Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 190-203.doi: 10.3864/j.issn.0578-1752.2024.01.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Mannitol on Production Characteristics and ROS Scavenging Ability of Volvariella volvacea Subcultured Strains

ZHAO FengYun(), CHENG ZhiHong, TAN QiangFei, ZHU JiaNing, SUN WanHe, ZHANG WenWei, YUN JianMin()   

  1. College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070
  • Received:2023-06-05 Accepted:2023-08-16 Online:2024-01-01 Published:2024-01-10

Abstract:

【Objective】The aim of this study was to investigate the effects of mannitol on production characteristics and reactive oxygen species (ROS) scavenging ability of Volvariella volvacea subcultured strains, and to explore a simple and effective method for the rejuvenation of V. volvacea degenerated strains. 【Method】The tissue isolation subcultured strains T6, T12 and T19 were obtained by previous study of our research group, and T6 was obtained after 6 successive subculture, while T12 and T19 was obtained after 12 and 19 successive subculture, respectively. The original strain (T0), referred to as V844, was a strain used in commercial agricultural cultivation. The glucose in the traditional potato dextrose agar (PDA) was replaced by mannitol of the same mass, then physiological traits were determined in mycelia. The agronomic characters of fruiting body were measured by adding mannitol to the culture medium. ROS accumulation was reflected using nitrotetrazolium blue chloride (NBT) staining of V. volvacea mycelia, superoxide anion ($\mathrm{O}_{2}^{\bar{.}}$) and hydrogen peroxide (H2O2) content. The expression levels of antioxidant enzyme genes were detected by real-time quantitative PCR (RT-qPCR). The activity of antioxidant enzymes was measured by the kit. The number of nuclei and mitochondrial membrane potential were determined by mycelium staining. The energy indexes were determined by high performance liquid chromatography (HPLC). 【Result】Mannitol treatment had no significant effect on non-degraded strains T0 and T6, but could effectively restore the production characteristics and ROS scavenging ability of degraded strains T12 and T19. After mannitol treatment, the mycelial growth rate of T12 and T19 was increased by 31.46% and 20.99%, respectively, and the mycelial biomass was increased by 97.33% and 76.36%, respectively. The mannitol treatment shortened the production cycle of T12 by 12.24% and increased the biological efficiency by 17.97%, thus restoring it to T0 level. In addition, the mannitol treatment caused T19 to regrow its fruiting body, which had been severely degraded and lost its ability to produce fruiting bodies. Meanwhile, mannitol treatment increased the relative expression of Cu/Zn superoxide dismutase (Cu/Zn-sod) gene in T12 and T19 by 24.64% and 61.54%, respectively, and the relative expression of Mn-sod2 gene by 19.76% and 267.09%, respectively. Similarly, the relative expression of glutathione peroxidase (gpx) gene was up-regulated by 25.67% and 55.82%, respectively. More importantly, the activity of SOD in T12 and T19 increased by 10.79% and 72.32%, and the activity of GPX increased by 16.98% and 103.85%, respectively. The accumulation of ROS in T12 and T19 was significantly reduced by mannitol treatment, in which the $\mathrm{O}_{2}^{\bar{.}}$ content in T12 and T19 decreased by 35.96% and 41.62%, while the H2O2 content decreased by 14.44% and 18.26%, respectively. Furthermore, the mannitol treatment significantly increased the number of nuclei and mitochondrial membrane potential in T12 and T19. Mannitol treatment could increase ATP content in T12 and T19 by 17.08% and 14.55%, and EC value by 4.52% and 0.92%, respectively. 【Conclusion】Mannitol treatment could significantly improve the antioxidant capacity and mitochondrial function of the degenerated strains T12 and T19, and effectively restore their production traits.

Key words: Volvariella volvacea, mannitol, strain rejuvenation, reactive oxygen species, antioxidase, mitochondria

Table 1

Primers used for RT-qPCR"

基因 Gene 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′) 登录号 Accession number
Cu/Zn-sod ATGCGTTGCGCAACATTCGTCGCTG AGCTGGTGTACGTCCAATGACACCA jgi|Volvo1|111092
Mn-sod1 CAGGGTTCTGGATGGGGCT AATGGGGATGTGGGTGAGG jgi|Volvo1|114894
Mn-sod2 CACAAAGACCGCTGCTATC TAGTAACGACCTCTAGCTTGC jgi|Volvo|118151
cat1 GCCGCATCGCCATTCTT GCTTCACCCATACCCAACT jgi|Volvo|113089
cat2 CCTTGCCCACTTTGACCG TTGCCCTGACCTTCTTGC jgi|Volvo|116913
gr GCTGTCGTAGGTGCTGGGTA GGGTCAAATCGCCTCAAA jgi|Volvo|113083
gpx TCGGAGGTGAATGGGAAC TTGATCCTCGTCAGACCCATA jgi|Volvo|118375
SPRYp CATTGCTTGTTCTACTGCC ACCTTCAAACCCACCCTC jgi|Volvo1|112937

Fig. 1

Changes of colony diameter (A), mycelium growth rate (B) and mycelium biomass (C) of Volvariella volvacea * represents significant difference within the same group (P<0.05). The same as below"

Fig. 2

Changes in production trait (A), time of primordium formation (B), average weight of a fruiting body (C), production cycle (D) and biological efficiency (E) of V. volvacea"

Fig. 3

Changes of the nuclei number in V. volvacea The arrow indicates the nucleus"

Fig. 4

Relative expression level changes of antioxidase genes in V. volvacea"

Fig. 5

Changes of SOD (A), CAT (B), GPX (C) and GR (D) in V. volvacea"

Fig. 6

Changes of NBT staining (A), $\mathrm{O}_{2}^{\bar{.}}$ content (B) and H2O2 content (C) in V. volvacea mycelium"

Fig. 7

Changes of mitochondrial membrane potential in V. volvacea mycelium"

Fig. 8

Changes of ATP content (A), ADP content (B), AMP content (C) and energy charges value (D) of V. volvacea mycelium"

Fig. 9

Schematic representation of degenerating strain rejuvenated by mannitol Red font indicates significant improvement, green font indicates significant decrease, blue font indicates no significant difference"

[1]
ZHAO X, YU C X, ZHAO Y, LIU S J, WANG H, WANG C G, GUO L G, CHEN M J. Changes in mannitol content, regulation of genes involved in mannitol metabolism, and the protective effect of mannitol on Volvariella volvaceaat low temperature. BioMed Research International, 2019, 2019: 1-12.
[2]
XU X D, XU R, JIA Q, FENG T, HUANG Q R, HO C T, SONG S Q. Identification of dihydro-β-ionone as a key aroma compound in addition to C8 ketones and alcohols in Volvariella volvacea mushroom. Food Chemistry, 2019, 293: 333-339.

doi: 10.1016/j.foodchem.2019.05.004
[3]
ZHAO F Y, LIU X X, CHEN C, CHENG Z H, WANG W P, YUN J M. Successive mycelial subculturing decreased lignocellulase activity and increased ROS accumulation in Volvariella volvacea. Frontiers in Microbiology, 2022, 13: 997485.

doi: 10.3389/fmicb.2022.997485
[4]
XIONG C H, XIA Y L, ZHENG P, WANG C S. Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Applied Microbiology and Biotechnology, 2013, 97(5): 2009-2015.

doi: 10.1007/s00253-012-4286-7
[5]
MANSOOR S, ALI WANI O, LONE J K, MANHAS S, KOUR N, ALAM P, AHMAD A, AHMAD P. Reactive oxygen species in plants: From source to sink. Antioxidants, 2022, 11(2): 225.

doi: 10.3390/antiox11020225
[6]
FAROOQ M A, NIAZI A K, AKHTAR J, FAROOQ M, SOURI Z, KARIMI N, RENGEL Z. Acquiring control: The evolution of ROS-induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 2019, 141: 353-369.

doi: S0981-9428(19)30173-1 pmid: 31207496
[7]
ZHU J, WU F L, YUE S N, CHEN C, SONG S Q, WANG H, ZHAO M W. Functions of reactive oxygen species in apoptosis and ganoderic acid biosynthesis in Ganoderma lucidum. FEMS Microbiology Letters, 2019, 366(23): fnaa015.
[8]
JAZWINSKI S M. Yeast replicative life span-The mitochondrial connection. FEMS Yeast Research, 2004, 5(2): 119-125.

doi: 10.1016/j.femsyr.2004.04.005
[9]
ZHANG J J, HAO H B, CHEN M J, WANG H, FENG Z Y, CHEN H. Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus. AMB Express, 2017, 7(1): 107.

doi: 10.1186/s13568-017-0406-1
[10]
REN A, SHI L, ZHU J, YU H S, JIANG A L, ZHENG H H, ZHAO M W. Shedding light on the mechanisms underlying the environmental regulation of secondary metabolite ganoderic acid in Ganoderma lucidum using physiological and genetic methods. Fungal Genetics and Biology, 2019, 128: 43-48.

doi: 10.1016/j.fgb.2019.03.009
[11]
CHEN H, HAO H B, HAN C C, WANG H, WANG Q, CHEN M J, JUAN J X, FENG Z Y, ZHANG J J. Exogenous l-ascorbic acid regulates the antioxidant system to increase the regeneration of damaged mycelia and induce the development of fruiting bodies in Hypsizygus marmoreus. Fungal Biology, 2020, 124(6): 551-561.

doi: 10.1016/j.funbio.2020.02.010
[12]
CHEN H, HAI H B, WANG H, WANG Q, CHEN M J, FENG Z Y, YE M, ZHANG J J. Hydrogen-rich water mediates redox regulation of the antioxidant system, mycelial regeneration and fruiting body development in Hypsizygus marmoreus. Fungal Biology, 2018, 122(5): 310-321.

doi: 10.1016/j.funbio.2018.02.001
[13]
OH J, YOON D H, SHRESTHA B, CHOI H K, SUNG G H. Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. Journal of Microbiology, 2019, 57(1): 54-63.

doi: 10.1007/s12275-019-8486-z
[14]
PATEL T K, WILLIAMSON J D. Mannitol in plants, fungi, and plant-fungal interactions. Trends in Plant Science, 2016, 21(6): 486-497.

doi: S1360-1385(16)00007-8 pmid: 26850794
[15]
CIMATO A, CASTELLI S, TATTINI M, TRAVERSI M L. An ecophysiological analysis of salinity tolerance in olive. Environmental and Experimental Botany, 2010, 68(2): 214-221.

doi: 10.1016/j.envexpbot.2009.12.006
[16]
ZHOU S, MA F Y, ZHANG X Y, ZHANG J S. Carbohydrate changes during growth and fruiting in Pleurotus ostreatus. Fungal Biology, 2016, 120(6/7): 852-861.

doi: 10.1016/j.funbio.2016.03.007
[17]
张秀伟, 牛力立, 蔡甫格, 鲍菊, 曹家洪, 张万萍. 两株野生鸡腿菇分离鉴定及生物学特性研究. 食用菌, 2020, 42(5): 15-18.
ZHANG X W, NIU L L, CAI F G, BAO J, CAO J H, ZHANG W P. Isolation, identification and biological characteristics of two wild Coprinus comatus strains. Edible Fungi, 2020, 42(5): 15-18. (in Chinese)
[18]
CHUNG P C, WU H Y, WANG Y W, ARIYAWANSA H A, HU H P, HUNG T H, TZEAN S S, CHUNG C L. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Scientific Reports, 2020, 10(1): 14664.

doi: 10.1038/s41598-020-70878-2
[19]
沈林林, 周世豪, 詹家绥, 王甜, 蔡铭铭. 一种收集纯净菌丝的方法: CN108715813A[P]. 2018-10-30.
SHEN L L, ZHOU S H, ZHAN J S, WANG T, CAI M M. Method for collecting pure hyphae: CN108715813A[P]. 2018-10-30. (in Chinese).
[20]
LI H B, HE Z X, JIANG Y Z, KAN J, PENG T, ZHONG M Q, HU Z. Bioconversion of bamboo shoot shells through the cultivation of the edible mushrooms Volvariella volvacea. Ecotoxicology, 2021, 30(7): 1476-1486.

doi: 10.1007/s10646-020-02281-6
[21]
余昌霞, 李正鹏, 查磊, 赵妍, 陈明杰, 侯立娟, 郭倩. 不同光质对草菇菌丝生长及子实体性状的影响. 食用菌学报, 2021, 28(3): 72-77.
YU C X, LI Z P, ZHA L, ZHAO Y, CHEN M J, HOU L J, GUO Q. Effects of light quality on mycelial growth and fruiting body characteristics of Volvariella volvacea. Acta Edulis Fungi, 2021, 28(3): 72-77. (in Chinese)
[22]
GAO Q, YAN D, WANG D, GAO S S, ZHAO S, WANG S X, LIU Y. Variations in nuclear number and size in vegetative hyphae of the edible mushroom Lentinula edodes. Frontiers in Microbiology, 2019, 10: 1987.

doi: 10.3389/fmicb.2019.01987
[23]
王文沛, 谭强飞, 程志虹, 孙万合, 贠建民, 赵风云. 草菇不同菌株RT-qPCR参考基因筛选. 菌物学报, 2022, 41(5): 749-758.

doi: 10.13346/j.mycosystema.210357
WANG W P, TAN Q F, CHENG Z H, SUN W H, YUN J M, ZHAO F Y. Selection of optimal RT-qPCR reference genes for examining different strains of Volvariella volvacea. Mycosystema, 2022, 41(5): 749-758. (in Chinese)
[24]
樊书宏, 施海涛, 刘国银. 一个木薯Aux/IAA转录因子的克隆及调节活性氧功能分析. 分子植物育种, 2019, 17(2): 362-369.
FAN S H, SHI H T, LIU G Y. Cloning of an aux/IAA transcription factor in cassava and functional analysis of its role in regulating reactive oxygen. Molecular Plant Breeding, 2019, 17(2): 362-369. (in Chinese)
[25]
刘璐, 邓百万, 兰阿峰, 郭素芬, 彭浩. 羊肚菌菌种退化机理研究. 食品研究与开发, 2020, 41(10): 57-61.
LIU L, DENG B W, LAN A F, GUO S F, PENG H. Study on the mechanism of Morchella strain degeneration. Food Research and Development, 2020, 41(10): 57-61. (in Chinese)
[26]
PENG L T, YANG S Z, CHENG Y J, CHEN F, PAN S Y, FAN G. Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum. Food Science and Biotechnology, 2012, 21(6): 1533-1539.

doi: 10.1007/s10068-012-0204-0
[27]
CHEN A H, WANG Y L, SHAO Y, HUANG B. A novel technique for rejuvenation of degenerated caterpillar medicinal mushroom, Cordyceps militaris (ascomycetes), a valued traditional Chinese medicine. International Journal of Medicinal Mushrooms, 2017, 19(1): 87-91.

doi: 10.1615/IntJMedMushrooms.v19.i1
[28]
李巨燕, 王秀芹, 李巨臣. 四种母种培养基培养复壮杏鲍菇菌种效果比较. 食用菌, 2018, 40(4): 30-32.
LI J Y, WANG X Q, LI J C. Comparison of the effects of four kinds of mother culture media on rejuvenating Pleurotus eryngii strains. Edible Fungi, 2018, 40(4): 30-32. (in Chinese)
[29]
姜慧, 林辰壹, 高攀, 李金隆, 高佳慧, 肖丽. 五种无机盐对大球盖菇菌丝生长的影响. 北方园艺, 2020(14): 128-135.
JIANG H, LIN C Y, GAO P, LI J L, GAO J H, XIAO L. Effects of five inorganic salts on the mycelial growth of Stropharia rugoso- annulata. Northern Horticulture, 2020(14): 128-135. (in Chinese)
[30]
牛宇, 蒙秋霞, 聂建军, 徐全飞, 冯婉君, 潘保华, 赵悠悠. 不同碳源对7个白灵菇品种菌丝生长的影响. 中国食用菌, 2017, 36(6): 27-32.
NIU Y, MENG Q X, NIE J J, XU Q F, FENG W J, PAN B H, ZHAO Y Y. Effect of different carbon sources on mycelial growth of seven Pleurotus eryngii var. tuoliensis strains. Edible Fungi of China, 2017, 36(6): 27-32. (in Chinese)
[31]
孔梓璇, 王巧莉, 程志虹, 贠建民, 张紊玮, 赵风云. 外源氨基酸对草菇退化菌种复壮的影响. 食品与发酵工业, 2021, 47(20): 30-36.
KONG Z X, WANG Q L, CHENG Z H, YUN J M, ZHANG W W, ZHAO F Y. Effect of exogenous amino acids on the rejuvenation of degraded strains of Volvariella volvacea. Food and Fermentation Industries, 2021, 47(20): 30-36. (in Chinese)
[32]
WANG C S, BUTT T M, ST LEGER R J. Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology, 2005, 151(10): 3223-3236.

doi: 10.1099/mic.0.28148-0
[33]
LI L, PISCHETSRIEDER M, ST LEGER R J, WANG C S. Associated links among mtDNA glycation, oxidative stress and colony sectorization in Metarhizium anisopliae. Fungal Genetics and Biology, 2008, 45(9): 1300-1306.

doi: 10.1016/j.fgb.2008.06.003
[34]
SONG S H, VIEILLE C. Recent advances in the biological production of mannitol. Applied Microbiology and Biotechnology, 2009, 84(1): 55-62.

doi: 10.1007/s00253-009-2086-5 pmid: 19578847
[35]
MOHAMED A A, ALI S I, NOORKA I R. Protective role of mannitol against the oxidative stress induced by H2O2 in mung bean (Vigna radiata L.): Changes in antioxidant defense systems. International Journal of Agriculture and Applied Sciences, 2014, 2: 52-58.
[36]
BALABAN R S, NEMOTO S, FINKEL T. Mitochondria, oxidants, and aging. Cell, 2005, 120(4): 483-495.

doi: 10.1016/j.cell.2005.02.001 pmid: 15734681
[37]
JAZWINSKI S M. Yeast longevity and aging-the mitochondrial connection. Mechanisms of Ageing and Development, 2005, 126(2): 243-248.

doi: 10.1016/j.mad.2004.08.016
[38]
HAGEN T M, YOWE D L, BARTHOLOMEW J C, WEHR C M, DO K L, PARK J Y, AMES B N. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(7): 3064-3069.
[39]
BRATIC I, TRIFUNOVIC A. Mitochondrial energy metabolism and ageing. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2010, 1797(6/7): 961-967.

doi: 10.1016/j.bbabio.2010.01.004
[40]
CHIU S W. Evidence for a haploid life-cycle in Volvariella volvacea from microspectrophotometric measurements and observations of nuclear behaviour. Mycological Research, 1993, 97(12): 1481-1485.

doi: 10.1016/S0953-7562(09)80221-9
[41]
SHAHI S, BEERENS B, MANDERS E M M, REP M. Dynamics of the establishment of multinucleate compartments in Fusarium oxysporum. Eukaryotic Cell, 2015, 14(1): 78-85.

doi: 10.1128/EC.00200-14
[42]
胡锋黎, 傅俊生, 吴小婷, 张云, 严俊杰, 谢宝贵. 草菇核不对称分裂与菌种退化的相关性. 南方农业学报, 2015, 46(3): 466-470.
HU F L, FU J S, WU X T, ZHANG Y, YAN J J, XIE B G. Relativity between asymmetric nuclear division and strain degeneration in Volvariella volvacea. Journal of Southern Agriculture, 2015, 46(3): 466-470. (in Chinese)
[43]
张志光, 李东屏, 方芳. 丝状真菌原生质体技术研究(V): 原生质体融合的形态学观察. 湖南师范大学自然科学学报, 1994, 17(3): 41-48.
ZHANG Z G, LI D P, FANG F. Studies on protoplasts technology of filamentous fungi (V) morphological observations of protoplasts fusions. Acta Scientiarum Naturalium Universtis Normalis Hunanensis, 1994, 17(3): 41-48. (in Chinese)
[1] CHEH ErHu, YUAN GuoQing, SUN ShengYuan, TANG PeiAn. The Effect of Environmental Stress on Respiratory Rate and Expression Level of Mitochondrial Protein-Coding Genes in Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(24): 4866-4879.
[2] LIU PeiPei, DING ShiJie, SONG WenJuan, TANG ChangBo, LI HuiXia, TANG Hong. NAC Affects Proliferation and Differentiation of Adipose-Derived Mesenchymal Stem Cells by Regulating Reactive Oxygen Species [J]. Scientia Agricultura Sinica, 2023, 56(21): 4330-4343.
[3] HA DanDan, ZHENG HongXia, ZHANG ZhenHao, ZHU LiHong, LIU Hao, WANG JiaoYu, ZHOU Lei. Fluorescent Labeling and Observation of Infection Structure of Fusarium verticillioides [J]. Scientia Agricultura Sinica, 2023, 56(18): 3556-3573.
[4] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
[5] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[6] XiaoFeng LU,GuoDong DU,Jing SHAO,JingRu ZHANG,HaiLong SUN. Physiological Response of Mitochondrial Function of Strawberry Roots to Exogenous Phenolic Acid [J]. Scientia Agricultura Sinica, 2021, 54(5): 1029-1042.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[9] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[10] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[11] MA Ning,WANG HeTong,FANG DongLu,ZHAO LiYan,YANG WenJian,PEI Fei,HU QiuHui. Nano-Packaging Preservative Mechanism of Flammulina filiformis After Harvest Based on Mitochondrial Energy Status Pathways [J]. Scientia Agricultura Sinica, 2020, 53(16): 3356-3371.
[12] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
[13] GU ChaoHeng,YAN YanYan,WEI XiYa,SHI QingHua,GONG Biao. Physiological Mechanism of S-adenosylmethionine on Alleviating Chlorothalonil Residue in Tomato [J]. Scientia Agricultura Sinica, 2019, 52(6): 1058-1065.
[14] LI XiaoBo,LI Zhen,DAI ShaoJun,PAN JiaoWen,WANG QingGuo,GUAN YanAn,DING GuoHua,LIU Wei. Response of Receptor-Like Protein Kinase Gene SiRLK35 of Foxtail Millet to Salt in Heterologous Transgenic Rice [J]. Scientia Agricultura Sinica, 2019, 52(22): 3976-3986.
[15] ZHANG Tong,LI RuiLan,FAN XiaoMei,LIU ChunJie,HAI RiHan,HUO Min,ZHANG JiaXin. Expression of p66Shc and Its Relationship with Cytoplasmic Redox Homeostasis in Sheep Oocytes [J]. Scientia Agricultura Sinica, 2019, 52(12): 2183-2192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!