Gustavsson S, Lebrun A S, Norden K, Chaumont F, Johanson U. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiology, 2005, 139(1): 287-295.
[26]   Savage D F, O'Connell J D, Miercke L J, Finer-Moore J, Stroud R M.Structural context shapes the aquaporin selectivity filter. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17164-17169.
[27]   Froger A, Tallur B, Thomas D, Delamarche C. Prediction of functional residues in water channels and related proteins. Protein Science, 1998, 7(6): 1458-1468.
[28]   Kaldenhoff R, Fischer M. Aquaporins in plants. Acta Physiologica, 2006, 187: 169-176.
[29]   Mahdieh M, Mostajeran A, Horie T, Katsuhara M. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant and Cell Physiology,2008, 49(5): 801-813.
[30]   Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis J M, Casse-Delbart F, Lamaze T. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. The Plant Journal, 1997, 12: 1103-1111.
[31]   de Paula Santos Martins C, Pedrosa A M, Du D L, Gonçalves L P, Yu Q B, Gmitter F G Jr, Costa M G C. Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS ONE, 2015, 10: e0138786.
[32]   Wang L H, Yu S, Tong C B, Zhao Y Z, Liu Y, Song C, Zhang Y X, Zhang X D, Wang Y, Hua W, Li D H, Li D, Li F, Yu J Y, Xu C Y, Han X L, Huang S M, Tai S S, Wang J Y, Xu X, Li Y R, Liu S Y, Varshney R K, Wang J, Zhang X R. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biology, 2014, 15(2): R39.
[33]   Diehn T A, Pommerrenig B, Bernhardt N, Hartmann A, Bienert G P. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis.Frontiers in Plant Science, 2015, 6: 166.
[34]   华菊玲, 胡白石, 李湘民, 黄瑞荣, 刘光荣. 芝麻细菌性青枯病病原菌及其生化变种鉴定. 植物保护学报, 2012, 39: 39-44.
Hua J L, Hu B S, Li X M, Huang R R, Liu G R. Identification of the pathogen causing bacterial wilt of sesame and its biovars. Acta Phytophylacica Sinica, 2012, 39: 39-44. (in Chinese)
[35]   Tuskan G A, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao R R, Bhalerao R P, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G L, Cooper D, Coutinho P M, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B,Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson D R, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596-1604.
[36]   Roy S W, Penny D. On the incidence of intron Loss and gain in paralogous gene families. Molecular Biology and Evolution, 2007, 24(8): 1579-1581.
[37]   Ball L E, Little M, Nowak M W, Garland D L, Crouch R K, Schey K L. Water permeability of C-terminally truncated aquaporin 0 (AQP0 1-243) observed in the aging human lens. Investigative Ophthalmology &Visual Science, 2003, 44(11): 4820-4828.
[38]   Ayadi M, Cavez D, Miled N, Chaumont F, Masmoudi K. Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiology and Biochemistry, 2011, 49(9): 1029-1039.
[39]   Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P. The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta, 2000, 1465: 324-342.
[40]   Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature, 2006, 440(7084): 688-691.
[41]   Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell, 2006, 18(6): 1498-1509.
[42]   Zelazny E, Borst J W, Muylaert M, Batoko H, Hemminga M A, Chaumont F. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proceedings of the National Academy of Sciences of the United States America, 2007, 104(30): 12359-12364.
[43]   Bienert G P, Bienert M D, Jahn T P, Boutry M, Chaumont F. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. The Plant Journal, 2011, 66(2): 306-317.
[44]   Liu L H, Ludewig U, Gassert B, Frommer W B, von Wiren N. Urea transport by nitorgen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiology, 2003, 133(3):1220-1228.
[45]   Ishikawa F, Suga S, Uemura T, Sato M H, Maeshima M. Novel type aquaporin SIP are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Letters, 2005, 579 (25): 5814-5820.
[46]   Wan R Z, Fang H P. Water transportation across narrow channel of nanometer dimension. Solid State Communications, 2010, 150: 968- 975.
[47]   Forrest K L, Bhave M. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Functional & Integrative Genomics, 2007, 7(4): 263-289.
[48]   Bansal A, Sankararamakrishnan R. Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: Comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Structural Biology, 2007, 7: 27.
[49]   Dordas C, Chrispeels M J, Brown P H. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiology, 2000, 124(3): 1349-1362.
[50]   Fitzpatrick K L, Reid R. The involvement of aquaglyceroporins in transport of boron in barley root. Plant, Cell and Environmont, 2009, 32(10): 1357-1365.
[51]   Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. The Plant Cell, 2003, 15(2): 439-447.
[52]   Hanba Y T, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2assimilation in the leaves of transgenic rice plants. Plant and Cell Physiology, 2004, 45(5): 521-529.
[53]   Gaspar M, Bousser A, Sissoëff I, Roche O, Hoarau J, Mahe A. Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Science, 2003, 165(1): 21-31.
[54]   Dynowski M, Schaaf G, Loque D, Moran O, Ludewig U. Plant plasma membrane water channels conduct the signaling molecule H2O2. The Biochemical Journal, 2008, 414 (1): 53-61.
[55]   Bienert G P, Schjoerring J K, Jahn T P. Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta (BBA)- Biomembranes, 2006, 1758(8): 994-1003.
[56]   Bienert G P, Møller A L B, Kristiansen K A, Schulz A, Møller I M, Schjoerring J K, Jahn T P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. The Journal of Biological Chemistry, 2007, 282(2): 1183-1192.
[57]   Klebl F, Wolf M, Sauer N. A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana δ-TIP or γ-TIP. FEBS Letters, 2003, 547: 69-74.
[58]   Loqué D, Ludewig U, Yuan L X, von Wirén N. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiology, 2005, 137(2): 671-680.
[59]   Wallace I S, Roberts D M. Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry, 2005, 44(51): 16826-16834.
[60]   Mitani N, Yamaji N, Ma J F. Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflügers Archiv- European Journal of Physiology, 2008, 456(4): 679-686.
[61]   Dynowski M, Mayer M, Moran O, Ludewig U. Molecular determinants of ammonia and urea conductance in plant aquaporin homologs. FEBS Letters, 2008, 582(16): 2458-2462.
[1] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[2] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[3] LU BaoShun,ZHU YongJing,ZHANG ShuTing,LÜ YuMeng,LI XiaoFei,SONG YuYang,LAI ZhongXiong,LIN YuLing. Whole-Genome Identification and Expression Analysis of SPL Gene Family in Dimocarpus Longan [J]. Scientia Agricultura Sinica, 2020, 53(20): 4259-4270.
[4] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[5] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[6] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[7] ZHOU Rong,LIU Pan,LI DongHua,ZHANG YanXin,WANG LinHai,ZHANG XiuRong,WEI Xin. Cloning and Functional Characterization of Sesame SiSAD Gene [J]. Scientia Agricultura Sinica, 2019, 52(10): 1678-1685.
[8] HAN YaFei, WANG XueDe, ZHENG YongZhan, MEI HongXian, WEI AnChi, LIU YanYang. Study on Changes of Sesame Protein Content and Its Components of Yuzhi 11 Sesame Seed During Growth Period [J]. Scientia Agricultura Sinica, 2018, 51(4): 652-661.
[9] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[10] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[11] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
[12] LIU YanYang, MEI HongXian, DU ZhenWei, WU Ke, ZHENG YongZhan, CUI XiangHua, ZHENG Lei. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441.
[13] YANG MinMin, LIU HongYan, ZHOU Ting, QU HongHao, YANG YuanXiao, WEI Xin, ZUO Yang, ZHAO YingZhong. Production and Identification of F1 Interspecific Hybrid Between Sesamum indicum and Wild Relative S. Indicatum [J]. Scientia Agricultura Sinica, 2017, 50(10): 1763-1771.
[14] WANG Lin, LI XinFeng, XU YuMei, CHANG YinDong, WANG JianMing. Analysis of Population Distribution and Genetic Variation of Plant Pathogenic Fusarium in Shanxi Province [J]. Scientia Agricultura Sinica, 2017, 50(10): 1802-1816.
[15] WANG Ye, HAN Lei, DONG Jie, HUANG JiaXing, WU Jie. Identification and Characteristics of Odorant Receptors in Bumblebee, Bombus lantschouensis [J]. Scientia Agricultura Sinica, 2017, 50(10): 1904-1913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!