Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (23): 4485-4495.doi: 10.3864/j.issn.0578-1752.2018.23.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of the Different Crop Straw Biochars on Soil Bacterial Community of Yellow Soil in Guizhou

HOU JianWei(),XING CunFang(),LU ZhiHong,CHEN Fen,YU Gao   

  1. Wujiang College, Tongren University, Tongren 554300, Guizhou
  • Received:2018-03-19 Accepted:2018-09-11 Online:2018-12-01 Published:2018-12-12

Abstract:

【Objective】The objective of the experiment was to determine the effects of different straw biochars on bacterial community structures and composition in yellow soil, and to find main environmental factors as the changes in order to provide information for soil amelioration and proper management of straw residue.【Method】Through a laboratory incubation experiment and used a zonal yellow soil of Guizhou province, the influences of corn, rice and rape straw biochar that were pyrolyzed at 500℃ on bacterial communities were investigated by a high-throughput sequencing (Illumina Hiseq). Correlation and factor analysis of the bacterial community structure with environmental factors were followed. The experiment consisted of four treatments: control soil (CK), soil amended with 500℃ corn (BC1), rice (BC2) and rape (BC3) straw biochar. 【Result】The results showed that the gene copy numbers of bacterial 16S rRNA were closely related with soil total nitrogen (TN), pH and total carbon (TC) (r=0.78**, 0.62* and 0.66*, respectively). Biochar addition to soil increased the richness and diversity of dominant bacteria at phylum and class level, which were a strong positive with pH and C/N. The analysis of bacterial community at phylum level showed that Actinobacteria, Cyanobacteria and Chloroflexi were dominant bacteria, occupying 68.5% of all phyla. Factor analysis showed that soil total nitrogen (TN), C/N ratio, pH, available phosphorus (AP) and cation exchange capacity (CEC) were main environmental factors on the soil bacterial community structure, total explaining 80.8% of the community changes. The order of contribution rate was soil C/N>pH>AP>TN>CEC.【Conclusion】This study provided clear evidence that community composition and chemical properties of bacterial were changed due to biochar addition to yellow soil. And soil TN, C/N, pH, AP and CEC had a greater contribution than environmental factors on the change of the bacterial community structure, in addition, TN and pH were more efficient on improving soil richness and diversity of bacterial community.

Key words: biochar, Yellow soil, high-throughput sequencing, bacterial community, soil physiochemical characteristics

Table 1

The physical and chemical properties of the experimental soil and biochar"

变量
Variables
生物炭种类Biochar categories 土壤
Soil
玉米秸秆生物炭
Corn straw biochar
水稻秸秆生物炭
Rice straw biochar
油菜秸秆生物炭
Rape straw biochar
pH 8.23 9.59 9.55 4.60
比表面积Surface area (m2·g-1) 160.2 35.8 0.88 /
总孔容积Total pore volume (mL·g-1) 0.331 0.068 1.69 /
平均孔径Pore diameter (nm) 2.42 30.1 5.85 /
全碳Total C (g·kg-1) 534.5 248.6 521.7 5.82
全氮Total N (g·kg-1) 10.51 8.92 8.53 0.65
有效磷Available P (g·kg-1) 3.99 4.34 3.75 0.001
有效钾Available K (g·kg-1) 15.34 16.07 14.32 0.09

Fig. 1

The gene copy number of 16s rRNA Different small letters on the pillars mean significant difference at 0.05 level among treatments"

Table 2

The Yellow soil chemical properties and its correlation analysis with gene copy number of 16s rRNA"

变量
Variables
处理Treatment 相关系数
Correlation coefficient
CK BC1 BC2 BC3
pH 4.60±0.22c 5.68±0.03b 5.67±0.07b 5.81±0.08a 0.62*
全碳Total C (g·kg-1) 5.82±0.31d 13.58±0.80c 14.04±1.32b 17.49±0.99a 0.66*
全氮Total N (g·kg-1) 0.65±0.08 0.85±0.06c 0.96±0.02b 1.07±0.01a 0.78**
全磷Total P (g·kg-1) 0.17±0.02b 0.20±0.01a 0.18±0.01a 0.19±0.01a 0.36
全钾Total K (g·kg-1) 22.19±1.06c 23.23±0.52b 23.84±0.62b 24.08±1.22a 0.44
碱解氮Available N (mg·kg-1) 12.32±1.20d 22.55±1.82a 13.63±1.09b 12.58±0.91c 0.58
速效磷Available P (mg·kg-1) 1.07±0.02d 1.79±0.15a 1.63±0.23b 1.56±0.20c 0.69
有效钾Available K(mg·kg-1) 90.32±10.11d 336.55±35.37b 320.09±16.34c 417.26±65.08a 0.55

Table 3

Estimated 16S rRNA number of OTUs, Reads, richness and diversity"

处理
Treatment
OTUs Reads 丰富度Richness 多样性Diversity
Chao 1 ACE Shannon Simpson
CK 2621±145c 54267±165a 2122±115d 2311±36c 6.42±0.39c 0.9023±0.002a
BC1 2994±117b 53972±211a 2376±126c 2845±47a 8.31±0.31b 0.9386±0.005a
BC2 2832±195b 54376±139a 2678±72b 2687±105b 8.23±0.11b 0.910±0.001a
BC3 3431±132a 54511±97a 2826±150a 2926±76a 8.68±0.23a 0.908±0.003a

Fig. 2

The relative abundance of the top 10 phylum under different treatment"

Table 4

The relative abundance of the top 10 class under different treatment"


Phylum

Class
处理 Treatment
CK BC1 BC2 BC3
Cyanobacteria Oscillatoriophycideae 22.70±3.25b 37.63±6.78a 8.28±0.96c 6.58±1.11d
Actinobacteria Actinobacteria 25.22±1.92a 8.55±0.87d 11.01±2.01c 18.57±0.97b
Thermoleophilia 7.21±1.30c 9.04±1.22d 13.85±0.98b 18.43±2.54a
Firmicutes Bacilli 1.91±0.32b 1.47±0.22b 3.51±0.11a 2.44±0.09b
Proteobacteria Alphaproteobacteria 4.90±0.13b 4.09±0.06c 9.43±0.33a 9.18±0.25a
Gammaproteobacteria 0.28±0.03c 0.23±0.06c 1.17±0.10a 0.54±0.03b
Chloroflexi Ellin6529 4.89±0.11b 8.06±0.47a 1.54±0.22d 4.35±0.05c
Chloroflexi 3.36±0.18c 7.02±0.44a 1.27±0.08d 4.13±0.33b
Anaerolineae 5.12±0.31a 2.10±0.09c 1.44±0.24d 3.55±0.11b
Thermomicrobia 1.27±0.20c 4.25±0.29a 0.99±0.12d 3.07±0.23b

Fig. 3

Principal component analyses (PCA) of bacterial community composition in soils from different treatments (a), and redundancy analyses (RDA) of the correlations between soil parameters and bacterial community diversity (b) TN: Total nitrogen; TP: Total phosphorus; TK: Total potassium; TC: Total carbon; AN: Soil inorganic nitrogen; AP: Available phosphorus; AK: Available potassium; CEC: Cation exchange capacity; C/N: The ratio of total carbon and total nitrogen; BC1: Corn straw biochar treatment; BC2: Rice straw biochar treatment; BC3: Rape straw biochar treatment"

Table 5

The correlation analysis between advantage bacterial community (at phylum level) and soil chemical parameters"

菌群Phylum pH C/N 全氮 Total N 有效磷 Available phosphorus CEC
Actinobacteria 0.458* -0.159 -0.230 -0.496 0.136
Cyanobacteria 0.592* 0.492* 0.192 -0.376* 0.278
Chloroflexi 0.661** 0.537* 0.303 -0.203 -0.195
Proteobacteria 0.436** 0.622** 0.721** 0.441 0.318
Firmicutes 0.613* 0.486* 0.117 0.369* -0.255
Gemmatimonadetes 0.695** 0.335 0.316 -0.579 0.194
Crenarchaeota -0.139 -0.257 0.089 0.572 -0.148
Acidobacteria 0.301 0.378* 0.144 -0.198* 0.247*
Armatimonadetes 0.176 0.426 0.196 -0.236 0.208
Bacteroidetes -0.314 0.344* 0.372* 0.299 -0.119
[1] 曾希柏 . 红壤酸化及其防治. 土壤通报., 2000,31(3):111-113.
doi: 10.3321/j.issn:0564-3945.2000.03.005
ZENG X B . Red soil acidification and its prevention and cure. Chinese Journal of Soil Science, 2000,31(3):111-113. (in Chinese)
doi: 10.3321/j.issn:0564-3945.2000.03.005
[2] 张文安, 徐大地, 肖厚军 . 磷石膏改良贵州黄壤及其应用前景. 贵州农业科学., 2002,30(2):61-63.
ZHANG W A, XU D D, XIAO H J . Yellow soil improvement by using phosphorous gypsum and its prospects. Guizhou Agricultural Sciences, 2002,30(2):61-63. (in Chinese)
[3] TRYON E H . Effect of charcoal on certain physic, chemical, and biological properties of forest soils. Ecological Monographs., 1998,18(3):81-115.
doi: 10.2307/1948629
[4] ZIMMERMAN A R . Abiotic and microbial oxidation of laboratory- produced black carbon (biochar). Environmental Science & Technology., 2010,44(5):1295-1301.
[5] WOOLF D, AMONETTE J E , STREET-PERROTT F A, LEHMANN J, JOSEPH S. Sustainable biochar to mitigate global climate change. Nature Communications., 2010,1(2):56.
[6] XIE Z, XU Y, LIU G, Qi L, ZHU J G, TU C, JAMES E, AMONETTE J E, CADISCH G, YONG J W H, HU S J . Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant and Soil., 2013,370(1/2):527-540.
doi: 10.1007/s11104-013-1636-x
[7] ZHAO X, WANG S Q, XING G X . Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation and column leaching studies. Journal of Soils and Sediments., 2014,14(3):471-482.
doi: 10.1007/s11368-013-0803-2
[8] 周桂玉, 窦森, 刘世杰 . 生物质炭结构性质及其对土壤有效养分和腐殖质组成的影响. 农业环境科学学报., 2011,30(10):2075-2080.
ZHOU G Y, DOU S, LIU S J . The structural characteristics of biochar and its effects on soil available nutrients and humus composition. Journal of Agro-Environment Science, 2011,30(10):2075-2080. (in Chinese)
[9] 张晗芝, 黄云, 刘钢, 许燕萍, 刘金山, 卑其诚, 蔺兴武, 朱建国, 谢祖彬 . 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报., 2010,19(11):2713-2717.
doi: 10.3969/j.issn.1674-5906.2010.11.034
ZHANG H Z, HUANG Y, LIU G, XU Y P, LIU J S, BEI Q C, LIN X W, ZHU J G, XIE Z B . Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Environmental Sciences, 2010,19(11):2713-2717. (in Chinese)
doi: 10.3969/j.issn.1674-5906.2010.11.034
[10] YUAN J H, XU R K, ZHANG H . The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology., 2011,102(3):3488-3497.
doi: 10.1016/j.biortech.2010.11.018 pmid: 21112777
[11] GOLDBERG. Black Carbon in the Environment: Properties and Distribution. New York: John Wiley, 1985.
[12] LEHMANN J, RILLIG M C, THIES J, MASIELLO C A, HOCKADAY W C, CROWLEY D . Biochar effects on soil biota-A review. Soil Biology & Biochemistry., 2011,43(9):1812-1836.
doi: 10.1016/j.soilbio.2011.04.022
[13] KOLB S E, FERMANICH K J, DORNBUSH M E . Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal., 2009,73(4):1173-1181.
doi: 10.2136/sssaj2008.0232
[14] STEINBEISS S, GLEIXNER G, ANTONIETTI M . Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry., 2009,41(6):1301-1310.
doi: 10.1016/j.soilbio.2009.03.016
[15] 郭文, 熊康宁, 张锦华, 杨苏茂, 刘凯旋, 许留兴 . 饲用灌木资源开发利用研究现状及其对贵州石漠化地区的启示. 中国农业科技导报., 2017,19(7):108-116.
GUO W, XIONG K N, ZHANG J H, YANG S M, LIU K X, XU L X . Research status of forage shrub resources utilization and enlightenment for rocky desertification area in Guizhou province. Journal of Agricultural Science and Technology, 2017,19(7):108-116. (in Chinese)
[16] 张雅蓉, 李渝, 蒋太明, 张文安 . 贵州主要农作物秸秆资源分布及综合利用现状. 贵州农业科学., 2015,43(8):262-267.
doi: 10.3969/j.issn.1001-3601.2015.08.064
ZHANG Y R, LI Y, JIANG T M, ZHANG W A . Distribution and comprehensive utilization of straw resources of main crops in Guizhou. Guizhou Agricultural Sciences, 2015,43(8):262-267. (in Chinese)
doi: 10.3969/j.issn.1001-3601.2015.08.064
[17] PACE N R . Problems with “Procaryote”. Journal of Bacteriology., 2009,191(7):2008-2010.
doi: 10.1128/JB.01224-08
[18] 张伟明 . 生物炭的理化性质及其在作物生产上的应用.[D]. 辽宁: 沈阳农业大学, 2012.
ZHANG W M . Physical and chemical properties of biochar and its application in crop production.[D]. Liaoning: Shenyang Agricultural University, 2012. ( in Chinese)
[19] 鲍士旦 . 土壤农化分析. 北京: 中国农业科技出版社, 2000.
BAO S D. The Method of Analysis for Soil Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. ( in Chinese)
[20] 王佩雯, 朱金峰, 陈征, 许自成, 武劲草, 常安然 . 高通量测序技术下连作植烟土壤细菌群落与土壤环境因子的耦合分析. 农业生物技术学报., 2016,24(11):1754-1763.
doi: 10.3969/j.issn.1674-7968.2016.11.013
WANG P W, ZHU J F, CHEN Z, XU Z C, WU J C, CHANG A R . Coupling analysis based on high throughput sequencing technology of soil bacterial community and soil environmental factors in continuous cropping tobacco soil. Journal of Agricultural Biotechnology, 2016,24(11):1754-1763. (in Chinese)
doi: 10.3969/j.issn.1674-7968.2016.11.013
[21] 陈心想, 耿增超, 王森, 赵宏飞 . 施用生物炭后塿土土壤微生物及酶活性变化特征. 农业环境科学学报., 2014,33(4):751-758.
doi: 10.11654/jaes.2014.04.019
CHEN X X, GENG Z C, WANG S, ZHAO H F . Effects of biochar amendment on microbial biomass and enzyme activities in loess soil. Journal of Agro-Environment Science, 2014,33(4):751-758. (in Chinese)
doi: 10.11654/jaes.2014.04.019
[22] 陈伟, 周波, 束怀瑞 . 生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响. 中国农业科学., 2013,46(18):3850-3856.
doi: 10.3864/j.issn.0578-1752.2013.18.014
CHEN W, ZHOU B, SHU H R . Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis Rehdv. Scientia Agricultura Sinica, 2013,46(18):3850-3856. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.18.014
[23] DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, JONES D L, MURPHY D V . Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant and Soil., 2012,354(1/2):311-324.
doi: 10.1007/s11104-011-1067-5
[24] 李明, 李忠佩, 刘明, 江春玉, 吴萌 . 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响. 中国农业科学., 2015,48(7):1361-1369.
LI M, LI Z P, LIU M, JIANG C Y, WU M . Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil. Scientia Agricultura Sinica, 2015,48(7):1361-1369. (in Chinese)
[25] 李松昊, 何冬华, 沈秋兰, 徐秋芳 . 竹炭对三叶草生长及土壤细菌群落的影响. 应用生态学报., 2014,25(8):2334-2340.
LI S H, HE D H, SHEN Q L, XU Q F . Effect of bamboo charcoal on the growth of Trifolium repens and soil bacterial community structure. Chinese Journal of Applied Ecology, 2014,25(8):2334-2340. (in Chinese)
[26] 武爱莲, 丁玉川, 焦晓燕, 王劲松, 董二伟, 郭珺, 王浩 . 玉米秸秆生物炭对褐土微生物功能多样性及细菌群落的影响. 中国生态农业学报., 2016,24(6):736-743.
doi: 10.13930/j.cnki.cjea.151212
WU A L, DING Y C, JIAO X Y, WANG J S, DONG E W, GUO J, WANG H . Effects of corn stover biochar on microbial functional diversity and the bacterial community in brown soil. Journal of Chinese Ecological Agriculture, 2016,24(6):736-743. (in Chinese)
doi: 10.13930/j.cnki.cjea.151212
[27] PIETIKAINEN J, KIIKKILA O, FRITZE H . Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos., 2000,89(5):231-242.
doi: 10.1034/j.1600-0706.2000.890203.x
[28] JIN H . Characterization of microbial life colonizing biochar and biochar-amended soils[D]. New York: Cornell University, Ithac., 2010.
[29] MARRIS E . Putting the carbon back: Black is the new green. Nature., 2006,442(3):624-626.
doi: 10.1057/9780230105973
[30] KHODADAD C L M, ZIMMERMAN A R, GREEN S J, UTHANDI S, FOSTER J S . Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology and Biochemistry., 2011,43(2):385-392.
doi: 10.1016/j.soilbio.2010.11.005
[31] 尹昌, 范分良, 李兆君, 宋阿琳, 朱平, 彭畅, 梁永超 . 长期施用有机和无机肥对黑土 nir S型反硝化菌种群结构和丰度的影响. 环境科学., 2012,33(11):3967-3975.
YIN C, FAN F L, LI Z J, SONG A L, ZHU P, PENG C, LIANG Y C . Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nir S-type denitrifiers in black soil. Environmental Science, 2012,33(11):3967-3975. (in Chinese)
[32] 周之栋, 卜晓莉, 吴永波, 薛建辉 . 生物炭对土壤微生物特性影响研究进展. 南京林业大学学报(自然科学版)., 2016,40(6):1-8.
ZHOU Z D, BU X L, WU Y B, XUE J H . The research progress on effect of biochar on soil microbial characteristics. Journal of Nanjing Forestry University (Natural Science Edition), 2016,40(6):1-8. (in Chinese)
[33] GLASER B . Manioc peel and charcoal:A potential organic amendment for sustainable soil fertility in the tropics. Soil Biology and Fertilizer., 2005,41(1):15-21.
doi: 10.1007/s00374-004-0804-9
[34] WARNOCK D D, LEHNLANN J, KUYPER T W . Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil., 2007,300(1/2):9-20.
doi: 10.1007/s11104-007-9391-5
[35] 纪锐琳, 朱义年, 佟小薇, 张爱莉, 朱本富, 王敦球 . 竹炭包膜尿素在土壤中的氨挥发损失及其影响因素. 桂林工学院学报., 2008,28(1):113-118.
doi: 10.3969/j.issn.1674-9057.2008.01.024
JI R L, ZHU Y N, TONG X W, ZHANG A L, ZHU B F, WANG D Q . Ammonia volatilization of bamboo-charcoal coated urea in soil and affecting factors. Journal of Guilin University of Technology, 2008,28(1):113-118.
doi: 10.3969/j.issn.1674-9057.2008.01.024
[36] LIU J J, SUI Y Y, YU Z H, SHI Y, CHU H Y, JIN J, LIU X B, WANG G H . High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biology & Biochemistry., 2014,70(2):113-122.
doi: 10.1016/j.soilbio.2013.12.014
[37] 高圣超, 关大伟, 马鸣超, 张伟, 李俊, 沈德龙 . 大豆连作条件下施肥对东北黑土细菌群落的影响. 中国农业科学., 2017,50(7):1271-1281.
doi: 10.3864/j.issn.0578-1752.2017.07.010
GAO S C, GUAN D W, MA M C, ZHANG W, LI J, SHEN D L . Effects of fertilization on bacterial community under the condition of continuous soybean monoculture in black soil in the northeast China. Scientia Agricultura Sinica, 2017,50(7):1271-1281. (in Chines)
doi: 10.3864/j.issn.0578-1752.2017.07.010
[1] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[2] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[3] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[4] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[5] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[6] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[7] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[8] HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032.
[9] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[10] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[11] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[12] DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission [J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034.
[13] ZHAO XinZhou,ZHANG ShiChun,LI Ying,ZHENG YiMin,ZHAO HongLiang,XIE LiYong. The Characteristics of Soil Ammonia Volatilization Under Different Fertilizer Application Measures in Corn Field of Liaohe Plain [J]. Scientia Agricultura Sinica, 2020, 53(18): 3741-3751.
[14] ZHAO YuanYuan,LI PengFei,XU QinZhi,AN QingMing,MENG JinZhu. Screening and Analysis of Follicular Development Related Genes in Goat [J]. Scientia Agricultura Sinica, 2020, 53(17): 3597-3605.
[15] SHANG LiRong,WAN LiQiang,LI XiangLin. Effects of Organic Fertilizer on Soil Bacterial Community Diversity in Leymus chinensis Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2614-2624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!