Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 34-51.doi: 10.3864/j.issn.0578-1752.2024.01.004

• SPECIAL FOCUS: IDENTIFICATION OF NEW WHEAT DISEASES RESISTANCE GENES AND BREEDING APPLICATION • Previous Articles     Next Articles

Current Status and Strategies for Utilization of Stripe Rust Resistance Genes in Wheat Breeding Program of China

LIU ZhiYong1,2,3(), ZHANG HuaiZhi1,2, BAI Bin4, LI Jun5, HUANG Lin6, XU ZhiBin7, CHEN YongXing1,2, LIU Xu8, CAO TingJie9, LI MiaoMiao1, LU Ping1, WU QiuHong1, DONG LingLi1, HAN YuLin10, YIN GuiHong11, HU WeiGuo9, WANG XiCheng9, ZHAO Hong9, YAN SuHong8, YANG ZhaoSheng8, CHANG ZhiJian12, WANG Tao7(), YANG WuYun5(), LIU DengCai6(), LI HongJie13(), DU JiuYuan4()   

  1. 1 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/State Key Laboratory of Plant Cell and Chromosome Engineering/The Innovative Academy of Seed Design, Beijing 100101
    2 College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049
    3 Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan
    4 Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    5 Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu 610066
    6 Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan
    7 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041
    8 Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan
    9 Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    10 Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, Henan
    11 College of Agronomy, Henan Agricultural University, Zhengzhou 450046
    12 College of Agriculture, Shanxi Agricultural University/Institute of Crop Sciences, Taiyuan 030801
    13 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2022-07-25 Accepted:2022-09-06 Online:2024-01-01 Published:2024-01-10

Abstract:

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a devastating disease threaten food security in China and worldwide. Epidemics of wheat stripe rust have been under control through applying resistant cultivars and crop protection approaches. However, due to climate change, innovation of cropping system, improvement of breeding technology, yield level enhancement of wheat cultivars, variation in structure and frequency of virulence genes in Pst populations in the new era, the current status of stripe rust resistance genes in wheat breeding programs need to be evaluated. The results could provide useful information for applying stripe rust resistance genes to develop new wheat cultivars with broad-spectrum and durable rust resistance. After multiple year’s stripe rust resistance survey, genetic analysis, molecular tagging and mining of stripe rust resistance genes in wheat cultivars and advanced breeding lines, the current status of major stripe rust resistance genes utilization was reviewed. We summarized the present situations of major stripe rust resistance gene discovery and germplasm innovation, the most frequently used stripe rust resistance genes, new strategy for pyramiding adult plant partial resistance and all stage resistance, and molecular marker assisted selection for developing wheat cultivars with broad spectrum and durable resistance in China. This review also proposes the major research areas in wheat stripe rust resistance breeding in the new era.

Key words: wheat, Puccinia striiformis f. sp. tritici, boom and burst cycle, durable resistance, gene pyramiding, germplasm innovation

Fig. 1

Loss of stripe rust resistance of wheat cultivar Chuanmai 42 carrying Yr24/Yr26/YrCH42 in the field (Pixian, Sichuan, 2017)"

Table 1

Cataloged wheat stripe rust resistance genes"

基因
Gene
位置
Location
基因来源
Origin
载体品种/系
Cultivar/line
抗病类型
Resistance type
编码蛋白
Encoded protein
Yr1 2AL T. aestivum Chinese 166 ASR
Yr2 7B T. aestivum Heines Ⅶ ASR
Yr3a 5BL T. aestivum Cappelle Desprez ASR
Yr3b 5BL T. aestivum Hybrid 46 ASR
Yr3c 5BL T. aestivum Minister ASR
Yr4a 3B T. aestivum Cappelle Desprez ASR
Yr4b 3B T. aestivum Hybrid 46 ASR
Yr5 2BL T. spelta Album ASR BED-NLR[10]
Yr6 7BS T. aestivum Heines Kolben ASR
Yr7 2BL T. durum Lee ASR BED-NLR[10]
Yr8 2M/2D Ae. comosa Compair ASR
Yr9 1RS S. cereale Clement ASR
Yr10 1BS T. aestivum Moro ASR NAM-ZnF-BED[11]
Yr11 / T. aestivum Joss Cambier APR
Yr12 / T. aestivum Mega APR
Yr13 / T. aestivum Maris Huntsman APR
Yr14 / T. aestivum Hobbit APR
Yr15 1BS T. dicoccoides G-25 ASR Wheat tandem kinase 1[12]
Yr16 2DL T. aestivum Capelle Desprez APR
Yr17 2AS Ae. ventricosa VPM 1 ASR
Yr18 7DS T. aestivum Jupateco 73R APR ABC transporter[13]
Yr19 5B Ae. speltoids Compair ASR
Yr20 6D T. aestivum Fielder ASR
Yr21 1BL T. aestivum Lemhi ASR
Yr22 4D T. aestivum Lee ASR
Yr23 6D T. aestivum Lee ASR
Yr24 1BS T. durum K773 ASR
Yr25 1D T. aestivum Strubes Dickkopf ASR
Yr26 1BL T. turgidum R55 ASR
Yr27 2BS T. aestivum Ciano79 ASR NLR[14]
Yr28 4DS Ae. tauschii W7984 ASR NLR[15]
Yr29 1BL T. aestivum Pavon76 APR
Yr30 3BS T. aestivum Opata85 APR
Yr31 2BS T. aestivum Pastor ASR
Yr32 2AS T. aestivum Carstens V ASR
Yr33 7DL T. aestivum Batavia ASR
Yr34 5AL T. aestivum WAWHT 2046 APR
Yr35 6BS T. dicoccoides 98M71 ASR
Yr36 6BS T. dicoccoides RSL65 HTAP START-Kinase[9]
Yr37 2DL Ae. kotschyi S14 ASR
Yr38 6AS Ae. sharonenisis Line 03524 ASR
Yr39 7BL T. aestivum Alpowa HTAP
Yr40 5DS Ae. geniculata T5DL.5DS-5MgS ASR
Yr41 2BS T. aestivum Chuannong 19 ASR
Yr42 6AL Ae. neglecta 03M119-71A ASR
Yr43 2BL T. aestivum IDO377s ASR
Yr44 2BL T. aestivum Zak ASR
Yr45 3DL T. aestivum PI 181434 ASR
Yr46 4DL T. aestivum RL 6007 APR Hexose transporter[16]
Yr47 5BS T. aestivum Aus 28183 ASR
Yr48 5AL T. aestivum PI610750 APR
Yr49 3DS T. aestivum Chuangmai 18 APR
Yr50 4BL Th. Intermedium CH223 ASR
Yr51 4AL T. aestivum Aus 27858 ASR
Yr52 7BL T. aestivum PI 183527 HTAP
Yr53 2BL T. durum PI 480148 ASR
Yr54 2DL T. aestivum Quaiu 3 APR
Yr55 2DL T. aestivum Aus 38882 ASR
Yr56 2AS T. durum Wollaroi APR
Yr57 3BS T. aestivum Aus 27858 ASR
Yr58 3BS T. aestivum Aus 19292 APR
Yr59 7BL T. aestivum PI 178759 HTAP
Yr60 4AL T. aestivum Almop APR
Yr61 7AS T. aestivum Pindong 34 ASR
Yr62 4BL T. aestivum PI 192252 HTAP
Yr63 7BS T. aestivum Aus 27955 /
Yr64 1BS T. durum PI 331260 ASR
Yr65 1BS T. durum PI 480016 ASR
Yr66 3DS T. aestivum MSP4543.1 ASR
Yr67 7BL T. aestivum AGG91585WHEA ASR
Yr68 4BL T. aestivum AGG91587WHEA1 APR
Yr69 2AS Th. Ponticum CH 7086 ASR
Yr70 5DS Ae. umbellulata IL 393-4 ASR
Yr71 3DL T. aestivum Sunco APR
Yr72 2BL T. aestivum Aus 27507 /
Yr73 3DL T. aestivum Avocet R ASR
Yr74 5BL T. aestivum Avocet R ASR
Yr75 7AL T. aestivum Nyabing-3 APR
Yr76 3AS T. aestivum Tyee ASR
Yr77 6DS T. aestivum PI 322118 APR
Yr78 6BS T. aestivum PI 519805 APR
Yr79 7BL T. aestivum PI 182103 HTAP
Yr80 3BL T. aestivum Aus 27284 APR
Yr81 6AS T. aestivum Aus 27430 ASR
Yr82 3BL T. aestivum Aus 27969 ASR
Yr83 6RL S. cereale T-701 APR
Yr84 1BS T. dicoccoides PI 487260 ASR
Yr85 1BS T. aestivum Tres ASR
Yr86 2AL T. aestivum Zhongmai 895 APR
YrU1 5AL T. urartu PI 428309 ASR ANK-NLR-WRKY[17]

Table 2

Distribution of wheat stripe rust resistance genes in wheat breeding program of different regions in China"

区域
Region
抗条锈病基因
Yr gene
抗病类型
Resistance type
代表性载体品种
Representative cultivars
北部冬麦区
Northern China Winter Wheat Zone
Yr9 ASR 京冬8号、农大3291、兰天11、兰天132等
Jingdong 8, Nongda 3291, Lantian 11, Lantian 132, et al.
Yr17 ASR 中麦175、轮选6号、兰天21、兰天132等
Zhongmai 175, Lunxuan 6, Lantian 21, Lantian 132, et al.
Yr18/Lr34/Sr57/Pm38 APR Libellula、Strampelli、武都17、天选44
Libellula, Strampelli, Wudu 17, Tianxuan 44
Yr24/Yr26/YrCH42 ASR 兰天17、兰天30、兰天35等
Lantian 17, Lantian 30, Lantian 35, et al.
Yr29/Lr46/Sr58/Pm39 APR 兰天27、兰航选151、天选50、长武357-9等
Lantian 27, Lanhangxuan 151, Tianxuan 50, Changwu 357-9, et al.
Yr30/Lr27/Sr2/Pm70 APR 兰天15、兰天34、兰天132等
Lantian 15, Lantian 34, Lantian 132, et al.
YrZH22 APR 兰天22、兰天33、兰天39、兰天44等
Lantian 22, Lantian 33, Lantian 39, Lantian 44, et al.
YrZH84 ASR 兰天33、兰天36、兰天37等
Lantian 33, Lantian 36, Lantian 37, et al.
YrZM175 ASR 中麦175 Zhongmai 175
黄淮麦区
Huang and Huai Rivers Winter Wheat Zone
YrJM22 ASR 济麦22 Jimai 22
Yr9 ASR 农大399、石4185、04中36、矮抗58、周8425B等
Nongda 399, Shi 4185, 04zhong 36, Aikang 58, Zhou 8425B, et al.
Yr17 ASR 孟麦58、淮阳1号、陕农33 Mengmai 58, Huaiyang 1, Shaannong 33
Yr18/Lr34/Sr57/Pm38 APR 中国春、济麦22 Chinese Spring, Jimai 22
Yr29/Lr46/Sr58/Pm39 APR 百农64、济南17、科农1006、西农528、陕农33
Bainong 64, Jinan 17, Kenong 1006, Xinong 528, Shaannong 33
Yr30/Lr27/Sr2/Pm70 APR 周8425B、周麦22等 Zhou 8425B, Zhoumai 22, et al.
YrZH22 APR 周8425B、周麦22等 Zhou 8425B, Zhoumai 22, et al.
YrZH84 ASR 周8425B、周麦22等 Zhou 8425B, Zhoumai 22, et al.
YrZY1152 ASR 中育1152 Zhongyu 1152
YrZM103 ASR 郑麦103 Zhengmai 103
西南麦区
Southern West Winter Wheat Zone
Yr5 ASR S2199
Yr17 ASR 川麦1691、绵麦52、内麦416、川农41
Chuanmai 1691, Mianmai 52, Neimai 416, Chuannong 41
Yr18/Lr34/Sr57/Pm38 APR 中国春、SY95-71、川麦801、川麦1456
Chinese Spring, SY95-71, Chuanmai 801, Chuanmai 1456
Yr24/Yr26/YrCH42 ASR 贵农系列、92R系列和川麦42
Guinong series, 92R series and Chuanmai 42
Yr29/Lr46/Sr58/Pm39 APR SW8588、川麦1691、蜀麦830和蜀麦126
SW8588, Chuanmai 1691, Shumai 830 and Shumai 126
Yr30/Lr27/Sr2/Pm70 APR 川麦88、西科麦12 Chuanmai 88, Xikemai 12
Yr15 ASR 绵麦835、蜀麦1868、川育29和川辐8号
Mianmai 835, Shumai 1868, Chuanyu 29 and Chuanfu 8
Yr28 ASR 蜀麦1675 Shumai 1675
Yr36 APR 蜀麦1701 Shumai 1701
Yr41 ASR 川农17 Chuannong 17
Yr69 ASR 蜀麦126 Shumai 126

Fig. 2

Adult plant resistance of several stripe rust resistance genes (Chengdu, 2022)"

Fig. 3

Adult plant resistance of stripe rust resistance genes Yr69, Yr50 and YrZM103 (Qingshui, Gansu, 2021)"

Fig. 4

Molecular marker detection of stripe rust resistance genes in Zhoumai series and Zhou 8425B’s derivatives (Qingshui, Gansu, 2021) A: Presence of stripe rust resistance allele; B: Presence of stripe rust susceptible allele; N: Null allele at this locus; *: Wheat cultivars carrying four stripe rust resistance genes"

Fig. 5

Pyramiding stripe rust resistance genes effects in wheat cultivars"

Fig. 6

Strategy for wheat stripe rust resistance genes utilization and molecular design of high-yielding new cultivars with durable and multiple disease resistance"

[1]
陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46(20): 4254-4262. DOI: 10.3864/j.issn.0578-1752.2013.20.008.
CHEN W Q, KANG Z S, MA Z H, XU S C, JIN S L, JIANG Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254-4262. DOI: 10.3864/j.issn.0578-1752.2013.20.008. (in Chinese)
[2]
李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002: 1-254.
LI Z Q, ZENG S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002: 1-254. (in Chinese)
[3]
韩德俊, 王琪琳, 张立, 魏国荣, 曾庆东, 赵杰, 王晓杰, 黄丽丽, 康振生. “西北-华北-长江中下游”条锈病流行区系当前小麦品种(系)抗条锈病性评价. 中国农业科学, 2010, 43(14): 2889-2896. DOI: 10.3864/j.issn.0578-1752.2010.14.007.
HAN D J, WANG Q L, ZHANG L, WEI G R, ZENG Q D, ZHAO J, WANG X J, HUANG L L, KANG Z S. Evaluation of resistance of current wheat cultivars to stripe rust in Northwest China, North China, and the Middle and Lower Reaches of Changjiang River epidemic area. Scientia Agricultura Sinica, 2010, 43(14): 2889-2896. DOI: 10.3864/j.issn.0578-1752.2010.14.007. (in Chinese)
[4]
MCINTOSH R A, MU J, HAN D J, KANG Z S. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. The Crop Journal, 2018, 6(4): 321-329.

doi: 10.1016/j.cj.2018.02.001
[5]
MCINTOSH R A, DUBCOVSKY J, ROGERS W J, XIA X C, RAUPP W J. Catalogue of gene symbols for wheat:2021 supplement. Annual Wheat Newsletter, 2021, 67: 104-113.
[6]
KLYMIUK V, CHAWLA H S, WIEBE K, ENS J, FATIUKHA A, GOVTA L, FAHIMA T, PONZNIAK C J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Communications Biology, 2022, 5: 826.

doi: 10.1038/s42003-022-03773-3
[7]
MCINTOSH R A, WELLINGS C R, PARK R F. Wheat Rusts:An Atlas of Resistance Genes. Victoria, Australia: CSIRO Press, 1995.
[8]
HUERTA-ESPINO J, SINGH R, CRESPO-HERRERA L A, VILLASEÑOR-MIR H E, RODRIGUEZ-GARCIA M F, DREISIGACKER S, BARCENAS-SANTANA D, LAGUDAH E. Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from Mexico. Frontier in Plant Science, 2020, 11: 824.
[9]
FU D L, UAUY C, DISTELFELD A, BLECHL A, EPSTEIN L, CHEN X M, SELA H, FAHIMA T, DUBCOVSKY J. A kinase- START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009, 323(5919): 1357-1360.

doi: 10.1126/science.1166289
[10]
MARCHAL C, ZHANG J, ZHANG P, FENWICK P, STEUERNAGE B, ADAMSKI N M, BOYD L, MCINTOSH R A, WULFF B B H, BERRY S, LAGUDAH E, UAUY C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018, 4: 662-668.

doi: 10.1038/s41477-018-0236-4 pmid: 30150615
[11]
NI F, ZHENG Y Y, LIU X K, YU Y, ZHANG G Q, EPSTEIN L, MAO X, WU J Z, YUAN C L, B, YU H X, LI J L, ZHAO Q, YANG Q Y, LIU J J, QI J, FU D L, WU J J. Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM. Nature Communications, 2023, 14: 4353.

doi: 10.1038/s41467-023-39993-2
[12]
KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S S, FENG L H, FRENKEL Z, KRUGMAN T, LIDZBARSKY G, CHANG W, JÄÄSKELÄINEN M J, SCHUDOMA C, PAULIN L, LAINE P, BARIANA H, SELA H, SALEEM K, SØRENSEN C K, HOVMØLLER M S, DISTELFELD A, CHALHOUB B, DUBCOVSKY J, KOROL A B, SCHULMAN A H, FAHIMA Z. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase- pseudokinase family. Nature Communications, 2018, 9: 3735.

doi: 10.1038/s41467-018-06138-9
[13]
KRATTINGER S G, LAGUDAH E S, SPIELMEYER W, SINGH R P, HUERTA-ESPINO J, MCFADDEN H, BOSSOLINI E, SELTER L L, KELLER B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323(5919): 1360-1363.

doi: 10.1126/science.1166453 pmid: 19229000
[14]
ATHIYANNAN N, ABROUK M, BOSHOFF WHP, CAUET S, RODDE N, KUDRNA D, MOHAMMED N, BETTGENHAEUSER J, BOTHA KS, DERMAN S S, WING R A, PRINS R, KRATTINGER S G. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nature Genetics, 2022, 54(3): 227-231.

doi: 10.1038/s41588-022-01022-1 pmid: 35288708
[15]
ZHANG C Z, HUANG L, ZHANG H F, HAO Q Q, LYU B, WANG M N, EPSTEIN L, LIU M, KOU C L, QI J, CHEN F J, LI M K, GAO G, NI F, ZHANG L Q, HAO M, WANG J R, CHEN X M, LUO M C, ZHENG Y L, WU J J, LIU D C, FU D L. An ancestral NB-LRR with duplicated 3’UTRs confers stripe rust resistance in wheat and barley. Nature Communications, 2019, 10(1): 4023.

doi: 10.1038/s41467-019-11872-9
[16]
MOORE J W, HERRERA-FOESSEL S, LAN C X, SCHNIPPENKOETTER W, AYLIFFE M, HUERTA-ESPINO J, LILLEMO M, VICCARS L, MILNE R, PERIYANNAN S. TALBOT M, BARIANA H, PATRICK J W, DODDS P, SINGH R, LAGUDAH E S. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015, 47(12): 1494-1498.

doi: 10.1038/ng.3439 pmid: 26551671
[17]
WANG H, ZOU S H, LI Y W, LIN F Y, TANG D Z. Am ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nature Communications, 2020, 11: 1353.

doi: 10.1038/s41467-020-15139-6
[18]
HE Y, FENG L H, JIANG Y, ZHANG L Q, YAN J, ZHAO G, WANG J R, CHEN G Y, WU B H, LIU D C, HUANG L, FAHIMA T. Distribution and nucleotide diversity of Yr15 in wild emmer populations and Chinese wheat germplasm. Pathogens, 2020, 9: 212.

doi: 10.3390/pathogens9030212
[19]
习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测. 作物学报, 2021, 47(7): 1309-1323.

doi: 10.3724/SP.J.1006.2021.01061
XI L, WANG Y Q, ZHU W, WANG Y, CHEN G Y, PU Z J, ZHOU Y H, KANG H Y. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province. Acta Agronomica Sinica, 2021, 47(7): 1309-1323. (in Chinese)

doi: 10.3724/SP.J.1006.2021.01061
[20]
白斌, 张怀志, 杜久元, 张晓洋, 何瑞, 伍玲, 张哲, 张耀辉, 曹世勤, 刘志勇. 西北条锈菌源区冬小麦育种抗条锈病基因利用现状与策略. 中国农业科学, 2024, 57(1): 4-17. DOI: 10.3864/j.issn.0578-1752.2024.01.002.
BAI B, ZHANG H Z, DU J Y, ZHANG X Y, HE R, WU L, ZHANG Z, ZHANG Y H, CAO S Q, LIU Z Y. Current situation and strategy of stripe rust resistance genes utilization in winter wheat cultivars of Northwest over-summering region for Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2024, 57(1): 4-17. DOI: 10.3864/j.issn.0578-1752.2024.01.002. (in Chinese)
[21]
BARIANA H S, MCINTOSH R A. Characterization and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica, 1994, 76: 53-61.

doi: 10.1007/BF00024020
[22]
FANG T L, CAMPBELL K G, LIU Z Y, CHEN X M, WAN A M, LI S, LIU Z J, CAO S H, CHEN Y H, BOWDEN R L, CARVER B F, YAN L L. Stripe rust resistance in the wheat cultivar Jagger is due to Yr17 and a novel resistance gene. Crop Science, 2011, 51: 2455-2465.

doi: 10.2135/cropsci2011.03.0161
[23]
GAO L L, KOO D H, JULIANA P, RIFE T, SINGH D, SILVA C L, LUX T, DORN K M, CLINESMITH M, SILVA P, WANG X, SPANNAGL M, MONAT C, FRIEBE B, STEUERNAGEL B, MUEHLBAUER G J, WALKOWIAK S, POZNIAK C, SINGH R, STEIN N, MASCHER M, FRITZ A, POLAND J. The Aegilops ventricosa 2NvS segment in bread wheat: Cytology, genomics and breeding. Theoretical and Applied Genetics, 2020, 134(2): 529-542.

doi: 10.1007/s00122-020-03712-y
[24]
LU J L, CHEN C, LIU P, HE Z H, XIA X C. Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175. Journal of Integrative Agriculture, 2016, 15(11): 2461-2468.

doi: 10.1016/S2095-3119(16)61379-5
[25]
WANG Y, ZHANG H Z, XIE J Z, GUO B M, CHEN Y X, ZHANG H Y, LU P, WU Q H, LI M M, ZHANG D Y, GUO G H, YANG J, ZHANG P P, ZHANG Y, WANG X C, ZHAO H, CAO T J, LIU Z Y. Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS In Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. The Crop Journal 2018, 6(1): 91-98.

doi: 10.1016/j.cj.2017.03.002
[26]
HUANG S, LIU S, ZHANG Y, XIE Y, WANG X, JIAO H, WU S, ZENG Q, WANG Q, SINGH R P, BHAVANI S, KANG Z, WANG C, HAN D, WU J. Genome-wide wheat 55K SNP-based mapping of stripe rust resistance loci in wheat cultivar Shaannong 33 and their alleles frequencies in current Chinese wheat cultivars and breeding lines. Plant Disease, 2021, 105: 1048-1056.

doi: 10.1094/PDIS-07-20-1516-RE
[27]
LIU S J, WANG X T, ZHANG Y Y, JIN Y G, XIA Z H, XIANG M J, HUANG S, QIAO L Y, ZHENG W J, ZENG Q D, WANG Q L, YU R, SINGH R P, BHAVANI S, KANG Z S, HAN D J, WANG C F, WU J H. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. Theoretical and Applied Genetics, 2022, 135(1): 351-365.

doi: 10.1007/s00122-021-03970-4
[28]
JIA A L, REN Y, GAO F M, YIN G H, LIU J D, GUO L, ZHENG J Z, HE Z H, XIA X C. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theoretical and Applied Genetics, 2018, 131(5): 1063-1071.

doi: 10.1007/s00122-018-3058-x pmid: 29392374
[29]
DONG Y, XU D A, XU X W, REN Y, GAO F M, SONG J, JIA A L, HAO Y F, HE Z H, XIA X C. Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.) Theoretical and Applied Genetics, 2022, 135(3): 1083-1099.

doi: 10.1007/s00122-021-04019-2
[30]
MAGO R, BROWN-GUEDIRA G, DREISIGACKER S, BREEN J, JIN Y, SINGH R, APPELS R S, LAGUDAH E S, ELLIS J, SPIELMEYER W. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theoretical and Applied Genetics, 2011, 122(4): 735-744.

doi: 10.1007/s00122-010-1482-7
[31]
WANG Y, XIE J Z, ZHANG H Z, GUO B M, NING S Z, CHEN Y X, LU P, WU Q H, LI M M, ZHANG D Y, GUO G H, ZHANG Y, LIU D C, ZOU S K, TANG J W, ZHAO H, WANG X C, LI J, YANG W Y, CAO T J, YIN G H, LIU Z Y. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theoretical and Applied Genetics, 2017, 130(10): 2191-2201.

doi: 10.1007/s00122-017-2950-0
[32]
LI Z F, ZHENG T C, HE Z H, LI G Q, XU S C, LI X P, YANG G Y, SINGH R P, XIA X C. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics, 2006, 112(6): 1098-1103.

doi: 10.1007/s00122-006-0211-8
[33]
刘旭, 闫素红, 李伟, 闫文利, 杨兆生. 与小麦抗条锈病基因Yr1152紧密连锁的分子标记及其应用: 中国, CN109913577A, 2019.
LIU X, YAN S H, LI W, YAN W L, YANG Z S. Molecular markers tightly linked to stripe rust resistance gene Yr1152 and their usage: China, CN109913577A, 2019. (in Chinese)
[34]
张怀志, 谢菁忠, 陈永兴, 刘旭, 王勇, 闫素红, 杨兆生, 赵虹, 王西成, 贾联合, 曹廷杰, 刘志勇. 利用BSR-Seq 定位小麦品种郑麦103 抗条锈病基因YrZM103. 作物学报, 2017, 43(11): 1643-1649.
ZHANG H Z, XIE J Z, CHEN Y X, LIU X, WANG Y, YAN S H, YANG Z S, ZHAO H, WANG X C, JIA L H, CAO T J, LIU Z Y. Mapping stripe rust resistance gene YrZM103 in wheat cultivar Zhengmai 103 by BSR-Seq. Acta Agronomica Sinica, 2017, 43(11): 1643-1649. (in Chinese)

doi: 10.3724/SP.J.1006.2017.01643
[35]
郝维浩, 梁坤, 陈璨, 卢杰, 司红起, 马传喜. 小麦抗条锈病基因YrJ22的精细定位和候选基因发掘// 第十届全国小麦基因组学及分子育种大会. 2019, 中国烟台.
HAO W H, LIANG K, CHEN J, LU J, SI H Q, MA C X. Fine mapping and candidate gene identification of wheat stripe rust resistance gene YrJM22// The X National Wheat Genomics and Molecular Breeding Conference. 2019, Yantai, China. (in Chinese)
[36]
HUANG S, ZHANG Y, REN H, LI X, ZHANG X, ZHANG Z, ZHANG C, LIU S, WANG X, ZENG Q, WANG Q, SINGH R P, BHAVANI S, WU J, HAN D, KANG Z. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. Theoretical and Applied Genetics, 2022, 135: 2501-2513.

doi: 10.1007/s00122-022-04133-9
[37]
WU J C, XU D A, FU L P, WU L, HAO W H, LI J H, DONG Y, WANG F J, WU Y Y, HE Z H, SI H Q, MA C X, XIA X C. Fine mapping of a stripe rust resistance gene YrZM175 in bread wheat. Theoretical and Applied Genetics, 2022, 135: 3485-3496.

doi: 10.1007/s00122-022-04195-9
[38]
赵虹, 王西成, 范和君. 多抗、广适、优质、高产、稳产小麦新品系-百农64. 河南农业科学, 1997(9): 40.
ZHAO H, WANG X C, FAN H J. New wheat line Bainong 64 with multiple resistance, wide adaptation, high quality, high and stable yielding. Henan Agriculture Sciences, 1997(9): 40. (in Chinese)
[39]
ZHANG P P, LI X, GEBREWAHID T W, LI H, XIA X C, HE Z H, LI Z F, LIU D Q. QTL mapping of adult-plant resistance to leaf and stripe rust resistance in wheat cross SW8588/Thatcher using the wheat 55K SNP array. Plant Disease, 2019, 103(12): 3041-3049.

doi: 10.1094/PDIS-02-19-0380-RE
[40]
YANG M Y, LI G R, WAN H S, LI L P, LI J, YANG W Y, PU Z J, YANG Z J, YANG E N. Identification of QTLs for stripe rust resistance in a recombinant inbred line population. International Journal of Molecular Sciences, 2019, 20(14): 3410.

doi: 10.3390/ijms20143410
[41]
WANG Y, HU Y, GONG F, JIN Y, XIA Y, HE Y, JIANG Y, ZHOU Q, HE J, FENG L, CHEN G, ZHENG Y, LIU D, HUANG L, WU B. Identification and mapping of QTL for stripe rust resistance in the Chinese wheat cultivar Shumai126. Plant Disease, 2022, 106: 1278-1285.

doi: 10.1094/PDIS-09-21-1946-RE
[42]
HIEBERT C W, THOMAS J B, MCCALLUM B D, HUMPHREYS G D, DEPAUW R M, HAYDEN M J, MAGO R, SCHNIPENKOETTER W, HAYDEN M. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theoretical and Applied Genetics, 2010, 121(6): 1083-1091.

doi: 10.1007/s00122-010-1373-y pmid: 20552325
[43]
LIU J, CHANG Z J, ZHANG X J, YANG Z J, LI X, JIA J Q, ZHAN H X, GUO H J, WANG J M. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theoretical and Applied Genetics, 2013, 126(1): 265-274.

doi: 10.1007/s00122-012-1979-3
[44]
HOU L Y, JIA J Q, ZHANG X J, LI X, YANG Z J, MA J, GUO H J, ZHAN H X, QIAO L Y, CHANG Z J. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Disease, 2016, 100(8): 1717-1724.

doi: 10.1094/PDIS-05-15-0555-RE
[45]
LIU D C, ZHANG L Q, HAO M, NING S Z, YUAN Z W, DAI S F, HUANG L, WU B H, YAN Z H, LAN X J, ZHENG Y L. Wheat breeding in the hometown of Chinese Spring. The Crop Journal, 2018, 6: 82-90.

doi: 10.1016/j.cj.2017.08.009
[46]
高艳, 唐建卫, 邹少奎, 胡润雨, 张根源, 孙玉霞, 王磊, 殷贵鸿. 小麦周麦22及其衍生品种的遗传多样性分析. 植物遗传资源学报, 2021, 22(1): 38-49.

doi: 10.13430/j.cnki.jpgr.20200419002
GAO Y, TANG J W, ZOU S K, HU R Y, ZHANG G Y, SUN Y X, WANG L, YIN G H. Genetic diversity assessment on derivatives from wheat cultivar Zhoumai 22. Journal of Plant Genetic Resources, 2021, 22(1): 38-49. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20200419002
[47]
杨作民, 唐伯让, 沈克全, 夏先春. 小麦抗病育种的战略问题—小麦对锈病、白粉病第二线抗源的建立和应用. 作物学报, 1994, 20(4): 385-394.
YANG Z M, TANG B R, SHEN K Q, XIA X C. A strategic problem in wheat resistance breeding - Building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agronomica Sinica, 1994, 20(4): 385-394. (in Chinese)
[48]
杨作民, 解超杰, 孙其信. 后条中32时期我国小麦条锈抗源之现状. 作物学报, 2003, 29(2): 161-168.
YANG Z M, XIE C J, SUN Q X. Situation of the sources of stripe rust resistance of wheat in the post-CY32 era in China. Acta Agronomica Sinica, 2003, 29(2): 161-168. (in Chinese)

doi: 10.3724/SP.J.1095.2012.00134
[49]
SINGH R. SINGH P K, RUTKOSKI J, HODSON D P, HE X Y, JØRGENSEN L N, HOVMØLLER M S, HUERTA-ESPINO J. Disease impact on wheat yield potential and prospects of genetic control. Annual Review Phytopathology, 2016, 54: 303-322.

doi: 10.1146/phyto.2016.54.issue-1
[50]
COBO N, WANJUGI H, LAGUDAH E S, DUBCOVSKY J. A high-resolution map of wheat QYr.ucw-1BL, an adult plant stripe rust resistance locus in the same chromosomal region as Yr29. Plant Genome, 2019, 12: 1-15.
[51]
NGOU B P M, DING P, JONES J D G. Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 2022, 34(5): 1447-1478.

doi: 10.1093/plcell/koac041 pmid: 35167697
[52]
BRUEGGEMAN R. ROSTOKS N, KUDRNA D, KILIAN A, HAN F, CHEN J, DRUKA A, STEFFENSON B, KLEINHOFS A. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases . Proceedings of the National Academy of Sciences of the USA, 2002, 99(14): 9328-9333.
[53]
LU P, GUO L, WANG Z Z, LI B B, LI J, LI Y H, QIU D, SHI W Q, YANG L J, WANG N, GUO G H, XIE J Z, WU Q H, CHEN Y X, LI M M, ZHANG H Z, DONG L L, ZHANG P P, ZHU K Y, YU D Z, ZHANG Y, DEAL K R, HUO N X, LIU C M, LUO M C, DVORAK J, GU Y Q, LI H J, LIU Z Y. A rare gain of function in a wheat tandem kinase confers resistance to powdery mildew. Nature Communications, 2020, 11: 680.

doi: 10.1038/s41467-020-14294-0
[54]
ZHANG G, LIU W, WANG L, CHENG X, TIAN X, DU Z, KANG Z, ZHAO J. Evaluation of the potential risk of the emerging Yr5-virulent races of Puccinia striiformis f. sp. tritici to 165 Chinese wheat cultivars. Plant Disease, 2022, 106: 1867-1874.

doi: 10.1094/PDIS-11-21-2622-RE
[55]
周祥椿, 吴立人, 宋建荣, 金社林. 陇南小麦条锈病的品种遗传多样性控制. 植物保护学报, 2008, 35(2): 97-101.
ZHOU X C, WU L R, SONG J R, JIN S L. Control of wheat stripe rust based on genetic diversity of cultivars in Longnan. Acta Phytophylacica Sinica, 2008, 35(2): 97-101. (in Chinese)
[56]
周祥椿, 杜久元, 鲁清林. 小麦条锈病抗源材料筛选和抗条锈基因库组建研究. 麦类作物学报, 2005, 25(1): 6-12.
ZHOU X C, DU J Y, LU Q L. Study on selection of resistance sources to stripe rust and gene bank setup for stripe rust resistance wheat breeding. Journal of Triticeae Crops, 2005, 25(1): 6-12. (in Chinese)
[57]
曹世勤, 孙振宇, 冯晶, 王万军, 贾秋珍, 黄瑾, 张勃, 金社林, 张耀辉, 骆惠生. 天选系列冬小麦品种抗条锈性分析. 麦类作物学报, 2017, 37(2): 268-274.
CAO S Q, SUN Z Y, FENG J, WANG W J, JIA Q Z, HUANG J, ZHANG B, JIN S L, ZHANG Y H, LUO H S. Analysis on resistance of winter wheat varieties of Tianxuan lines to stripe rust in Gansu province. Journal of Triticeae Crops, 2017, 37(2): 268-274. (in Chinese)
[58]
WANG Y, HU Y, GONG F, JIN Y, XIA Y, HE Y, JIANG Y, ZHOU Q, HE J, FENG L, CHEN G, ZHENG Y, LIU D, HUANG L, WU B. Identification and mapping of QTL for stripe rust resistance in the Chinese wheat cultivar Shumai126. Plant Disease, 2022, 106: 1278-1285.

doi: 10.1094/PDIS-09-21-1946-RE
[59]
XIAO J, LIU B, YAO Y Y, GUO Z F, JIA H Y, KONG L R, ZHANG A M, MA W J, NI Z F, XU S B, LU F, JIAO Y N, YANG W Y, LIN X L, SUN S L, LU Z F, GAO L F, ZHAO G Y, CAO S H, CHEN Q, ZHANG K P, WANG M C, WANG M, HU Z R, GUO W L, LI G Q, MA X, LI J M, FU X D, MA Z Q, WANG D W, ZHANG X Y, LING H Q, XIA G M, TONG Y P, LIU Z Y, HE Z H, JIA J Z, CONG K. Wheat genomics study for genetic improvement of traits in China. Science China Life Science, 2022, 65(9): 1718-1775.
[60]
曹廷杰, 陈永兴, 李丹, 张艳, 王西成, 赵虹, 刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测. 作物学报, 2015, 41(8): 1172-1182.
CAO T J, CHEN Y X, LI D, ZHANG Y, WANG X C, ZHAO H, LIU Z Y. Identification and molecular detection of powdery mildew resistance of new red wheat varieties (lines) in Henan province, China. Acta Agronomica Sinica, 2015, 41(8): 1172-1182. (in Chinese)

doi: 10.3724/SP.J.1006.2015.01172
[61]
张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, 周俭民. 植物免疫研究与抗病虫绿色防控: 进展、机遇与挑战. 中国科学: 生命科学, 2019, 49(11): 1479-1507.
ZHANG J, DONG S M, WANG W, ZHAO J H, CHEN X W, GUO H S, HE G C, HE Z H, KANG Z S, LI Y, PENG Y L, WANG G L, ZHOU X P, WANG Y C, ZHOU J M. Plant immunity and sustainable control of pests in China: Advances, opportunities and challenges. Science China Life Science, 2019, 49(11): 1479-1507. (in Chinese)
[62]
孔令让. 另辟蹊径破解小麦条锈病的基因密码. 植物学报, 2022, 57(4): 1-4.
KONG L R. Breaking the gene code conferring broad-spectrum resistance to rust fungi. Chinese Bulletin of Botany, 2022, 57(4): 1-4. (in Chinese)
[63]
WANG N, TANG C L, FAN X, HE M Y, GAN P F, ZHANG S, HU Z Y, WANG X D, YAN T, SHU W X, YU L G, ZHAO J R, HE J N, LI L L, WANG J F, HAUNG X L, HAUNG L L, ZHOU J M, KANG Z S, WANG X J. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185: 1-14.

doi: 10.1016/j.cell.2021.12.010
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[7] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!