Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 52-64.doi: 10.3864/j.issn.0578-1752.2024.01.005

• SPECIAL FOCUS: IDENTIFICATION OF NEW WHEAT DISEASES RESISTANCE GENES AND BREEDING APPLICATION • Previous Articles     Next Articles

Genetic Analysis of Adult Plant Resistance to Powdery Mildew in Common Wheat Arableu#1

LI ZiMeng1(), YUAN Chan1(), ZHANG YuQing2, REN Yan3, LIU PengPeng4, YAN ShanShan1, XI MengHan1, MU PeiYuan4, LAN CaiXia1()   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University/Hubei Hongshan Laboratory, Wuhan 430070
    2 Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430072
    3 College of Agronomy, Henan Agricultural University, Zhengzhou 450002
    4 Institute of Crop Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang
  • Received:2023-07-07 Accepted:2023-09-05 Online:2024-01-01 Published:2024-01-10

Abstract:

【Objective】China is a significant wheat producer and consumer in the world. It is very important for our food security to making sure the stable wheat production. Wheat powdery mildew is an important leaf disease to affect the global wheat yield. Breeding resistant wheat varieties is one of the most economically and environmentally effective way to manage this disease. Identification of new adult plant resistant loci is very important for breeders to develop durable powdery mildew-resistant wheat varieties. 【Method】The CIMMYT-derived common wheat (Triticum aestivum L.) Arableu#1, showed susceptibility to powdery mildew at the seedling stage, but exhibited a high level of resistance to this disease at the adult plant stage in the field. In order to understand the genetic basis of powdery mildew resistance in this line, we made an F5 recombinant inbred line (RIL) population between Arableu#1 and the susceptible line Apav#1 and genotyped by genotyping-by-sequencing (GBS) platform. We obtained 4 298 polymorphic molecular markers between the parents and analyze the 142 RILs. Joinmap 4.1 and IciMapping 4.1 were respectively used to construct the linage maps and identify the powdery mildew resistance QTL in this study. 【Result】Four adult plant resistance loci from Arableu#1 were identified on wheat chromosome arms 1BL, 5BL, 6BS and 7BL, while two loci from Apav#1 on chromosomes 2DS and 4BL, which can explain the powdery mildew disease severity variation from 3.1% to 28.5%. The MFDS of RIL reached the lowest level when it carried all six detected resistance loci, while RILs combing QPm.hzau-1BL, QPm.hzau-4BL, QPm.hzau-5BL, and QPm.hzau-7BL also showed lower disease severity over multiple environments. 【Conclusion】KASP markers KASP-5B-1 and KASP-7B-2 for QPm.hzau-5BL and QPm.hzau-7BL, respectively, were developed in the present study. The two loci showed varying degrees of resistance to powdery mildew when present individually or in combination based on the genotype and phenotype of 570 wheat germplasm collections. Additionally, the frequency of these two loci in Chinese wheat materials is lower compared to CIMMYT's wheat germplasm. A line combining 6 QTLs was found and it showed near-immune resistance to powdery mildew in the field. This material will be an important germplasm resource for breeders to develop powdery mildew-resistant wheat varieties.

Key words: wheat, powdery mildew, APR, quantitative traits, genetic mapping

Fig. 1

Phenotype of powdery mildew for two parents Arableu#1 and Apav#1 in the greenhouse at seedling (A) and adult plant stage (B) and in the field in the adult plant stage (C)"

Fig. 2

Frequency distributions for FDS of powdery mildew of Arableu#1×Apav#1 in field traits"

Table 1

QTL mapping for adult plant resistance to powdery mildew in an F5 RIL population of Arableu#1×Apav#1"

数量性
状位点
QTL
性状
Traits
遗传位置
Genitic position (bp)
左标记
Left marker
右标记
Right marker
物理位置
Physical position
(bp)
阈值
LOD
表型变异
贡献率
PVE (%)
加性效应
Adda
QPm.hzau-
1BL
PM2020HNAUb 82 5411162|F|0-35:A>C 1132278|F|0-20:C>T 669241198-673742433 10.1189 17.0074 108.7386
PMMc 82 5411162|F|0-35:A>C 1132278|F|0-20:C>T 669241198-673742433 16.3082 19.3908 5.3090
PM2020HNad 89 4005037 5324108|F|0-18:A>G 669241098-669316590 14.0842 22.0558 10.5464
PM2019HNb 100 1112007 100041322|F|0-38:A>G 674392512-675401897 20.6815 19.1550 10.0301
PM2019HNa 101 100041322|F|0-38:A>G 100084210|F|0-16:A>G 675401829-680220849 15.7207 22.9672 7.2837
PM2019HNAU 102 100041322|F|0-38:A>G 100084210|F|0-16:A>G 675401829-680220849 17.5926 18.2297 98.5048
QPm.hzau-
5BL
PMM 101 1091498|F|0-37:C>T 1125898|F|0-46:T>C 571213585-571321896 3.4217 12.6502 3.5605
PM2019HNa 105 4990348 4992023|F|0-12:C>T 564159095-565507647 4.1067 12.4673 4.9577
PM2019HNb 105 4990348 4992023|F|0-12:C>T 564159095-565507647 4.0420 12.2839 6.5241
PM2019HNAU 105 4990348 4992023|F|0-12:C>T 564159095-565507647 4.4736 13.5031 68.8906
QPm.hzau-
6BS
PM2019HNAU 181 1019642|F|0-23:A>G 2275142 291067175-346802356 6.6477 5.582 54.3958
PM2019HNb 185 3021981 3027047|F|0-12:T>C 249498029-250762293 16.6672 14.599 9.4876
PM2019HNa 186 3027047|F|0-12:T>C 3958061 249498029-271823336 5.3738 6.5224 3.9575
QPm.hzau-
7BL
PM2019HNa 447 3023211|F|0-16:G>T 1048655 750120578 6.7070 7.042 4.1106
PM2019HNb 447 3023211|F|0-16:G>T 1048655 750120578 13.3810 19.306 9.4272
PM2019HNAU 447 3023211|F|0-16:G>T 1048655 750120578 18.5323 13.6867 89.1064
PM2020AU 456 1110896 2277387 744194196-739539181 4.7959 6.5277 62.9146
QPm.hzau-
2DS
PM2020HNa 40 100077941|F|0-49:C>G 1093454|F|0-34:G>A 22163592-22160735 4.7886 7.7274 -6.5343
PM2019HNb 59 4910771|F|0-64:A>G 1112583 22290086-391305793 4.4180 3.0742 -4.6587
QPm.hzau-
4BL
PM2019HNb 88 4989722|F|0-15:T>C 1231372 526935193-541900628 12.5201 9.9972 -8.3699
PM2020HNb 88 4989722|F|0-15:T>C 1231372 526935193-541900628 9.9310 17.9438 -8.3873
PM2020HNAU 88 4989722|F|0-15:T>C 1231372 526935193-541900628 14.7970 28.5337 -165.1792
PMM 88 4989722|F|0-15:T>C 1231372 526935193-541900628 14.3437 17.1539 -5.8169

Fig. 3

Likelihood plots for adult plant resistance loci to powdery mildew"

Table 2

ANOVA of mean final disease severity (MFDS) for powdery mildew (PM) resistance loci"


Source
家系个数
No. of RILs
平均病害严重度
MFDS
Ⅲ型SS
Type Ⅲ SS
均方
Mean square
F
F value
Pr>F
YEAR 465.64513 465.64513 2.77 0.0972
None 3 65.42
QPm.hzau-2DS 3 61.25 1666.98 1666.98 9.93 0.00
QPm.hzau-4BL 2 60.35 13073.84 13073.84 77.87 <.0001
QPm.hzau-7BL 2 53.75 5313.59 5313.59 31.65 <.0001
QPm.hzau-6BS 4 48.23 5111.97 5111.97 30.45 <.0001
QPm.hzau-5BL 4 43.75 4592.06 4592.06 27.35 <.0001
QPm.hzau-1BL 5 43.50 11287.23 11287.23 67.23 <.0001
QPm.hzau-1BL×QPm.hzau-2DS 4 43.00 17860.56 5953.52 43.67 <.0001
QPm.hzau-4BL×QPm.hzau-6BS 1 38.75 29892.48 14946.24 77.27 <.0001
QPm.hzau-1BL×QPm.hzau-2DS×QPm.hzau-5BL 5 34.13 1062.37 531.18 3.91 0.02
QPm.hzau-1BL×QPm.hzau-5BL 1 32.50 1195.99 1195.99 8.49 0.00
QPm.hzau-5BL×QPm.hzau-6BS×QPm.hzau-7BL 2 31.88 1956.69 1956.69 10.12 0.00
QPm.hzau-5BL×QPm.hzau-7BL 5 31.25 896.09 896.09 4.63 0.03
QPm.hzau-2DS×QPm.hzau-4BL×QPm.hzau-6BS 1 25.94 1959.85 979.93 5.07 0.01
QPm.hzau-1BL×QPm.hzau-2DS×QPm.hzau-6BS 12 23.34 962.25 481.13 3.54 0.03
QPm.hzau-1BL×QPm.hzau-4BL×QPm.hzau-6BS 2 20.31 1992.52 996.26 7.34 0.00
QPm.hzau-1BL×QPm.hzau-2DS×QPm.hzau-4BL×QPm.hzau-6BS 4 16.44 7944.25 1134.89 8.32 <.0001
QPm.hzau-2DS×QPm.hzau-4BL×QPm.hzau-5BL×QPm.hzau-7BL 2 14.38 2822.06 564.41 4.01 0.00
QPm.hzau-2DS×QPm.hzau-4BL×QPm.hzau-5BL 2 14.06 19505.16 3901.03 27.70 <.0001
QPm.hzau-2DS×QPm.hzau-4BL×QPm.hzau-5BL×QPm.hzau-6BS 2 13.75 2019.21 403.84 2.87 0.01
QPm.hzau-1BL×QPm.hzau-2DS×QPm.hzau-4BL×QPm.hzau-7BL 1 12.50 10420.55 1488.65 10.92 <.0001
QPm.hzau-1BL×QPm.hzau-5BL×QPm.hzau-6BS×QPm.hzau-7BL 2 12.50 10264.40 1283.05 9.11 <.0001
QPm.hzau-1BL×QPm.hzau-2DS×QPm.hzau-4BL×QPm.hzau-5BL 2 12.45 6065.47 866.50 6.36 <.0001
QPm.hzau-1BL×QPm.hzau-2DS×QPm.hzau-4BL 1 11.38 19394.83 4848.71 35.56 <.0001
QPm.hzau-1BL×QPm.hzau-4BL×QPm.hzau-5BL×QPm.hzau-7BL 1 7.50 839.91 419.96 3.09 0.05
QPm.hzau-1BL×QPm.hzau-2DS×QPm.hzau-4BL×QPm.hzau-5BL×QPm.hzau-6BS×QPm.hzau-7BL 1 4.20 14531.45 1096.72 8.37 <.0001

Fig. 4

Likelihood plots containing KASP markers for the 5BL and 7BL chromosomes The red marker corresponds to KASP markers closely linked to two loci"

Fig. 5

QTL distributions and effect analysis in the natural materials A: Frequency distributions for powdery mildew disease severity in field traits; B: Effect of detected two resistance loci on powdery mildew in the wheat germplasm collection. Different lowercase letter means the significant difference at P<0.01"

[1]
TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967): 818-822.

doi: 10.1126/science.1183700 pmid: 20150489
[2]
BENNETT F G A. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathology, 1984, 33(3): 279-300.

doi: 10.1111/ppa.1984.33.issue-3
[3]
GAO H M, XU X Z, AI P F, LUO F Y, GUO P, MA P T. Identification of the powdery mildew resistance in Chinese wheat cultivar Heng 4568 and its evaluation in marker-assisted selection. Frontiers in Genetics, 2022, 13: 819844.

doi: 10.3389/fgene.2022.819844
[4]
ROBERTS J, CALDWELL R. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici in Knox wheat. Molecular Genetics, 1970, 60: 1310.
[5]
LIN F, CHEN X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high- temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics, 2007, 114(7): 1277-1287.

doi: 10.1007/s00122-007-0518-0
[6]
GUSTAFSON G D. Influence of plant age on the expression of slow-mildewing resistance in wheat. Phytopathology, 1982, 72(7): 746-749.

doi: 10.1094/Phyto-72-746
[7]
HE H G, LIU R K, MA P T, DU H N, ZHANG H H, WU Q H, YANG L J, GONG S J, LIU T L, HUO N X, GU Y Q, ZHU S Y. Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796 . Theoretical and Applied Genetics, 2021, 134(1): 53-62.

doi: 10.1007/s00122-020-03681-2
[8]
LI Y H, WEI Z Z, SELA H N, GOVTA L, KLYMIUK V, ROYCHOWDHURY R, CHAWLA H S, ENS J, WIEBE K, BOCHAROVA V, BEN-DAVID R, PAWAR P B, ZHANG Y Q, JAIWAR S, MOLNÁR I, DOLEŽEL J, POZNIAK C J, FAHIMA T. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69. Plant Communications, 2023: 100646.
[9]
DONG Y, XU D A, XU X W, REN Y, GAO F M, SONG J, JIA A L, HAO Y F, HE Z H, XIA X C. Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135(3): 1083-1099.

doi: 10.1007/s00122-021-04019-2
[10]
司冠, 赵智勇, 包海柱, 曹梦琳, 毕红园, 高军. 小麦抗白粉病种质资源现状及抗性基因研究进展. 宁夏农林科技, 2022, 63(6): 14-20.
SI G, ZHAO Z Y, BAO H Z, CAO M L, BI H Y, GAO J. Advances in powdery mildew resistant germplasms and resistance gene. Journal of Ningxia Agriculture and Forestry Science and Technology, 2022, 63(6): 14-20. (in Chinese)
[11]
WU P P, HU J H, ZOU J W, QIU D, QU Y F, LI Y H, LI T, ZHANG H J, YANG L, LIU H W, ZHOU Y, ZHANG Z J, LI J T, LIU Z Y, LI H J. Fine mapping of the wheat powdery mildew resistance gene Pm52 using comparative genomics analysis and the Chinese Spring reference genomic sequence. Theoretical and Applied Genetics, 2019, 132(5): 1451-1461.

doi: 10.1007/s00122-019-03291-7
[12]
李玮, 宋国琦, 张荣志, 李玉莲, 张淑娟, 高洁, 李根英. 小麦几个多效抗病基因的利用现状及展望. 麦类作物学报, 2018, 38(7): 791-797.
LI W, SONG G Q, ZHANG R Z, LI Y L, ZHANG S J, GAO J, LI G Y. Present situations and prospects for several pleiotropic disease resistance genes in wheat. Journal of Triticese Crops, 2018, 38(7): 791-797. (in Chinese)
[13]
JIANG Y, SCHULTHESS A W, RODEMANN B, LING J, PLIESKE J, KOLLERS S, EBMEYER E, KORZUN V, ARGILLIER O, STIEWE G, GANAL M W, RÖDER M S, REIF J C. Validating the prediction accuracies of marker-assisted and genomic selection of Fusarium head blight resistance in wheat using an independent sample. Theoretical and Applied Genetics, 2017, 130(3): 471-482.

doi: 10.1007/s00122-016-2827-7 pmid: 27858103
[14]
BAIRD N A, ETTER P D, ATWOOD T S, CURREY M C, SHIVER A L, LEWIS Z A, SELKER E U, CRESKO W A, JOHNSON E A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 2008, 3(10): e3376.
[15]
POLAND J A, RIFE T W. Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome, 2012, 5(3): 92-102.
[16]
MASCHER M, MUEHLBAUER G J, ROKHSAR D S, CHAPMAN J, SCHMUTZ J, BARRY K, MUÑOZ-AMATRIAÍN M, CLOSE T J, WISE R P, SCHULMAN A H, HIMMELBACH A, MAYER K F, SCHOLZ U, POLAND J A, STEIN N, WAUGH R. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). The Plant Journal, 2013, 76(4): 718-727.

doi: 10.1111/tpj.12319 pmid: 23998490
[17]
POLAND J, ENDELMAN J, DAWSON J, RUTKOSKI J, WU S Y, MANES Y, DREISIGACKER S, CROSSA J, SÁNCHEZ-VILLEDA H, SORRELLS M, JANNINK J L. Genomic selection in wheat breeding using genotyping-by-sequencing. The Plant Genome, 2012, 5(3): 103-113.
[18]
POLAND J A, BROWN P J, SORRELLS M E, JANNINK J L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE, 2012, 7(2): e32253.
[19]
ELBASYONI I S, LORENZ A J, GUTTIERI M, FRELS K, BAENZIGER P S, POLAND J, AKHUNOV E. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Science, 2018, 270: 123-130.

doi: S0168-9452(17)30945-7 pmid: 29576064
[20]
ELSHIRE R J, GLAUBITZ J C, SUN Q, POLAND J A, KAWAMOTO K, BUCKLER E S, MITCHELL S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011, 6(5): e19379.
[21]
PETERSON R F, CAMPBELL A B, HANNAH A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 1948, 26(5): 496-500.
[22]
BJARKO M E. Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat. Phytopathology, 1988, 78(4): 457.

doi: 10.1094/Phyto-78-457
[23]
INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.
[24]
YUAN C, SINGH R P, LIU D M, RANDHAWA M S, HUERTA-ESPINO J, LAN C X. Genome-wide mapping of adult plant resistance to leaf rust and stripe rust in CIMMYT wheat line Arableu#1. Plant Disease, 2020, 104(5): 1455-1464.
[25]
BLANCO A, GADALETA A, CENCI A, CARLUCCIO A V, ABDELBACKI A M M, SIMEONE R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theoretical and Applied Genetics, 2008, 117(1): 135-142.

doi: 10.1007/s00122-008-0760-0
[26]
PETERSEN S, LYERLY J H, WORTHINGTON M L, PARKS W R, COWGER C, MARSHALL D S, BROWN-GUEDIRA G, MURPHY J P. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theoretical and Applied Genetics, 2015, 128(2): 303-312.

doi: 10.1007/s00122-014-2430-8
[27]
BOUGOT Y, LEMOINE J, PAVOINE M T, GUYOMAR’C H, GAUTIER V, MURANTY H, BARLOY D. A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breeding, 2006, 125(6): 550-556.

doi: 10.1111/pbr.2006.125.issue-6
[28]
KELLER M, KELLER B, SCHACHERMAYR G, WINZELER M, SCHMID J E, STAMP P, MESSMER M M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat× spelt population. Theoretical and Applied Genetics, 1999, 98(6): 903-912.

doi: 10.1007/s001220051149
[29]
ASAD M A, BAI B, LAN C X, YAN J, XIA X C, ZHANG Y, HE Z H. QTL mapping for adult plant resistance to powdery mildew in Italian wheat cv. strampelli. Journal of Integrative Agriculture, 2013, 12(5): 756-764.

doi: 10.1016/S2095-3119(13)60297-X
[30]
LAN C X, NI X W, YAN J, ZHANG Y, XIA X C, CHEN X M, HE Z H. Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Molecular Breeding, 2010, 25(4): 615-622.

doi: 10.1007/s11032-009-9358-8
[31]
LILLEMO M, BJØRNSTAD Å, SKINNES H. Molecular mapping of partial resistance to powdery mildew in winter wheat cultivar Folke. Euphytica, 2012, 185: 47-59.

doi: 10.1007/s10681-011-0620-x
[32]
TOSA Y, TOKUNAGA H, OGURA H. Identification of a gene for resistance to wheatgrass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome, 1988, 30(4): 612-614.

doi: 10.1139/g88-103
[33]
JIA A L, REN Y, GAO F M, YIN G H, LIU J D, GUO L, ZHENG J Z, HE Z H, XIA X C. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theoretical and Applied Genetics, 2018, 131(5): 1063-1071.

doi: 10.1007/s00122-018-3058-x pmid: 29392374
[34]
TOSA Y, KUSABA M, FUJIWARA N, NAKAMURA T, KIBA A, NODA T, FURUTSU Y, NOGUCHI H, KATO K. Geographical distribution of genes for resistance to formae speciales of Erysiphe graminis in common wheat. Theoretical and Applied Genetics, 1995, 91(1): 82-88.

doi: 10.1007/BF00220862
[35]
FRIEBE B, LARTER E N. Identification of a complete set of isogenic wheat/rye D-genome substitution lines by means of Giemsa C-banding. Theoretical and Applied Genetics, 1988, 76(3): 473-479.

doi: 10.1007/BF00265353 pmid: 24232217
[36]
JÄRVE K, PEUSHA H O, TSYMBALOVA J, TAMM S, DEVOS K M, ENNO T M. Chromosomal location of a Triticum timopheevii: Derived powdery mildew resistance gene transferred to common wheat. Genome, 2000, 43(2): 377-381.

doi: 10.1139/g99-141
[37]
HAO Y F, PARKS R, COWGER C, CHEN Z B, WANG Y Y, BLAND D, MURPHY J P, GUEDIRA M, BROWN-GUEDIRA G, JOHNSON J. Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theoretical and Applied Genetics, 2015, 128(3): 465-476.

doi: 10.1007/s00122-014-2445-1
[38]
NEMATOLLAHI G, MOHLER V, WENZEL G, ZELLER F J, HSAM S L K. Microsatellite mapping of powdery mildew resistance allele Pm5d from common wheat line IGV1-455. Euphytica, 2008, 159(3): 307-313.

doi: 10.1007/s10681-007-9494-3
[39]
LILLEMO M, ASALF B, SINGH R P, HUERTA-ESPINO J, CHEN X M, HE Z H, BJØRNSTAD Å. The adult plant rust resistance loci Lr34/Yr18and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 2008, 116(8): 1155-1166.

doi: 10.1007/s00122-008-0743-1
[40]
CHANTRET N, MINGEOT D, SOURDILLE P, BERNARD M, JACQUEMIN J M, DOUSSINAULT G. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theoretical and Applied Geneics, 2001, 103(6/7): 962-971.
[41]
SINGH R P, HUERTA-ESPINO J, RAJARAM S. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica et Entomologica Hungarica, 2000, 35(1): 133-139.
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[7] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!