Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 403-415.doi: 10.3864/j.issn.0578-1752.2024.02.014

• RESEARCH NOTES • Previous Articles     Next Articles

Comparison of Heat Tolerance of Maize Hybrids and Their Parental Inbreds with Different Genotypes

XU TianJun(), LÜ TianFang(), LI ZiHao, ZHANG Yong, LIU HongWei, LIU YueE, CAI WanTao, ZHANG RuYang, SONG Wei, XING JinFeng, ZHAO JiuRan(), WANG RongHuan()   

  1. Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
  • Received:2023-05-28 Accepted:2023-07-31 Online:2024-01-16 Published:2024-01-19
  • Contact: ZHAO JiuRan, WANG RongHuan

Abstract:

【Objective】 In recent years, the adverse weather of high temperature and heat damage in the Huang-Huai-Hai maize region of China occurred frequently, which has become an important adverse factor threatening maize production. Study and clarify the effects of high temperature stress on male and female ear characteristics and yield of maize can provide useful guidance for the cultivation and selection of high temperature tolerant maize varieties. 【Method】 The variety of Zhengdan958 (Zheng58×Chang7-2), Xianyu335 (PH6WC×PH4CV), Jingnongke728 (JingMC01×Jing2416), MC812 (JingB547×Jing2416), and their parents were used as the test materials. High temperature stress before and after flowering (from V12 stage to 7 d after silking) were conducted. The effects of high temperature stress on the growth and development of male and female panicles, ASI, pollen activity, yield and yield components of different genotypes of maize hybrids and their parents were studied. 【Result】 High temperature stress before and after anthesis significantly reduced the ear length, rows per ear and grains per row of the tested maize varieties and their parents, and then resulted significant decrease in yield. Compared with the control, the grain number per spike of Zhengdan958, Xianyu335, Jingnongke728 and MC812 decreased by 22.28%, 47.69%, 6.13% and 8.11% respectively under high temperature stress, resulting yield decrease of 9.50%, 50.61%, 3.17% and 5.00% respectively. Among the parental materials, the decrease of rows per panicle, grains per row and yield of Jing2416 under high temperature treatment was the smallest and not significant, while the decrease of PH6WC was the largest. Under high temperature stress, the total number of tassel branches, the length of tassel, the total amount of loose pollen and pollen activity decreased significantly, the silking period of loose pollen was prolonged, and the duration of loose pollen was shortened. Among them, Jingnongke728 had the smallest decline, followed by MC812, showing good heat resistance, while Zhengdan958 had the largest decline in the length of tassel, but the amount of pollen was the largest due to the large number of tassel branches. Xianyu335 has fewer male panicle branches, a large decrease in male panicle length, the least amount of pollen and low activity. Among the parental materials, Jing2416 had a large amount of total loose pollen and strong pollen vitality under high temperature treatment, with the smallest decline, only 4.50 and 3.98 percentage points. Compared with the control, the interval of loose pollen silking (ASI) was prolonged by 1.6d under high temperature stress. The decrease in male spike length is manifested as Zhengdan958>Xianyu335>MC812>Jingnongke728. Zhengdan958 had the largest decrease in male spike length, but had more branches and the largest pollen yield; Xianyu335 has fewer branches of male spikes, a significant decrease in male spike length, the least pollen quantity, and the lowest activity; Jing 2416 has a large amount of loose pollen and strong pollen vitality, with the smallest decrease (only 4.50% and 3.98%). 【Conclusion】 High temperature stress before and after anthesis has a significant impact on the grain yield, male and female ear development process, pollen activity and filament microstructure of the tested maize varieties. Under high temperature stress at this stage, the decline of yield and pollen activity of Jingnongke728 and MC812 is significantly less than Xianyu335, showing higher single ear yield and heat tolerance. By comparing the heat resistance of the parental inbred lines of the tested maize hybrids, it was found that the heat resistance of the paternal inbred lines was better than that of the maternal inbred lines. The male panicle branch and length of the parent material Jing2416 decreased slightly, the amount of pollen was large, the pollen activity was high, the filaments were hairy, the ability to capture pollen was strong, the single panicle yield was high, and the heat resistance was the best. Therefore, in the planting area with frequent high temperature and heat damage, selecting maize varieties such as Jingnongke728 can achieve stable and high yield; and during the maize breeding process, we should pay more attention to the utilizing of the higher temperature resistant inbred such an Jing2416 and then combination higher temperature maize varieties.

Key words: high temperature, maize, parental inbred lines, heat resistance

Table 1

Test materials"

品种
Variety
母本
Female parent
父本
Male parent
郑单958 Zhengdan958 郑58 Zheng58 昌7-2 Chang7-2
先玉335 Xianyu335 PH6WC PH4CV
京农科728 Jingnongke728 京MC01 JingMC01 京2416 Jing2416
MC812 京B547 JingB547 京2416 Jing2416

Fig. 1

Atmospheric temperature during high temperature treatment of maize"

Table 2

Effects of high temperature treatment before and after flowering on growth period and loose powder duration of tested varieties and their parental inbred lines"

年份
Year
品种/自交系
Variety/Inbred line
生育期 Growth period (d) 散粉持续期 Loose powder duration (d)
CK TR CK TR
2020 京2416 Jing2416 97 93 8 7
京MC01 JingMC01 100 95 6 4
京B547 JingB547 105 99 8 6
PH4CV 107 100 8 3
PH6WC 110 103 7 4
郑58 Zheng58 117 112 8 5
昌7-2 Chang7-2 111 107 9 7
京农科728 Jingnongke728 99 95 8 7
MC812 100 95 7 6
先玉335 Xianyu335 116 110 7 4
郑单958 Zhengdan958 119 114 9 8
2021 京2416 Jing2416 98 93 9 8
京MC01 JingMC01 102 97 7 5
京B547 JingB547 106 102 9 6
PH4CV 109 102 7 3
PH6WC 113 105 8 6
郑58 Zheng58 118 112 8 6
昌7-2 Chang7-2 113 108 9 6
京农科728 Jingnongke728 100 95 8 7
MC812 102 96 8 6
先玉335 Xianyu335 116 109 7 3
郑单958 Zhengdan958 120 113 9 7

Fig. 2

Effects of high temperature stress before and after flowering on ASI of tested maize varieties and their parental inbred lines"

Table 3

Effects of high temperature stress before and after flowering on the total number of tassel branches and tassel length of maize varieties and their parental inbred lines"

年份
Year
品种/自交系
Variety/Inbred line
雄穗分支总数 Total number of male panicle branch 雄穗长度 Tassel length (cm)
CK TR CK TR
2020 京2416 Jing2416 7.89±0.12hi 7.46±0.47i 108.26±2.58ij 100.85±1.75jk
京MC01 JingMC01 3.24±0.11l 3.00±0.03l 75.15±4.40no 70.29±1.31o
京B547 JingB547 6.18±0.14j 4.09±0.05k 93.41±2.75kl 84.99±4.55lm
PH4CV 6.39±0.13j 4.60±0.11k 115.66±1.54hi 94.09±3.95k
PH6WC 3.18±0.12l 2.29±0.11m 59.08±1.04p 48.72±1.15q
郑58 Zheng58 10.21±0.04f 8.92±0.10g 184.20±3.55f 122.49±2.20h
昌7-2 Chang7-2 32.01±1.63a 24.01±0.19b 320.86±1.41a 246.42±3.36c
京农科728 Jingnongke728 8.85±0.10g 8.31±0.30gh 175.79±2.89fg 172.04±1.62g
MC812 11.79±0.13e 11.19±1.02e 219.44±3.25d 213.28±4.56de
先玉335 Xianyu335 5.88±0.06j 4.36±0.15k 119.62±3.85h 81.33±1.20mn
郑单958 Zhengdan958 21.05±0.06c 13.86±0.07d 307.22±4.24b 208.15±5.78e
2021 京2416 Jing2416 7.69±0.28hi 7.23±0.22i 98.02±1.95h 92.39±2.67hi
京MC01 JingMC01 3.20±0.17l 2.92±0.08l 66.78±3.23k 66.17±3.52k
京B547 JingB547 6.00±0.43j 4.00±0.12k 88.20±0.76i 60.90±5.31kl
PH4CV 6.33±0.21j 4.43±0.40k 110.00±3.95g 88.09±1.93i
PH6WC 3.00±0.12l 2.11±0.07m 55.30±1.35l 44.64±2.46m
郑58 Zheng58 10.14±1.23f 8.88±0.25g 176.10±2.20e 118.11±13.12g
昌7-2 Chang7-2 29.29±0.97a 23.88±0.87b 310.93±10.07a 236.09±8.62c
京农科728 Jingnongke728 8.63±0.15g 8.20±0.15gh 168.25±8.09ef 161.07±5.50f
MC812 11.50±1.23e 10.99±1.23e 204.16±6.81d 196.14±11.19d
先玉335 Xianyu335 5.75±0.20j 4.13±0.11k 110.72±7.26g 76.70±2.35j
郑单958 Zhengdan958 20.92±0.82c 13.64±0.53d 293.89±4.09b 198.56±11.89d

Fig. 3

Effects of high temperature stress before and after flowering on male ear characteristics of tested maize varieties and their parental inbred lines"

Fig. 4

Effects of high temperature stress before and after flowering on total loose powder of tested maize varieties and their parental inbred lines Different letters are significantly different at P<0.05, the error bar indicates standard error(n=3). The same as below"

Fig. 5

effects of high temperature stress before and after flowering on pollen activity of tested maize varieties and their parental inbred lines"

Fig. 6

Effects of high temperature stress before and after flowering on filament characters of tested maize varieties and their parents"

Table 4

Effects of high temperature stress before and after surface flowering on Yield and yield components of tested maize varieties and their parental inbred lines"

年份
Year
品种/自交系
Variety/Inbred line
籽粒产量
Grain yield (g/plant)
百粒重
100-grain weight (g)
穗行数
Rows of ear
行粒数
Grains per row
CK TR CK TR CK TR CK TR
2020 京2416 Jing2416 115.93±3.96efg 111.22±2.49fgh 33.73±1.53fg 32.86±2.77gh 14.10±0.17ghi 13.83±0.21i 29.03±0.02j 28.13±0.20j
京MC01 JingMC01 101.16±2.84i 88.14±3.24j 27.33±1.52i 25.52±1.76i 13.73±0.70i 12.63±0.50j 31.80±0.35g 28.50±0.23j
京B547 JingB547 108.94±4.08gh 97.63±3.12i 27.15±0.81i 26.47±1.56i 13.93±0.23hi 12.53±0.32j 28.50±0.12j 25.77±0.26k
PH4CV 120.08±1.00e 71.50±2.35k 26.19±0.80i 24.69±1.34ij 15.77±0.45bcd 13.87±0.23hi 29.10±0.15ij 20.90±0.06m
PH6WC 104.60±1.21hi 50.73±4.11l 24.73±1.12ij 30.63±3.60h 13.93±0.70hi 12.30±0.26j 30.40±0.06h 13.50±0.30n
郑58 Zheng58 117.27±2.63ef 84.33±4.74j 36.45±1.11ef 34.50±2.07fg 12.10±0.17j 10.67±0.29k 28.10±0.20j 21.70±0.15m
昌7-2 Chang7-2 99.37±0.71i 69.96±1.04k 22.42±0.48j 19.61±1.42k 14.70±0.36efg 12.67±0.61j 30.17±0.15hi 28.23±0.13j
京农科728 Jingnongke728 226.31±8.41d 218.30±9.45d 39.26±0.95cd 38.30±1.05de 16.00±0.44abc 15.43±0.45cde 37.47±0.28de 36.47±0.90e
MC812 246.04±10.77b 236.57±11.87bc 43.07±1.00a 42.04±1.53ab 15.20±0.20def 14.60±0.53fgh 39.23±0.40bc 37.50±0.21bcd
先玉335 Xianyu335 231.62±2.33c 118.97±4.91e 35.71±0.23ef 32.74±2.89gh 16.53±0.21a 14.27±0.46ghi 39.77±0.20ab 24.53±0.41l
郑单958 Zhengdan958 257.33±2.84a 232.03±2.12c 41.84±0.96abc 39.35±1.66bcd 16.20±0.20ab 14.03±0.06ghi 40.73±1.01a 33.87±1.11f
2021 京2416 Jing2416 104.42±4.91fg 100.78±5.67fg 30.08±0.91h 29.67±1.06h 14.00±0.22ef 13.77±0.49ef 29.47±0.31fghi 28.80±0.56ghij
京MC01 JingMC01 97.49±1.68gh 79.50±2.11ij 25.44±0.63jkl 24.61±0.66kl 13.80±0.41ef 12.40±0.60h 28.70±0.22hijk 25.20±1.34l
京B547 JingB547 107.68±4.07ef 84.16±3.79i 26.26±0.17j 25.78±0.30jk 13.40±0.42fg 12.20±0.86g 30.60±0.25f 28.70±0.89hijk
PH4CV 112.15±2.22e 64.92±3.33k 25.14±1.03jkl 24.71±1.34kl 15.60±0.31abc 13.40±0.45fg 28.60±0.27ijk 20.30±1.12n
PH6WC 100.56±1.20fg 43.89±1.82l 24.29±0.51l 27.92±0.75i 13.80±0.69ef 12.00±0.99h 30.00±0.63fgh 13.10±0.87o
郑58 Zheng58 107.15±4.37ef 73.36±2.07j 33.43±1.07fg 32.47±1.20g 12.00±0.94h 10.40±0.53i 27.50±0.19jk 21.10±0.74n
昌7-2 Chang7-2 92.20±2.21h 59.24±1.21k 21.12±1.02m 16.89±2.12n 14.60±1.56de 12.80±0.67gh 30.11±2.22fg 27.40±0.88k
京农科728 Jingnongke728 214.26±6.45c 208.28±9.34cd 37.11±0.66bc 36.55±0.87bcd 15.80±0.42abc 15.20±0.48bcd 37.10±0.54cd 36.20±0.69de
MC812 242.57±2.11a 227.62±3.09ab 38.76±0.99a 37.89±0.36ab 15.00±0.41cd 14.47±0.25de 38.96±1.02ab 37.14±0.45cd
先玉335 Xianyu335 222.49±3,79b 105.32±3.57ef 34.79±2.33ef 32.33±1.01g 16.40±0.43a 14.41±0.59de 39.00±0.49ab 23.60±0.95m
郑单958 Zhengdan958 227.09±4.20ab 206.39±8.09d 36.05±0.81cde 35.66±0.07bcd 16.00±0.31ab 15.00±0.17cd 39.80±0.43a 35.50±1.23e

Fig. 7

Effects of high temperature stress before and after flowering on ears of tested maize varieties and their parental inbred lines"

[1]
赵久然, 王荣焕. 中国玉米生产发展历程、存在问题及对策. 中国农业科技导报, 2013, 15(3): 1-6.
ZHAO J R, WANG R H. Development process, problem and countermeasure of maize production in China. Journal of Agricultural Science and Technology, 2013, 15(3): 1-6. (in Chinese)

doi: 10.3969/j.issn.1008-0864.2013.03.01
[2]
陈翔, 鲍杨俊, 李庆, 丁井魁, 杨明珠, 王冬阳, 曹祖航, 贺亮, 宋有洪. 黄淮海夏玉米花期高温发生特点、危害机理与防控措施综述. 安徽农业大学学报, 2020, 47(2): 304-308.
CHEN X, BAO Y J, LI Q, DING J K, YANG M Z, WANG D Y, CAO Z H, HE L, SONG Y H. Review on characteristics of high temperature and its damage, and prevention measures of summer maize in Huang-Huai-Hai area. Journal of Anhui Agricultural University, 2020, 47(2): 304-308. (in Chinese)
[3]
BORRÁS L, VITANTONIO-MAZZINI L N. Maize reproductive development and kernel set under limited plant growth environments. Journal of Experimental Botany, 2018, 69(13): 3235-3243.

doi: 10.1093/jxb/erx452 pmid: 29304259
[4]
PRASAD P V V, JAGADISH S V K. Field crops and the fear of heat stress-opportunities, challenges and future directions. Procedia Environmental Sciences, 2015, 29: 36-37.

doi: 10.1016/j.proenv.2015.07.144
[5]
KRISHNA JAGADISH S V. Heat stress during flowering in cereals- effects and adaptation strategies. The New Phytologist, 2020, 226(6): 1567-1572.

doi: 10.1111/nph.v226.6
[6]
LIZASO J I, RUIZ-RAMOSA M, RODRÍGUEZA L, GABALDON- LEALB C, OLIVEIRAC J A, LORITEB I J, SÁNCHEZA D, GARCÍAD E, RODRÍGUEZA A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 2018, 216: 129-140.

doi: 10.1016/j.fcr.2017.11.013
[7]
于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L LI C H, LIU T X. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage. Journal of Maize Sciences, 2016, 24(2): 62-71. (in Chinese)
[8]
RATTALINO EDREIRA J I, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: A novel approach for assessing sources of kernel loss in field conditions. Field Crops Research, 2013, 142: 58-67.

doi: 10.1016/j.fcr.2012.11.009
[9]
HATFIELD J L, PRUEGER J H. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 2015, 10: 4-10.

doi: 10.1016/j.wace.2015.08.001
[10]
WANG Y Y, TAO H B, TIAN B J, SHENG D C, XU C C, ZHOU H M, HUANG S B, WANG P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 2019, 158: 80-88.

doi: 10.1016/j.envexpbot.2018.11.007
[11]
刘伟华, 罗红兵, 邱博. 玉米雄穗发育及其分枝数的QTL定位研究进展. 作物研究, 2015, 29(6): 667-671.
LIU W H, LUO H B, QIU B. Advances in maize tassel for development and QTL mapping of primary branch number. Crop Research, 2015, 29(6): 667-671. (in Chinese)
[12]
冯晔, 张建华, 包额尔敦嘎, 王东, 李淑兰, 张桂华, 高玉华, 高丽辉, 杨凤玲, 王春雷. 高温、干旱对玉米的影响及相应的预防措施. 内蒙古农业科技, 2008, 36(6): 38-39, 44.
FENG Y, ZHANG J H, BAOEER D G, WANG D, LI S L, ZHANG G H, GAO Y H, GAO L H, YANG F L, WANG C L. Effect of high temperature and drought on maize and its prevention measures. Inner Mongolia Agricultural Science and Technology, 2008, 36(6): 38-39, 44. (in Chinese)
[13]
GIORNO F, WOLTERS-ARTS M, MARIANI C, RIEU I. Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development. Plants, 2013, 2(3): 489-506.

doi: 10.3390/plants2030489
[14]
KAKANI V G, REDDY K R, KOTI S, WALLACE T P, PRASAD P V V, REDDY V R, ZHAO D. Differences in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany, 2005, 96(1): 59-67.

doi: 10.1093/aob/mci149
[15]
VARA PRASAD P V, CRAUFURD P Q, KAKANI V G, WHEELER T R, BOOTE K J. Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Functional Plant Biology, 2001, 28(3): 233.

doi: 10.1071/PP00127
[16]
DUPUIS I, DUMAS C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 1990, 94(2): 665-670.

doi: 10.1104/pp.94.2.665
[17]
于康珂. 玉米穗发育对高温胁迫的响应[D]. 郑州: 河南农业大学, 2016.
YU K K. Responses of reproductive organs development in maize (Zea mays L.) to high temperature stress[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese)
[18]
YOUNG L W, WILEN R W, BONHAM-SMITH P C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 2004, 55(396): 485-495.

doi: 10.1093/jxb/erh038
[19]
张桂莲, 张顺堂, 肖浪涛, 唐文帮, 肖应辉, 陈立云. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响. 中国水稻科学, 2014, 28(2): 155-166.
ZHANG G L, ZHANG S T, XIAO L T, TANG W B, XIAO Y H, CHEN L Y. Effect of high temperature stress on physiological characteristics of anther, pollen and stigma of rice during heading- flowering stage. Chinese Journal of Rice Science, 2014, 28(2): 155-166. (in Chinese)
[20]
李川, 乔江方, 朱卫红, 代书桃, 黄璐, 张美微, 刘京宝. 玉米自交系响应花粒期高温胁迫差异表达基因的分析. 华北农学报, 2019, 34(1): 1-11.

doi: 10.7668/hbnxb.201750986
LI C, QIAO J F, ZHU W H, DAI S T, HUANG L, ZHANG M W, LIU J B. Differential expression of high temperature stress in anthesis stage related genes of maize inbred lines. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 1-11. (in Chinese)

doi: 10.7668/hbnxb.201750986
[21]
VOGLER A, BERTOSSA M, AULINGER-LEIPNER I, STAMP P. Weather effects on cross-pollination in maize. Crop Science, 2010, 50(2): 713-717.

doi: 10.2135/cropsci2009.04.0213
[22]
李余良, 刘建华, 郑锦荣, 胡建广. 高温胁迫下甜玉米雌穗发育基因差异表达谱分析. 作物学报, 2013, 39(2): 269-279.
LI Y L, LIU J H, ZHENG J R, HU J G. Gene expression profile of sweet corn ears under heat stress. Acta Agronomica Sinica, 2013, 39(2): 269-279. (in Chinese)

doi: 10.3724/SP.J.1006.2013.00269
[23]
陶志强, 陈源泉, 隋鹏, 袁淑芬, 高旺盛. 华北春玉米高温胁迫影响机理及其技术应对探讨. 中国农业大学学报, 2013, 18(4): 20-27.
TAO Z Q, CHEN Y Q, SUI P, YUAN S F, GAO W S. Effects of high temperature stress on spring maize and its technologic solutions in North China Plain. Journal of China Agricultural University, 2013, 18(4): 20-27. (in Chinese)
[24]
高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53(19): 3954-3963. doi: 10.3864/j.issn.0578-1752.2020.19.009.
GAO Y B, ZHANG H, SHAN J, XUE Y F, QIAN X, DAI H C, LIU K C, LI Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963. doi: 10.3864/j.issn.0578-1752.2020.19.009. (in Chinese)
[25]
周祥利, 陶洪斌, 李梁, 王璞. 花后水分亏缺对玉米叶绿素荧光动力学参数及产量的影响. 华北农学报, 2010, 25(6): 187-190.

doi: 10.7668/hbnxb.2010.06.036
ZHOU X L, TAO H B, LI L, WANG P. Effects of post-anthesis water deficit on the kinetic parameters of chlorophylⅡfluorescence and grain yield of maize (Zea mays L.). Acta Agriculturae Boreali-Sinica, 2010, 25(6): 187-190. (in Chinese)
[26]
王海梅. 高温胁迫对河套灌区玉米生理指标及产量构成要素的影响. 干旱气象, 2015, 33(1): 59-62.

doi: 10.11755/j.issn.1006-7639(2015)-01-0059
WANG H M. Influence of high temperature stress on physiological indexes and yield components of maize in Hetao irrigation district. Journal of Arid Meteorology, 2015, 33(1): 59-62. (in Chinese)
[27]
HALL A J, VILELLA F, TRAPANI N, CHIMENTI C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Research, 1982, 5: 349-363.

doi: 10.1016/0378-4290(82)90036-3
[28]
张凤路, 陈景堂, G.O. Edmeades. 玉米雌雄穗开花间隔影响穗粒数的潜在原因研究. 玉米科学, 2002(2): 53-55.
ZHANG F L, CHEN J T, EDMEADES G O. Studies on the underlying causes of the relationship between anthesis-silking interval and grain number. Journal of Maize Sciences, 2002, 10(2): 53-55. (in Chinese)
[29]
宋方威, 吴鹏, 邢吉敏, 周小英, 崔筱然, 于秀萍, 王进. 高温胁迫对玉米自交系父本花粉生活力的影响. 玉米科学, 2014, 22(3): 153-158.
SONG F W, WU P, XING J M, ZHOU X Y, CUI X R, YU X P, WANG J. Influences of high temperature stress on viability of pollen grain inbred lines of male parent. Journal of Maize Sciences, 2014, 22(3): 153-158. (in Chinese)
[30]
降志兵, 陶洪斌, 吴拓, 王璞, 宋庆芳. 高温对玉米花粉活力的影响. 中国农业大学学报, 2016, 21(3): 25-29.
JIANG Z B, TAO H B, WU T, WANG P, SONG Q F. Effects of high temperature on maize pollen viability. Journal of China Agricultural University, 2016, 21(3): 25-29. (in Chinese)
[31]
RATTALINO EDREIRA J I, BUDAKLI CARPICI E, SAMMARRO D, OTEGUI M E. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 2011, 123(2): 62-73.

doi: 10.1016/j.fcr.2011.04.015
[32]
ALAM M A, SEETHARAM K, ZAIDI P H, DINESH A, VINAYAN M T, NATH U K. Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crops Research, 2017, 204: 110-119.

doi: 10.1016/j.fcr.2017.01.006
[1] ZHANG MingQi, WANG Rui, ZHANG ChunXiao, SUN Bo, REN Jie, LI ShuFang, WANG Lu, ZHU ShaoXi, ZHANG JiangBin, SHI XinChen, WANG HaiJie, ZHANG YunLong, TIAN HongLi, ZHAO YiKun, KUANG Meng, WANG YuanDong, YI HongMei, LI XiaoHui, WANG FengGe. The Construction and Application of SSR and SNP Molecular ID for Maize Germplasm Resources of Jilin Province [J]. Scientia Agricultura Sinica, 2024, 57(2): 236-249.
[2] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[3] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[4] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[5] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[6] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[7] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[8] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[9] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[10] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[11] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[12] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[13] WU Jing, CHEN Meng, WANG ZhiHua, YANG JiZhi, LI YanLi, WU YuShan, YANG WenYu. Effect of Different Strip Distances on Light Energy Utilization in Strip Intercropping Maize [J]. Scientia Agricultura Sinica, 2023, 56(23): 4648-4659.
[14] JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670.
[15] GUO Ning, SUN Hua, MA HongXia, LIU ShuSen, ZHANG HaiJian, SHI Jie, ZHENG XiaoJuan, DONG YueGuang. Screening, Identification and Control Efficacy Analysis of Trichoderma Strains Against Maize Pythium Stalk Rot [J]. Scientia Agricultura Sinica, 2023, 56(22): 4453-4466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!