Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 1979-1994.doi: 10.3864/j.issn.0578-1752.2024.10.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Soil-Crop System to Different Nitrogen Fertilization Practices Under Maize and Rice Cropping System in the Paddy Soil of Dongting Lake Plain

FANG KangRui1(), LONG ShiPing2, PENG SiWen2, CHEN Shan2, LIAO YuLin2, XU XinPeng1, ZHAO ShiCheng1, QIU ShaoJun1(), HE Ping1, ZHOU Wei1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 Hunan Province Academy of Agricultural Sciences, Changsha 410125
  • Received:2023-07-09 Accepted:2023-09-05 Online:2024-05-16 Published:2024-05-23
  • Contact: QIU ShaoJun

Abstract:

【Objective】 Crop yield increases and soil organic matter decreases when double rice cropping system shifted to wet and dry rotation cropping system, but little information is known that the effects of chemical fertilizer nitrogen combined with different organic materials on crop yield, nitrogen use efficiencies and organic matter content under the wet and dry cropping system.【Method】 The maize and rice rotation was regarded as object, five treatments were set up, including no nitrogen fertilizer applied (CK), only chemical fertilizer applied (NPK), NPK plus straw return (NPKS), NPK plus manure (NPKM) and NPK plus biochar (NPKB) in purple clayey soil and reddish clayey soil in Dongting lake plain from 2015 to 2021. The changes of yield, nutrient use efficiency, soil carbon and nitrogen content as well as carbon and nitrogen balance under different fertilization treatments were explored. 【Result】 The average maize yield, rice yield and total annual yield in the six-year in purple clayey soil and reddish clayey soil were 5.7, 7.3 and 12.9 t·hm-2, respectively. Moreover, the three yields above in purple clayey soil were slightly higher than that reddish clayey soil, though the differences in both soils were not significant. Compared with the NPK treatment, NPKM treatment significantly (P<0.05) increased the average yields in maize season or rice season in the two soils (P<0.05) by 10.6% and 4.20%, respectively. Among all the treatments, NPKM treatment had the maximum yield in the maize season, and the value was 6.0 t·hm-2; and NPKB treatment had the maximum yield in the rice season, and the value was 7.5 t·hm-2. The six-year average annual total yield under NPKM and NPKB treatments was significantly higher (P<0.05) than that under other treatments, respectively, but the difference between NPKM and NPKB treatments was not significant. Compared with the other treatments, NPKM treatment significantly (P<0.05) improved the chemical fertilizer nitrogen recovery efficiency, agronomic efficiency and partial productivity in maize, rice, the six-year average values of maize season were 66.3%, 39.5 kg·kg-1 and 56.0 kg·kg-1, respectively, and the six-year average of rice season was 53.8%, 21.9 kg·kg-1 and 68.6 kg·kg-1, respectively. NPKB treatment had significant higher chemical fertilizer N agronomy efficiency and partial productivity than the NPKS and NPK treatments in maize and rice seasons, and compared with NPK treatment, the nitrogen recovery rate of maize was also significantly improved. Soil organic carbon and total nitrogen content decreased significantly from the fourth years (the year of 2019). Compared with the soil organic carbon and nitrogen content between the beginning of the experiment (2015) and 2021, the annual average soil organic carbon in all the N applied treatments in purple clayey soil and reddish clayey soil decreased by 1.8 and 0.7 g·kg-1, and total nitrogen content decreased by 0.4 and 0.1 g·kg-1; the NPKM treatment in both the soils had the lowest decrease of soil organic carbon and total nitrogen, and the NPKB treatment was the second. The loss of soil organic carbon and total nitrogen in the NPKM treatments were the lowest, which were 0.48 t C·hm-2·a-1 and 94.7 kg N·hm-2·a-1, respectively.【Conclusion】 After the double rice cropping system shifted to wet and dry rotation cropping system, the chemical fertilizer nitrogen combined with manure and biochar could increase crop yield and hold back the decrease of soil organic matter, NPKM treatment had the maximum average maize yield and NPKB treatment had the maximum average rice yield during the experimental period.

Key words: maize-rice rotation, yield, fertilization practices, soil types, nitrogen use efficiency, soil carbon and nitrogen

Fig.1

Monthly mean rainfall and temperature in Nanxian and Changsha counties from 2015 to 2021"

Table 1

The basic physicochemical properties of the soils"

土壤
Soil
试验地点
Site
pH 有机碳
Soil organic C (g·kg-1)
全氮
Total N
(g·kg-1)
全磷
Total P (g·kg-1)
全钾
Total K
(g·kg-1)
速效磷
Olsen P
(mg·kg-1)
速效钾
NH4Ac extracted
K (mg·kg-1)
容重
Bulk density
(g·cm-3)
紫潮泥
Purple clayey soil, PS
南县
Nanxian county
7.7 29.8 3.5 1.2 35.5 13.1 75.7 1.06
红黄泥
Reddish clayey soil, RS
长沙县
Changsha county
5.8 19.9 2.4 0.6 29.6 6.9 48.5 1.02

Table 2

Crop yield in different treatments and different soils from 2015 to 2021"

处理
Treatment
玉米产量
Maize yield (t·hm-2)
水稻产量
Rice yield (t·hm-2)
全年产量
Annual yield (t·hm-2)
6年平均产量
Average yield in six years (t·hm-2)
2016 2017 2018 2019 2020 2021 2015 2016 2017 2018 2019 2020 2021 2016 2017 2018 2019 2020 2021 玉米
Maize
水稻
Rice
年总产量
Annual
施肥
Fertilization
CK 1.7dD 2.9cA 2.7cB 2.3bC 2.6cB 0.8E 5.9dA 5.1bBC 4.8cC 4.5cC 5.9cA 4.6bC 5.4cAB 6.8cC 7.7cAB 7.2cBC 8.2bA 7.2cBC 6.2dD 2.2d 5.0c 7.2c
NPK 4.6cC 5.7bB 7.0abA 6.3aB 4.9bC 4.3aC 7.4cB 7.2aBC 6.5bD 7.1bBC 7.9bA 7.0aBC 6.9bCD 11.0bC 12.0bB 14.0bA 14.0aA 11.bB 11.2cC 5.5c 7.1b 12.6b
NPKS 4.6cE 5.4bC 6.6bA 6.3aB 5.1bD 4.4aE 7.7abA 6.9aA 6.8abA 7.2bA 7.9bA 6.9aA 7.0abA 11.0bC 12.0bB 13.0bA 14.0aA 12.bB 11.6cC 5.4c 7.1b 12.5b
NPKM 5.7aC 6.8aB 7.6aA 6.3aB 5.6aC 4.3aD 7.8aAB 7.3aCD 6.7abE 7.7aBC 8.1abA 7.1aDE 7.5aBC 13.0aCD 13.0aC 15.0aA 14.0aB 12.aD 11.8bE 6.0a 7.4a 13.5a
NPKB 5.1bD 6.4aB 7.5aA 5.7aC 5.2bCD 4.6aE 7.5bcBC 7.4aBC 7.0aCD 7.7aB 8.6aA 6.8aD 7.5aBC 12.0aD 13.0aC 15.0aA 14.0aB 12.bD 12.0aD 5.7b 7.5a 13.2a
土壤
Soil
紫潮泥
PS
4.7bCD 6.3aB 7.4aA 6.3aB 5.0aC 4.5aD 7.3bB 7.8aB 6.8aC 7.5aB 8.3aA 7.3aB 7.2aB 12.1aC 13.1aB 14.9aA 14.7aA 12.3aC 11.7aC 5.7a 7.5a 13.1a
红黄泥
RS
5.3aC 5.9aBC 7.0aA 6.0aB 5.4aBC 4.3aD 8.0aA 7.0bCD 6.7aDE 7.3aB 8.0bA 6.6bE 7.2aBC 12.3aB 12.6aB 14.3aA 13.9bA 12.0aBC 11.6aC 5.6a 7.1a 12.7a
平均
Average
5.0C 6.1B 7.2A 6.2B 5.2C 4.4D 7.6B 7.2CD 6.8E 7.4C 8.1A 6.9E 7.2CD 12.2C 12.9B 14.6A 14.3A 12.1C 11.6C 5.7b 7.3b 12.9a

Table 3

Aboveground biomass in different treatments and different soils from 2015 to 2021"

处理
Treatment
玉米地上部生物量
Maize aboveground biomass (t·hm-2)
水稻地上部生物量
Rice aboveground biomass (t·hm-2)
全年总生物量
Annual aboveground biomass (t·hm-2)
6年平均生物量
Average aboveground
biomass in six years (t·hm-2)
2016 2017 2018 2019 2020 2021 2015 2016 2017 2018 2019 2020 2021 2016 2017 2018 2019 2020 2021 玉米
Maize
水稻
Rice
年总生物量
Annual
施肥
Fertilization
CK 3.8bA 6.4cA 6.8cA 5.7bA 6.0cA 2.0bA 11.0cA 9.9bB 9.0bBC 8.8cC 11.5bA 8.0bC 8.7cD 13.7bC 15.3cB 15.6dB 17.3bA 14.0cC 10.7cD 5.1c 9.3c 14.7d
NPK 10.1aBC 10.9bB 13.3bA 12.6aA 10.0bBC 8.7aC 14.0bB 13.3aBC 13.4aBC 13.5bBC 15.1aA 13.1aC 11.6aD 23.5aB 24.3abB 26.8cA 27.7aA 23.1bB 20.3bC 11.0b 13.3b 24.4c
NPKS 9.4aB 10.5bB 13.5abA 12.5aA 10.4bB 9.4aB 15.1aA 13.4aC 13.6aC 14.1abB 15.4aA 13.1aC 12.0aD 22.8aBC 24.1bB 27.6bcA 27.9aA 23.5bB 21.4aC 10.9b 13.6ab 24.8bc
NPKM 9.8aD 12.7aB 14.9aA 12.9aB 11.4aC 9.0aD 14.8aA 13.9aA 13.5aA 14.6aA 15.4aA 13.1aA 12.5aA 23.6aC 26.2bB 29.5aA 28.3aA 24.6aC 21.4aD 11.8a 13.8ab 25.7a
NPKB 9.6aC 12.4aB 14.1abA 12.1aB 10.0bC 9.5aC 14.0bBC 14.2aBC 13.3aCD 14.7aB 16.4aA 13.1aCD 12.4aD 23.8aC 25.6abB 28.8abA 28.5aA 23.1bCD 21.9aD 11.3ab 14.0a 25.3ab
土壤
Soil
紫潮泥
PS
9.6aCD 12.0aB 14.5aA 12.1aB 9.8bC 9.0aD 14.2bBC 13.8aCD 13.3aD 14.5aB 15.6aA 12.6bE 11.6bF 23.5aBC 25.2aB 29.1aA 27.7aA 22.3bC 20.6bC 11.2a 13.6a 24.7a
红黄泥
RS
9.8aC 11.3aB 13.4aA 13.0aA 11.1aB 9.3aC 14.8aA 13.6aB 13.6aB 13.9bB 15.5aA 13.7aB 12.6aC 23.4aC 24.9aB 27.3bA 28.5aA 24.8aB 21.9aC 11.3a 13.8a 25.1a
平均
Average
9.7D 11.6C 14.0A 12.5B 10.5D 9.2E 14.5B 13.7D 13.4D 14.2C 15.6A 13.1E 12.1E 23.4C 25.0B 28.2A 28.1A 23.6C 21.3D 11.2b 13.7b 24.9a

Table 4

Chemical N recovery efficiency in different treatments and different soils from 2015 to 2021"

处理
Treatment
玉米季氮素回收率
N recovery efficiency in maize (%)
水稻季氮素回收率
N recovery efficiency in rice (%)
6年平均回收率
Average N recovery efficiency in six years (%)
2016 2017 2018 2019 2020 2021 2015 2016 2017 2018 2019 2020 2021 玉米季
Season
maize
水稻季
Season
rice
施肥
Fertilization
NPK 33.6bAB 30.6cB 41.0bA 43.0bA 33.4bAB 36.9bAB 23.6bB 30.2bAB 31.5bAB 35.0bA 34.9BA 26.2bB 31.3abAB 36.4c 31.3b
NPKS 32.2bB 32.1cB 42.2bA 42.1bA 35.0bAB 41.3bA 33.8abA 33.9abA 33.4bA 33.3bA 35.3bA 29.7bA 30.2abA 37.5bc 32.7b
NPKM 50.9aB 70.4aA 75.9aA 75.1aA 63.5aAB 62.2aAB 40.3aC 48.8aBC 59.45aAB 67.0aA 55.9aAB 53.1aABC 40.2aC 66.3a 53.8a
NPKB 33.8bB 42.8bAB 45.8bA 41.0bAB 33.3bB 37.3bAB 27.5bAB 37.2bAB 31.6bAB 40.1bA 37.9bAB 35.8bAB 22.8bB 39.0b 34.1b
土壤
Soil
紫潮泥 PS 29.6bB 42.1aA 51.4bA 55.0aA 48.4aA 45.1aA 22.5bD 32.0bABC 35.3bABC 40.4bA 37.7bAB 27.6bCD 29.9bBCD 45.3a 33.6b
红黄泥 RS 45.6aA 45.8aA 51.0aA 45.6aA 34.2aB 43.7aA 40.1aA 43.0aA 42.7aA 47.3aA 44.3aA 44.9aA 32.4aA 44.3a 42.4a
平均Average 37.6B 44.0B 51.2A 50.3A 41.3B 44.4B 31.3C 37.5ABC 39.0AB 43.9A 41.0AB 36.2BC 31.1C 44.8a 38.0b

Table 5

Chemical N agronomic efficiency in different treatments and different soils from 2015 to 2021"

处理
Treatment
玉米季氮素农学效率
N agronomic efficiency in maize (kg·kg-1 )
水稻季氮素农学效率
N agronomic efficiency in rice (kg·kg-1 )
6年平均农学效率
Average N agronomic efficiency in six years (kg·kg-1 )
2016 2017 2018 2019 2020 2021 2015 2016 2017 2018 2019 2020 2021 玉米季
Season
maize
水稻季
Season
rice
施肥
Fertilization
NPK 15.8bC 15.3cC 23.7bA 22.0cAB 12.7cC 19.4cB 8.5cB 12.0bAB 9.8bB 14.3bA 11.2bAB 13.6bA 8.5bB 18.2d 11.5c
NPKS 10.4cD 17.2bcC 22.2bB 30.3bA 15.9bC 24.6bB 10.4bBC 10.3bBC 10.9bBC 15.3bA 10.8bBC 13.1bAB 9.3bC 20.1c 11.6c
NPKM 27.3aD 41.4aBC 46.3aAB 51.3aA 31.3aD 39.3aC 18.0aB 20.8aB 18.2aB 29.3aA 20.0aB 23.3aAB 20.0aB 39.5a 21.9a
NPKB 13.2bcD 22.7bB 26.8bA 27.2bA 16.9bC 25.4bA 9.3bcC 13.0bBC 12.4bBC 17.8bA 14.8bAB 12.2bBC 11.7bBC 22.0b 13.6b
土壤
Soil
紫潮泥 PS 13.0bD 26.4aBC 36.7aA 34.8aAB 20.2aCD 27.7aBC 12.8aBC 14.6aAB 13.0aABC 17.3bA 9.23bC 15.0aAB 12.0aBC 26.5a 13.5b
红黄泥 RS 20.3aB 21.9aAB 22.9bAB 30.5aA 18.2aB 26.7aAB 10.3aC 13.5aBC 12.6aBC 21.0aA 19.2aA 16.1aAB 12.7aBC 23.4a 15.8a
平均 Average 16.7C 24.1C 29.8B 32.7A 19.2C 27.2C 11.5B 14.0B 12.8B 19.2A 14.2B 15.6AB 12.3B 24.9a 14.7b

Table 6

Chemical N partial productivity in different treatments and different soils from 2015 to 2021"

处理
Treatment
玉米季氮素偏生产力
N partial productivity in maize season (kg·kg-1)
水稻季氮素偏生产力
N partial productivity in rice season (kg·kg-1)
6年平均偏生产力
Average N partial productivity in six years (kg·kg-1)
2016 2017 2018 2019 2020 2021 2015 2016 2017 2018 2019 2020 2021 玉米季
Season maize
水稻季
Season rice
施肥
Fertilization
NPK 25.4bC 31.6bB 38.9bA 34.9bB 27.3bC 23.9bC 41.1cB 40.1bBC 36.3bD 39.2cBC 44.0bA 39.9bBC 38.2cCD 30.3c 39.5c
NPKS 25.5bE 30.1bC 36.8bA 34.7bB 28.0bD 24.6bE 42.9bA 38.5bC 37.5bC 40.2bcB 43.6bA 38.5bC 39.0cBC 30.0c 39.6c
NPKM 52.5aC 63.0aB 70.7aA 58.7aB 51.6aC 39.3aD 72.2aAB 67.7aCD 62.4aE 70.8aBC 74.7aA 65.6aDE 69.6aBC 56.0a 68.6a
NPKB 28.4bD 35.6bB 41.4bA 31.6bC 29.0bCD 25.4bE 41.8bcBC 41.1bBC 39.0bCD 42.7bB 47.7bA 37.5bD 41.4bBC 31.9b 41.6b
土壤
Soil
紫潮泥 PS 30.5bC 41.2aB 48.5aA 41.2aB 32.3bBC 28.6aC 47.4bA 48.3aA 44.0aA 48.8aA 53.8aA 47.7aA 46.9aA 37.0a 48.3a
红黄泥 RS 35.4aB 38.9bB 45.3aA 38.8bB 35.7aB 28.0aC 51.7aA 45.4aA 43.6aA 47.6aA 51.3aA 42.5bA 47.2aA 37.0a 46.3a
平均 Average 33.0C 40.1B 46.9A 40.0B 34.0C 28.3D 49.5B 46.9DE 43.8F 48.2C 52.5A 45.1EF 47.1D 37.0b 47.3a

Table 7

Soil organic carbon (SOC) content in different treatments and different soils from 2015 to 2021"

处理
Treatment
玉米季土壤有机碳
SOC in maize season (g·kg-1)
水稻季土壤有机碳
SOC in rice season (g·kg-1)
全年有机碳年平均值
Annual average SOC (g·kg-1)
平均有机碳
Average SOC (g·kg-1)
2016 2017 2018 2019 2020 2021 2015 2016 2017 2019 2020 2021 2016 2017 2019 2020 2021 玉米季
Season
maize
水稻季
Season
rice
总平均
Average
施肥
Fertilization
CK 26.3aA 25.6aA 24.7aA 23.0aA 23.1aA 23.6aA 25.3aA 25.1aA 25.1aA 23.1aA 23.2aA 24.1aA 25.7aA 25.3aA 23.1aA 23.1aA 23.8aA 24.4a 24.3a 24.2a
NPK 24.0aA 24.1aA 23.4aA 23.2aA 22.8aA 22.3aA 25.2aA 24.9aA 24.4aA 23.4aA 23.1aA 23.1aA 24.4aA 24.3aA 23.3aA 23.0aA 22.7aA 23.3a 24.0a 23.5a
NPKS 25.1aA 25.2aA 25.5aA 24.5aA 23.4aA 23.5aA 25.6aA 25.0aA 24.9aA 23.3aA 22.3aA 23.5aA 25.1aA 25.0aA 23.9aA 22.8aA 23.5aA 24.4a 24.1a 24.1a
NPKM 26.7aA 26.6aA 25.4aA 25.46aA 25.2aA 25.1aA 27.5aA 26.0aA 26.5aA 24.2aA 23.4aA 24.2aA 26.4aA 26.5aA 24.8aA 24.3aA 24.7aA 25.7a 25.3a 25.3a
NPKB 25.7aA 26.2aA 24.5aA 24.60aA 24.5aA 22.9aA 26.4aA 25.3aA 24.9aA 23.7aA 23.5aA 24.1aA 25.5aA 25.5aA 24.1aA 24.0aA 23.5aA 24.7a 24.6a 24.5a
土壤
Soil
紫潮泥
PS
30.3aA 30.9aA 29.2aABC 29.3aAB 28.0aBC 27.4aC 32.1aA 30.7aB 30.4aB 27.6aC 27.7aC 28.6aC 30.5aA 30.7aA 28.5aB 27.8aB 28.0aB 29.2a 29.5a 29.1a
红黄泥
RS
20.5bA 20.1bA 19.7bA 19.6bA 19.9bA 19.6bA 20.3bA 19.9bA 19.9bA 19.7bA 18.3bC 18.8bBC 20.2bA 20.0bAB 19.6bAB 19.2bB 19.2bB 19.9b 19.5b 19.6b
平均
Average
25.4A 25.5A 24.4AB 24.4AB 24.0B 23.5B 26.2A 25.3B 25.2B 23.1C 23.2C 23.7C 25.3A 25.3A 23.7B 23.6B 23.6B 24.5a 24.5a 24.4a

Table 8

Soil total nitrogen (TN) content in different treatments and different soils from 2015 to 2021"

处理
Treatment
玉米季土壤全氮
TN in maize season (g·kg-1)
水稻季土壤全氮
TN in rice season (g·kg-1)
全年全氮年平均值
Annual average TN (g·kg-1)
平均全氮
Average TN (g·kg-1)
2016 2017 2018 2019 2020 2021 2015 2016 2017 2019 2020 2021 2016 2017 2019 2020 2021 玉米季
Season
maize
水稻季
Season
rice
总平均
Average
施肥
Fertilization
CK 3.03aA 2.85aA 2.88aA 2.76aA 2.85aA 2.70aA 2.99aA 3.12aA 2.80aA 2.83aA 2.78aA 2.71aA 3.07aA 2.83aA 2.80aA 2.81aA 2.70aA 2.85a 2.87a 2.84a
NPK 2.97aA 3.08aA 2.88aA 2.80aA 2.82aA 2.63aA 2.99aA 3.07aA 2.80aA 2.86aA 2.85aA 2.59aA 3.02aA 2.94aA 2.83aA 2.84aA 2.61aA 2.86a 2.86a 2.85a
NPKS 2.89aA 2.87aA 2.91aA 2.84aA 2.92aA 2.72aA 2.96aA 3.03aA 2.97aA 2.99aA 2.55aA 2.71aA 2.96aA 2.92aA 2.91aA 2.74aA 2.72aA 2.86a 2.87a 2.85a
NPKM 3.02aA 3.01aA 2.97aA 2.92aA 3.03aA 2.91aA 3.17aA 3.05aA 2.96aA 2.95aA 2.71aA 2.70aA 3.03aA 2.98aA 2.93aA 2.87aA 2.81aA 2.97a 2.92a 2.93a
NPKB 2.95aA 3.09aA 2.81aA 2.71aA 2.85aA 2.67aA 3.08aA 2.99aA 2.88aA 2.77aA 2.61aA 2.65aA 2.97aA 2.99aA 2.74aA 2.73aA 2.66aA 2.85a 2.83a 2.82a
土壤
Soil
紫潮泥
PS
3.42aA 3.45aA 3.32aAB 3.20aBC 3.16aBC 3.11aC 3.69aA 3.58aA 3.34aB 3.19aBC 3.06aC 3.16aC 3.50aA 3.40aA 3.20aB 3.11aB 3.13aB 3.28a 3.34a 3.27a
红黄泥
RS
2.49bABC 2.57bAB 2.46bBC 2.44bBC 2.66bA 2.36bC 2.41bB 2.49bB 2.47bB 2.59bA 2.30bC 2.17bD 2.49bA 2.52bA 2.51bA 2.48bA 2.26bB 2.50b 2.40b 2.45b
平均
Average
2.96A 3.01A 2.89AB 2.82BC 2.91AB 2.73C 3.05A 3.03A 2.91B 2.89B 2.68C 2.66C 3.0A 3.0A 2.9B 2.8BC 2.7C 2.89a 2.87a 2.86a

Table 9

Carbon and nitrogen balance in different treatments and different soils from 2015 to 2021"

处理
Treatment
碳平衡 C balance 氮平衡 N balance
碳输入
C input (t C·hm-2·a-1)
土壤有机碳损失
SOC loss (t C·hm-2·a-1)
氮输入
N input (kg N·hm-2·a-1)
作物氮吸收
Crop N uptake (kg N·hm-2·a-1)
土壤全氮损失
TN loss (kg N·hm-2·a-1)
肥料氮素盈余量
Fertilizer N surplus (kg N·hm-2·a-1)
施肥
Fertilization
CK 1.9e 0.81a 32.5e 141.3c 138.9a -108.8e
NPK 3.2d 0.72a 426.5d 258.7b 134.0a 167.7c
NPKS 8.0b 0.69a 526.4b 272.2a 118.1a 254.2b
NPKM 14.5a 0.48b 787.2a 274.2a 94.7b 513.0a
NPKB 4.1c 0.71a 447.6c 274.5a 129.8a 155.0c
土壤
Soil
紫潮泥PS 7.4a 0.80a 536.6a 253.8b 175.5a 278.4a
红黄泥RS 7.5a 0.51a 557.3a 286.1a 62.8b 266.6a
[1]
CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489.
[2]
CUI Z L, ZHANG H Y, CHEN X P, ZHANG C C, MA W Q, HUANG C D, ZHANG W F, MI G H, MIAO Y X, LI X L, GAO Q, YANG J C, WANG Z H, YE Y L, GUO S W, LU J W, HUANG J L, LV S H, SUN Y X, LIU Y Y, PENG X L, REN J, LI S Q, DENG X P, SHI X J, ZHANG Q, YANG Z P, TANG L, WEI C Z, JIA L L, ZHANG J W, HE M R, TONG Y N, TANG Q Y, ZHONG X H, LIU Z H, CAO N, KOU C L, YING H, YIN Y L, JIAO X Q, ZHANG Q S, FAN M S, JIANG R F, ZHANG F S, DOU Z X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
[3]
杜文婷, 雷肖肖, 卢慧宇, 王云凤, 徐佳星, 罗彩霞, 张树兰. 氮肥减量施用对我国三大粮食作物产量的影响. 中国农业科学, 2022, 55(24): 4863-4878. doi: 10.3864/j.issn.0578-1752.2022.24.007.
DU W T, LEI X X, LU H Y, WANG Y F, XU J X, LUO C X, ZHANG S L. Effects of reducing nitrogen application rate on the yields of threemajor cereals in China. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878. doi: 10.3864/j.issn.0578-1752.2022.24.007. (in Chinese)
[4]
ANAS M, LIAO F, VERMA K K, SARWAR M A, MAHMOOD A, CHEN Z L, LI Q, ZENG X P, LIU Y, LI Y R. Fate of nitrogen in agriculture and environment: agronomic, ecophysiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 2020, 53(1): 47.
[5]
LASSALETTA L, EINARSSON R, QUEMADA M. Nitrogen use efficiency of tomorrow. Nature Food, 2023, 4(4): 281-282.

doi: 10.1038/s43016-023-00740-x pmid: 37117544
[6]
GU B J, ZHANG X M, LAM S K, YU Y L, VAN GRINSVEN H J M, ZHANG S H, WANG X X, BODIRSKY B L, WANG S T, DUAN J K, REN C C, BOUWMAN L, DE VRIES W, XU J M, SUTTON M A, CHEN D L. Cost-effective mitigation of nitrogen pollution from global croplands. Nature, 2023, 613: 77-84.
[7]
李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)
[8]
FAO. The state of the world’s land and water resources for food and agriculture—Systems at breaking point (SOLAW 2021). Rome, 2021. http://www.fao.org/ag/agl/agll/key2soil.stm.
[9]
周楠, 崔俊杰. 种双季稻!南方一些稻田20年来头一回. 新华每日电讯, 2021-03-31(12). http://mrdx.cn/content/20210331/Page12DK.htm.
ZHOU N, CUI J J. Planted double cropping rice! The first time during the past 20 years in some paddy soils in the south of China. Xinhua Daily Telegraph, 2021-03-31(12). http://mrdx.cn/content/20210331/Page12DK.htm. (in Chinese)
[10]
刘少文, 殷敏, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江中下游稻区不同水旱轮作模式和氮肥水平对稻田CH4排放的影响. 中国农业科学, 2019, 52(14): 2484-2499. doi: 10.3864/j.issn.0578-1752.2019.14.008.
LIU S W, YIN M, CHU G, XU C M, WANG D Y, ZHANG X F, CHEN S. Effects of various paddy-upland crop rotations and nitrogen fertilizer levels on CH4 emission in the middle and lower reaches of the Yangtze River. Scientia Agricultura Sinica, 2019, 52(14): 2484-2499. doi: 10.3864/j.issn.0578-1752.2019.14.008. (in Chinese)
[11]
张顺涛, 任涛, 周橡棋, 方娅婷, 廖世鹏, 丛日环, 鲁剑巍. 油/麦—稻轮作和施肥对土壤养分及团聚体碳氮分布的影响. 土壤学报, 2022, 59(1): 194-205.
ZHANG S T, REN T, ZHOU X Q, FANG Y T, LIAO S P, CONG R H, LU J W. Effects of rapeseed/wheat-rice rotation and fertilization on soil nutrients and distribution of aggregate carbon and nitrogen. Acta Pedologica Sinica, 2022, 59(1): 194-205. (in Chinese)
[12]
崔宏卓, 廖世鹏, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 干湿交替下氮肥施用对土壤有机氮库转化的影响. 中国土壤与肥料, 2022(6): 39-47.
CUI H Z, LIAO S P, ZHANG Y Y, LI X K, CONG R H, REN T, LU J W. Effects of nitrogen fertilizer application on the transformation of soil organic nitrogen pool under alternating wet and dry conditions. Soil and Fertilizer Sciences in China, 2022(6): 39-47. (in Chinese)
[13]
BAI J S, QIU S J, JIN L, WEI D, XU X P, ZHAO S C, HE P, WANG L G, CHRISTIE P, ZHOU W. Quantifying soil N pools and N2O emissions after application of chemical fertilizer and straw to a typical chernozem soil. Biology and Fertility of Soils, 2020, 56(3): 319-329.
[14]
QIU S J, NIE J, LONG S P, LU Y H, ZHAO S C, XU X P, HE P, LIAO Y L, ZHOU W. Aggregate mass and carbon stocks in a paddy soil after long-term application of chemical or organic fertilizers. Soil Use and Management, 2022, 38(4): 1564-1577.
[15]
ZHANG J, WEI D, ZHOU B K, ZHANG L J, HAO X Y, ZHAO S C, XU X P, HE P, ZHAO Y, QIU S J, ZHOU W. Responses of soil aggregation and aggregate-associated carbon and nitrogen in black soil to different long-term fertilization regimes. Soil and Tillage Research, 2021, 213: 105157.
[16]
ZHANG J, ZHANG L J, QIU S J. Biochar amendment benefits 15N fertilizer retention and rhizosphere N enrichment in a maize-soil system. Geoderma, 2022, 412: 115713.
[17]
LI D X, WANG Y L, LU D J, CHEN X Q, CUI Z L, CHEN X P, LU J W, NIE J, WANG H Y, ZHOU J M. Bio-straw resource recycling systems: Agricultural productivity and green development. Resources, Conservation and Recycling, 2023, 190: 106844.
[18]
吴传发, 熊超, 韩燕来, 张勤斌, 李培培, 张丽梅. 秸秆还田结合减氮调控旱地土壤硝化潜势维持作物产量的机理. 植物营养与肥料学报, 2020, 26(10): 1782-1793.
WU C F, XIONG C, HAN Y L, ZHANG Q B, LI P P, ZHANG L M. Mechanism of combination of nitrogen fertilizer reduction and straw returning in regulating dryland nitrification intensity and keeping stable crop yield in long run. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1782-1793. (in Chinese)
[19]
XIANG L, LIU S H, YE S J, YANG H L, SONG B, QIN F Z, SHEN M C, TAN C, ZENG G M, TAN X F. Potential hazards of biochar: the negative environmental impacts of biochar applications. Journal of Hazardous Materials, 2021, 420: 126611.
[20]
YIN Q Q, ZHANG B D, WANG R K, ZHAO Z H. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review. Environmental Science and Pollution Research, 2017, 24(34): 26297-26309.
[21]
李永华, 武雪萍, 何刚, 王朝辉. 我国麦田有机肥替代化学氮肥的产量及经济环境效应. 中国农业科学, 2020, 53(23): 4879-4890. doi: 10.3864/j.issn.0578-1752.2020.23.013.
LI Y H, WU X P, HE G, WANG Z H. Benefits of yield, environment and economy from substituting fertilizer by manure for wheat production of China. Scientia Agricultura Sinica, 2020, 53(23): 4879-4890. doi: 10.3864/j.issn.0578-1752.2020.23.013. (in Chinese)
[22]
都江雪, 韩天富, 曲潇林, 马常宝, 柳开楼, 黄晶, 申哲, 张璐, 刘立生, 谢建华, 张会民. 中国主要粮食作物磷肥偏生产力时空演变特征及驱动因素. 植物营养与肥料学报, 2022, 28(2): 191-204.
DU J X, HAN T F, QU X L, MA C B, LIU K L, HUANG J, SHEN Z, ZHANG L, LIU L S, XIE J H, ZHANG H M. Spatial-temporal evolution characteristics and driving factors of partial phosphorus productivity in major grain crops in China. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 191-204. (in Chinese)
[23]
姜桂英. 中国农田长期不同施肥的固碳潜力及预测[D]. 北京: 中国农业科学院, 2013.
JIANG G Y. Prediction of carbon sequestration potential of Chinese arable land under long-term fertilizations[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[24]
REN K Y, SUN Y, ZOU H Q, LI D J, LU C G, DUAN Y H, ZHANG W J. Effect of replacing synthetic nitrogen fertilizer with animal manure on grain yield and nitrogen use efficiency in China: a meta-analysis. Frontiers in Plant Science, 2023, 14: 1153235.
[25]
DU Y D, CUI B J, ZHANG Q, WANG Z, SUN J, NIU W Q. Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis. Catena, 2020, 193: 104617.
[26]
WANG H M, ZHENG J, FAN J L, ZHANG F C, HUANG C H. Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: A meta-analysis. Field Crops Research, 2021, 270: 108210.
[27]
杨竣皓, 骆永丽, 陈金, 金敏, 王振林, 李勇. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析. 中国农业科学, 2020, 53(21): 4415-4429. doi: 10.3864/j.issn.0578-1752.2020.21.010.
YANG J H, LUO Y L, CHEN J, JIN M, WANG Z L, LI Y. Effects of main food yield under straw return in China: a meta-analysis. Scientia Agricultura Sinica, 2020, 53(21): 4415-4429. DOI: 10.3864/j.issn.0578-1752.2020.21.010. (in Chinese)
[28]
LIU D T, SONG C C, XIN Z H, FANG C, LIU Z H, XU Y P. Agricultural management strategies for balancing yield increase, carbon sequestration, and emission reduction after straw return for three major grain crops in China: A meta-analysis. Journal of Environmental Management, 2023, 340: 117965.
[29]
于滨杭, 姬建梅, 王丽学, 刘静, 高欢, 刘丹. 中国主粮作物生物炭产量效应的Meta分析. 环境科学, 2023, 44(1): 520-530.
YU B H, JI J M, WANG L X, LIU J, GAO H, LIU D. Meta analysis on yield effect of biochar for staple crops in China. Environmental Science, 2023, 44(1): 520-530. (in Chinese)
[30]
YE L L, CAMPS-ARBESTAIN M, SHEN Q H, LEHMANN J, SINGH B, SABIR M. Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls. Soil Use and Management, 2020, 36(1): 2-18.
[31]
王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素. 应用生态学报, 2013, 24(1): 260-268.
WANG Y Z, CHEN X, SHI Y. Phosphorus availability in cropland soils of China and related affecting factors. Chinese Journal of Applied Ecology, 2013, 24(1): 260-268. (in Chinese)
[32]
LU Y H, GAO Y J, NIE J, LIAO Y L, ZHU Q D. Substituting chemical P fertilizer with organic manure: effects on double-rice yield, phosphorus use efficiency and balance in subtropical China. Scientific Reports, 2021, 11: 8629.

doi: 10.1038/s41598-021-87851-2 pmid: 33883629
[33]
REYNOLDS M, FOULKES J, FURBANK R, GRIFFITHS S, KING J, MURCHIE E, PARRY M, SLAFER G. Achieving yield gains in wheat. Plant, Cell and Environment, 2012, 35(10): 1799-1823.
[34]
仇少君, 李宁, 何萍, 魏丹, 金梁, 赵士诚, 徐新朋, 周卫. 典型黑土春玉米化学肥料养分利用效率变化研究. 中国农业科学, 2019, 52(16): 2824-2834. doi: 10.3864/j.issn.0578-1752.2019.16.008.
QIU S J, LI N, HE P, WEI D, JIN L, ZHAO S C, XU X P, ZHOU W. Nutrients use efficiency change of chemical fertilizers for spring maize in a typical black soil. Scientia Agricultura Sinica, 2019, 52(16): 2824-2834. DOI: 10.3864/j.issn.0578-1752.2019.16.008. (in Chinese)
[35]
周卫, 丁文成. 新阶段化肥减量增效战略研究. 植物营养与肥料学报, 2023, 29(1): 1-7.
ZHOU W, DING W C. Strategic researches of reducing fertilizer use and increasing use efficiency in China in the new era. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 1-7. (in Chinese)
[36]
CHEN M, SCHIEVANO A, BOSCO S, MONTERO-CASTANO A, TAMBURINI G, PEREZ-SOBA M, MAKOWSKI D. Evidence map of the benefits of enhanced-efficiency fertilisers for the environment, nutrient use efficiency, soil fertility, and crop production. Environmental Research Letters, 2023, 18(4): 043005.
[37]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[38]
高静, 李建华, 张强, 郑必昭, 王瑞, 蒙秋霞, 郜春花, 徐明岗. 黄土高原北部典型县域耕地土壤碳氮时空变异特征及影响因素. 土壤学报, http://Kns.cnki.net/kcms2/detail/32.1119.P.20230526.1313.004.html.
GAO J, LI J H, ZHANG Q, ZHENG B Z, WANG R, MENG Q X, GAO C H, XU M G. Spatial and temporal variation of soil carbon and nitrogen in typical counties of north loess plateau and influencing factors. Acta Pedologica Sinica; http://Kns.cnki.net/kcms2/detail/32.1119.P.20230526.1313.004.html. (in Chinese)
[39]
LIU G Y, ZUO Y H, ZHANG Q, YANG L L, ZHAO E L, LIANG L Y, TONG Y. Ridge-furrow with plastic film and straw mulch increases water availability and wheat production on the Loess Plateau. Scientific Reports, 2018, 8: 6503.

doi: 10.1038/s41598-018-24864-4 pmid: 29695748
[40]
ZHANG X B, SUN N, WU L H, XU M G, BINGHAM I J, LI Z F. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China. Science of the Total Environment, 2016, 562: 247-259.
[41]
QIU S J, PENG P Q, LI L, HE P, LIU Q, WU J S, CHRISTIE P, JU X T. Effects of applied urea and straw on various nitrogen fractions in two Chinese paddy soils with differing clay mineralogy. Biology and Fertility of Soils, 2012, 48(2): 161-172.
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[6] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[7] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[8] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[9] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[10] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[11] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[12] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[13] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[14] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[15] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!