Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (15): 2678-2685.doi: 10.3864/j.issn.0578-1752.2019.15.011

• HORTICULTURE • Previous Articles     Next Articles

Fine Mapping and Candidate Genes Analysis for Regulatory Gene of Anthocyanin Synthesis in Red-Colored Tuber Flesh

XU YunMei1,LI YuMei1,3,JIA YuXin2,ZHANG ChunZhi2,LI CanHui1,HUANG SanWen2,ZHU GuangTao1()   

  1. 1 School of Life Science, Yunnan Normal University/Joint Academy of Potato Sciences, Kunming 650500
    2 Agricultural Genomics Institute as Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120
    3 Faculty of Information Engineering & Automation, Kunming University of Science and Technology, Kunming 650500;
  • Received:2019-03-04 Accepted:2019-05-13 Online:2019-08-01 Published:2019-08-06
  • Contact: GuangTao ZHU E-mail:zhuguangtao@caas.cn

Abstract:

【Objective】 The color of tuber flesh is an important agronomic trait, which directly affects the nutritional and commercial value of potatoes. Accordingly, it is an important goal for potato genetic research and breeding improvement. In this study, we mapped the locus controlling red flesh color by bulked segregant analysis (BSA) and fine mapping, and predicted the candidate genes aided by expression analysis, which provides a foundation for gene function characterization, regulation analysis as well as the molecular breeding of colored potatoes. 【Method】 We crossed a red flesh diploid clone with the Sli gene donor to produce F1, and the F1 was backcrossed with the red flesh clone, and finally generated a BC1S1 diploid population. From the BC1S1 segregation population with 300 individuals, the genomic DNA of 18 red-colored flesh and 21 yellow-colored flesh individuals were extracted respectively and used for sequencing, and the locus controlling red flesh was preliminarily mapped by BSA-seq. The locus was fined mapped through genotyping and phenotyping of the recombination plants from 796 BC1S1 individuals. Based on reference genomic annotation and qRT-PCR expression analysis, candidate genes were predicted. 【Result】 In this study, BC1S1 segregating population with red and yellow-colored tuber flesh was constructed. The major locus which regulates related anthocyanin synthesis in potato flesh was mapped on chromosome 10 within a physical distance between 48.70 Mb and 52.20 Mb. Finally, molecular markers were used to locate the gene into a 377 kb genomic interval from 51.47 Mb to 51.85 Mb. There are five annotated genes in this genomic region based on reference genome annotation information, two of them were MYB transcription factors. We predicted that the two genes, PGSC0003DMG400013966 and PGSC0003DMG400013965, were candidate genes controlling red tuber flesh. 【Conclusion】 In this research, the major locus which regulates accumulation of anthocyanin in potato tuber flesh finally was mapped to chromosome 10 with an interval from 51.47 Mb to 51.85 Mb and predicted the candidate genes, PGSC0003DMG400013966 and PGSC0003DMG400013965.

Key words: red-colored flesh, anthocyanin metabolism, BSA-seq, fine mapping, candidate genes

Table 1

Molecular markers information for fine mapping"

引物名称
Primer name
Indel位置
Indel position
正向引物
Forward (5′-3′)
反向引物
Reverse (5′-3′)
P1 48710951 GAAGAATGGTAGCTGGAGTG CCGAATATGCATGTATTAGC
P2 49255127 TGTGTCAACGCTAACAACAT TACCCCAGACAGAATGAGTC
P3 49962534 CCATGGCCTCTAACTTTAGTC GTAGTTGCAAATGGGTGATT
P4 51413788 AACTCAATAACGGACCAGTG GATCGGAGAACAAGTTGAAA
P5 52271249 TGGAGGGACTAAAAGTGCTA TACGTACGTTTCCCTATGCT
P6 51427985 TCCCAGAGACTCCATTAAAA GTTTGATGAAATGTGCAGTG
P7 51460414 ATTAGCGGTGAAAGAAGACA AGTAAATGAGAGAGTAGTGCGA
P8 51469924 GTTGTTGAATTATGTTCCTCATACAACA GGAAAATTGGAAAGAATTTGAGGAA
P9 51473988 AGGAAGAGAGTTCCTTCACCACG GCTTCTAGCTACTTCTATAATGACGCAG
P10 51723735 GGATCATCATTAGTGGATCG GAAAGTGTCACGACTTGGAT
P11 51725907 TGTGAAGAACTATTGGAACACTCACTT CCGAGGTTGAGGTCTTATTA
P12 51732426 GCGCCGAAAGGTTTATATT CTATGTAAGTCGATTTGGGC
P13 51744513 GGATTATGACGAACCTAATAACCCAA TTCACCATTCTTGAAGCTAAATGTAA
P14 51845484 TGTTGTTGAACATGCACTCT AGAAAATAATATAAGTTTAATCCGTTCACT
P15 51850970 ATTTTTCCTACCGTAATCCC TCACTCTTCAAGATCAATGC

Table 2

Primers information for candidate genes"

引物名称 Primer name 正向引物 Forward (5′-3′) 反向引物 Reverse (5′-3′)
R2R3-MYB (CDS) CCTTGCACGGGCACCCTTATCTA GCAAATTCATCCCAACCACCATCAC

Table 3

Primers information for qRT-PCR"

引物名称 Primer name 正向引物 Forward (5′-3′) 反向引物 Reverse (5′-3′)
Actin GGGATGGAGAAGTTTGGTGGTGG CTTCGACCAAGGGATGGTGTAG
MYB GGCTAAATTATCTAAGGCCACATATCAAGAGA CGAGGAGGAGGAGGAGGAGCAA
R2R3-MYB GGAGTAATAAGGAAAGGTTCATGGACTGAAG AGCTTCCTTAGAAGGTTAGTGTTCCAATAGTTT

Fig. 1

The phenotype of the tuber flesh color and BSA-seq result A: The tuber flesh color of the parent (BC1) and typical BC1S1 individuals, n: the individual number of the corresponding phenotype; B: SNP-index graphs of two mixed pools and Δ(SNP-index) graph from BSA-seq result respectively, X-axis: the physical location of the chromosome, Y-axis: SNP corresponding to SNP-index and Δ(SNP-index) values, The red arrow points to the target region"

Fig. 2

Fine mapping of major effects gene which regulates tuber flesh anthocyanin synthesis"

Table 4

Genes information in the candidate regions"

基因编号 Gene ID 基因注释 Gene annotation
PGSC0003DMG400013964
PGSC0003DMG400041702
PGSC0003DMG400013966
PGSC0003DMG400045858
PGSC0003DMG400013965
未知功能基因 Gene of unknown function
未知功能基因 Gene of unknown function
MYB转录因子 MYB transcription factor
未知功能基因 Gene of unknown function
R2R3-MYB转录因子 Transcription factor R2R3-MYB

Fig. 3

The expression of candidate genes in red/yellow-colored flesh Using qRT-PCR, the expression levels of candidate genes were detected in red and yellow colored flesh. Three biological replicates were repeated for each phenotype, values are means ± SD, using the students t-test, ** indicated P<0.01"

[1] 李颖, 李广存, 李灿辉, 屈冬玉, 黄三文 . 二倍体杂种优势马铃薯育种的展望. 中国马铃薯, 2013,27(2):96-99.
LI Y, LI G C, LI C H, QU D Y, HUANG S W . Prospects of diploid hybrid breeding in potato. Chinese Potato Journal, 2013,27(2):96-99. (in Chinese)
[2] LIU Y, TIKUNOV Y, SCHOUTEN R E, MARCELIS L F M, VISSER R G F, BOVY A . Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review. Frontiers in Chemistry, 2018,6:52.
[3] LACHMAN J, HAMOUZ K . Red and purple coloured potatoes as a significant antioxidant source in human nutrition - A review. Plant Soil and Environment, 2005,51(11):477-482.
[4] ZHANG Y F, CHENG S P, DE JONG D, GRIFFITHS H, HALITSCHKE R, DE JONG W . The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics, 2009,119(5):931-937.
[5] JUNG C S, GRIFFITHS H M, DE JONG D M, CHENG S P, BODIS M, DE JONG W S . The potato P locus codes for flavonoid 3',5'- hydroxylase. Theoretical and Applied Genetics, 2005,110(2):269-275.
[6] DE JONG W S, DE JONG D M, DE JONG H, KALAZICH J, BODIS M . An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 2003,107(8):1375-1383.
[7] JIANG P, RAUSHER M . Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia. Nature Plants, 2018,4(1):14-22.
[8] HUANG D, WANG X, TANG Z Z, YUAN Y, XU Y T, HE J X, JIANG X L, PENG S A, LI L, BUTELLI E, DENG X X, XU Q . Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus. Nature Plants, 2018,4(11):930-941.
[9] DODDS K S, LONG D H . The inheritance of colour in diploid potatoes. I. Types of anthocyanidins and their genetic loci. Journal of Genetics, 1955,53(1):136-149.
[10] DODDS K S, LONG D H . The inheritance of colour in diploid potatoes. II. A three-factor linkage group. Journal of Genetics, 1956,54(1):27-41.
[11] JUNG C S, GRIFFITHS H M, DE JONG D M, CHENG S P, BODIS M, KIM T S, DE JONG W S . The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theoretical and Applied Genetics, 2009,120(1):45-57.
[12] DE JONG H . Inheritance of pigmented tuber flesh in cultivated diploid potatoes. American Potato Journal, 1987,64(7):337-343.
[13] ZHANG Y F, JUNG C S, DE JONG W S . Genetic analysis of pigmented tuber flesh in potato. Theoretical and Applied Genetics, 2009,119(1):143-150.
[14] ZHANG H L, YANG B, LIU J, GUO D L, HOU J, CHEN S C, SONG B T, XIE C H . Analysis of structural genes and key transcription factors related to anthocyanin biosynthesis in potato tubers. Scientia Horticulturae, 2017,225:310-316.
[15] 刘秀丽, 吕红, 范小峰 . 两种茄科植物基因组提取方法的比较. 陇东学院学报, 2017,28(1):53-56.
LIU X L, LÜ H, FAN X F . A Comparison on the methods for genome extraction on two plant species of solanaceae. Journal of Longdong University, 2017,28(1):53-56. (in Chinese)
[16] The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature, 2011,475(7355):189-195.
[17] HUANG W J, KHALDUN A B M, LÜ H Y, DU L W, ZHANG C J, WANG Y . Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum. Plant Cell Reports, 2016,35(4):883-894.
[18] PEREZ-DIAZ J R, PEREZ-DIAZ J, MADRID-ESPINOZA J, GONZALEZ-VILLANUEVA E, MORENO Y, RUIZ-LARA S . New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Molecular Biology, 2016,90(1/2):63-76.
[19] LIU F, YANG Y J, GAO J W, MA C L, BI Y P . A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation. PLoS ONE, 2018,13(1):e0191406.
[20] LIU Y H, LIN-WANG K, DENG C, WARRAN B, WANG L, YU B, YANG H Y, WANG J, ESPLEY R V, ZHANG J L, WANG D, ALLAN A C . Comparative transcriptome analysis of white and purple potato to identify genes involved in anthocyanin biosynthesis. PLoS ONE, 2015,10(6):e0129148.
[21] HUANG W J, KHALDUN A B M, CHEN J J, ZHANG C J, LÜ H Y, YUAN L, WANG Y . A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum. Frontiers in Plant Science, 2016,7:1089.
[22] KOES R E, QUATTROCCHIO F, MOL J N M . The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays, 1994,16(2):123-132.
[23] HOLTON T A, BRUGLIERA F, LESTER D R, TANAKA Y, HYLAND C D HYLAND C D HYLAND C D HYLAND C D HYLAND C D, MENTING J G T, LU C Y, FARCY E, STEVENSON T W . Cloning and expression of cytochrome P450 genes controlling flower colour. Nature, 1993,366(6452):276-279.
[24] HOLTON T A, CORNISH E C . Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995,7(7):1071-1083.
[25] BOSS P K, DAVIES C, ROBINSON S P . Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Molecular Biology, 1996,32(3):565-569.
[26] LISTER C E, LANCASTER J E, WALKER J R L . Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. Journal of the Science of Food & Agriculture, 1996,71(3):313-320.
[27] DE JONG H . Inheritance of anthocyanin pigmentation in the cultivated potato: A critical review. American Potato Journal, 1991,68(9):585-593.
[28] ENDELMAN J B, JANSKY S H . Genetic mapping with an inbred line-derived F2 population in potato. Theoretical and Applied Genetics, 2016,129(5):935-943.
[29] SALAMAN R N . The inheritance of colour and other characters in the potato. Journal of Genetics, 1911,5(1):192-193.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[3] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[4] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[5] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[6] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[7] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[8] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[9] SUN CanRan, ZHANG XueHai, MA ZhiHui, GUO ZhanYong, TANG JiHua, FU ZhiYuan. Fine Mapping of Grain Test Weight Gene tw1 in Maize [J]. Scientia Agricultura Sinica, 2018, 51(7): 1233-1243.
[10] WANG BeiFang, CHEN YuYu, ZHANG YingXin, LIU QunEn, SUN Bin, XIANG XiaoJiao, CAO YongRun, CHENG ShiHua, CAO LiYong. Identification and Fine Mapping of an Early Senescent Leaf Mutant es5 in Oryza sativa L. [J]. Scientia Agricultura Sinica, 2018, 51(4): 613-625.
[11] ZHANG ZhuangBiao,DI Ran,LIU QiuYue,HU WenPing,WANG XiangYu,TIAN ZhiLong,ZHANG XiaoSheng,ZHANG JinLong,CHU MingXing. Expression Analysis of Five Genes in the Gonadal Axis of Small Tail Han Sheep and Sunite Sheep [J]. Scientia Agricultura Sinica, 2018, 51(24): 4710-4719.
[12] ZHANG YaoFeng, ZHANG DongQing, YU HuaSheng, LIN BaoGang, HUA ShuiJin, DING HouDong, FU Ying. Location and Mapping of the Determinate Growth Habit of Brassica napus by Bulked Segregant Analysis (BSA) Using Whole Genome Re-Sequencing [J]. Scientia Agricultura Sinica, 2018, 51(16): 3029-3039.
[13] YU YanFang, LIU Xi, TIAN YunLu, LIU ShiJia, CHEN LiangMing, ZHU JianPing, WANG YunLong, JIANG Ling, ZHANG WenWei, WANG YiHua, WAN JianMin. Phenotypic Analysis and Gene Mapping of a Floury and Shrunken Endosperm Mutant fse3 in Rice [J]. Scientia Agricultura Sinica, 2018, 51(11): 2023-2037.
[14] LIANG MeiXia, QIAO XuQiang, GUO XiaoTong, ZHANG HongXia. Research Progresses in mechanisms of Growth Habits and Co Gene Mapping of Columnar Apple (Malus domestica × Borkh.) [J]. Scientia Agricultura Sinica, 2017, 50(22): 4421-4430.
[15] LU ZhenHua, NIU Liang, ZHANG NanNan, YAO JiaLong, CUI GuoChao, ZENG WenFang, PAN Lei, WANG ZhiQiang. Fine Mapping of Dwarfing Gene for Peach Based on SNP Markers [J]. Scientia Agricultura Sinica, 2017, 50(18): 3572-3580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!