Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4602-4620.doi: 10.3864/j.issn.0578-1752.2023.23.004

• SPECIAL FOCUS: FIBER DEVELOPMENT IN COTTON • Previous Articles     Next Articles

Genome-Wide Identification of Cotton FLA Gene Family and Functional Analysis of GhFLA05 in Cotton Fiber Development

TANG LiYuan(), CAI Xiao, WANG HaiTao, LI XingHe, ZHANG SuJun, LIU CunJing, ZHANG JianHong()   

  1. Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs/National Cotton Improvement Center Hebei Branch, Shijiazhuang 050051
  • Received:2023-02-16 Accepted:2023-04-20 Online:2023-12-04 Published:2023-12-04
  • Contact: ZHANG JianHong

Abstract:

【Background】It is of great importance to improve the quality of cotton fiber to meet the improvement of cotton textile production and the pursue of people for high quality cotton. Fasciclin-like arabinogalactan proteins (FLAs) play an important role in the initial development of cotton fibers and secondary wall synthesis. 【Objective】Comprehensive identification and analysis of cotton FLA gene family members to reveal their common characteristics and specific expression patterns, provided a reference for the function study of FLAs in cotton fiber development.【Method】According to the whole genome data of cotton, members of FLA gene family were identified by HMMER3.0 and further verified by online softwares of Pfam and Smart. Physical and chemical properties and transmembrane domains of these proteins were analyzed by ExPASy and TMHMM. Phylogenetic tree construction, chromosome localization, collinearity analysis and protein conserved domain sequence alignment were conducted and displayed using GSDS, MCScanX, MEGA, MEME, TBtools and Jalview. Expression of FLA genes in different tissues were analyzed by cotton transcriptome data. Expression differences of GhFLAs in different developmental stages of ovules and fibers between different fiber quality materials was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Function of GhFLA05 was verified by virus induced gene silencing (VIGS). 【Result】A total of 41, 40, 20 and 21 FLA family members were identified in G.hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. The phylogenetic tree showed that cotton FLA proteins could be divided into four groups. Gene structure and motif composition were relatively conserved in each group. Further analysis of FLA proteins in Gossypium hirsutum showed that all 41 FLA members had 1-2 AGP-like glycosylation regions and 1-2 fasciclin-like domains (FAS), 37 of which contained signal peptide (SP) and 25 contained glycosylphosphatidylinositol anchored protein (GPI) anchoring signals. Subcellular localization showed that GhFLA05_D showing aggregated granules in the cytoplasm was probably localized in endoplasmic reticulum, and GhFLA18_A and GhFLA22 were expressed in cell membrane/wall, cytoplasm and nucleus. Transcriptome sequencing results showed that FLA proteins in Group A and B were mainly highly expressed in fibers, which may be involved in the process of cotton fiber elongation development and secondary wall thickening. In general, group A and B members had a similar expression pattern in two materials with significant differences in fiber quality and expressed mainly in the secondary wall development stage, especially in 20-25 DPA period. GhFLA05 exhibited specific expression at the secondary wall thickening stage with significant differences between two materials, which expressed with a high maximum value in earlier stage of secondary wall thickening stage in high specific strength material RIL229, suggesting GhFLA05 may take a part in the regulation of cotton fiber strength difference formation. The fiber strength and micronaire value decreased in GhFLA05 gene-silenced cotton plants by VIGS.【Conclusion】A sum of 122 FLA family members were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii, which could be divided into four groups. Members of different groups had high structural and functional similarities, and the genes related to cotton fiber development were identified. It was clarified that GhFLA05 specifically expressed in the secondary wall synthesis stage, and closely related to the difference in fiber strength of different upland cotton materials.

Key words: cotton, FLA, fiber development, gene family, expression analysis

Table 1

Information on FLA gene family members in cotton"

棉种类型
Type of Gossypium
氨基酸数量
No. of amino acid (aa)
分子量
Mw (kDa)
等电点
pI
不稳定系数
Instability index
亲水性平均系数
Grand average of hydropathicity (GRAVY)
跨膜结构域数量No. of predicted TMHs
陆地棉G. hirsutum 241-499 25.61-53.52 5.11-9.27 27.90-54.92 -0.24-0.28 0-3
海岛棉G. barbadense 241-460 25.58-50.83 5.11-9.27 27.90-55.73 -0.24-0.28 0-1
亚洲棉G. arboreum 239-459 25.42-50.71 5.25-9.04 26.95-57.71 -0.25-0.28 0-3
雷蒙德氏棉G. ramondii 239-515 25.50-57.29 5.11-9.41 24.91-54.76 -0.25-0.26 0-2

Fig. 1

The chromosome location of the FLA gene family in cotton The chromosomes of A-subgenome of G. hirsutum, D-subgenome of G. hirsutum, G. arboreum, and G. raimondii A-subgenome of G. barbadense, D-subgenome of G. barbadense are drawn in green, darkblue, yellow, red, skyblue and pink, respectively"

Fig. 2

Phylogenetic tree of FLA proteins from Arabidopsis thaliana (At), G. hirsutum (Gh), G. barbadense (Gb), G. arboreum (Ga), and G. ramondii (Gr)"

Fig. 3

Chromosome distribution and collimearity of FLA family members in cotton A: Intra-genomic collinearity and localization of the FLA genes in four Gossypium; B: Collinearity relationships among the FLA genes from four cotton genomes"

Fig. 4

Structure (A) and conserved Motif (B) analysis of FLA family members in G. hirsutum The solid rectangular box selection part is the sequence structure deleted after gene correction, and the dotted rectangular box selection part is the sequence structure added after gene correction; CDS: Coding sequence"

Fig. 5

Schematic representation of FLAs in G. hirsutum based on the numbers of AGP-like glycosylated regions and fasciclin domains Exon: Exon, AGP: AGP-like glycation region, C-GPI: C-terminal glycosylphosphatidylinositol anchoring signal, N-SP: N-terminal signal peptide, FAS: Fasciclin-like domain"

Fig. 6

Multiple sequence alignment of FAS domains of FLAs in G. hirsutum"

Fig. 7

Subcellular localization of FLAs protein in different groups in G. hirsutum"

Fig. 8

Expression analysis of FLA genes in different tissues, ovule and fiber at different developmental stages in G. hirsutum"

Fig. 9

Fiber quality traits of RIL131 and RIL229 (A) and expression analysis of GhFLAs in fiber of two materials (B) RIL131 and RIL229: Two lines with stable separation of fiber quality traits in RIL population previously constructed, *: Significant difference (P<0.05), **: Extremely significant difference (P<0.01), n.s.: No significant difference. The same as below"

Fig. 10

Phenotype (A), genes expression in fiber (B) and fiber quality traits (C) of GhFLA05 gene-silenced cotton plants"

[1]
WANG M J, LI J Y, QI Z Y, LONG Y X, PEI L L, HUANG X H, GROVER C E, DU X M, XIA C J, WANG P C, LIU Z P, YOU J Q, TIAN X H, MA Y Z, WANG R P, CHEN X Y, HE X, FANG D D, SUN Y Q, TU L L, JIN S X, ZHU L F, WENDEL J F, ZHANG X L. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nature Genetics, 2022, 54(12): 1959-1971.

doi: 10.1038/s41588-022-01237-2
[2]
CHEN Q, WANG W, WANG C X, ZHANG M, YU J W, ZHANG Y F, YUAN B T, DING Y Y, JONES D C, PATERSON A H, CHEE P W, WANG B H. Validation of QTLs for fiber quality introgressed from Gossypium mustelinum by selective genotyping. G3 Genes |Genomes|Genetics, 2020, 10(7): 2377-2384.
[3]
HUANG G Q, XU W L, GONG S Y, LI B, WANG X L, XU D, LI X B. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiologia Plantarum, 2008, 134(2): 348-359.

doi: 10.1111/ppl.2008.134.issue-2
[4]
LIU D Q, TU L L, LI Y J, WANG L, ZHU L F, ZHANG X L. Genes encoding fasciclin-like Arabinogalactan proteins are specifically expressed during cotton fiber development. Plant Molecular Biology Reporter, 2008, 26(2): 98-113.

doi: 10.1007/s11105-008-0026-7
[5]
HUANG G Q, GONG S Y, XU W L, LI W, LI P, ZHANG C J, LI D D, ZHENG Y, LI F G, LI X B. A fasciclin-like Arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiology, 2013, 161(3): 1278-1290.

doi: 10.1104/pp.112.203760
[6]
MA J J, JIANG Y F, PEI W F, WU M, MA Q F, LIU J, SONG J K, JIA B, LIU S, WU J Y, ZHANG J F, YU J W. Expressed genes and their new alleles identification during fibre elongation reveal the genetic factors underlying improvements of fibre length in cotton. Plant Biotechnology Journal, 2022, 20(10): 1940-1955.

doi: 10.1111/pbi.v20.10
[7]
王雅琴, 李艳军, 张新宇, 刘永昌, 石淼, 孙杰. 棉花GhFLA4基因的克隆及表达分析. 新疆农业科学, 2013, 50(5): 785-793.
WANG Y Q, LI Y J, ZHANG X Y, LIU Y C, SHI M, SUN J. Cloning and expression analysis of cotton GhFLA4 gene. Xinjiang Agricultural Sciences, 2013, 50(5): 785-793. (in Chinese)
[8]
胡海燕, 刘迪秋, 李允静, 李阳, 涂礼莉. 一个棉花纤维伸长期优势表达启动子pGhFLA1的克隆与鉴定. 作物学报, 2017, 43(6): 849-854.
HU H Y, LIU D Q, LI Y J, LI Y, TU L L. Identification of promoter GhFLA1 preferentially expressed during cotton fiber elongation. Acta Agronomica Sinica, 2017, 43(6): 849-854. (in Chinese)

doi: 10.3724/SP.J.1006.2017.00849
[9]
TAN L, SHOWALTER A M, EGELUND J, HERNANDEZ- SANCHEZ A, DOBLIN M S, BACIC A. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Frontiers in Plant Science, 2012, 3: 140.

doi: 10.3389/fpls.2012.00140 pmid: 22754559
[10]
SEIFERT G J, ROBERTS K. The biology of Arabinogalactan proteins. Annual Review of Plant Biology, 2007, 58: 137-161.

pmid: 17201686
[11]
SHOWALTER A M, KEPPLER B, LICHTENBERG J, GU D Z, WELCH L R. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiology, 2010, 153(2): 485-513.

doi: 10.1104/pp.110.156554 pmid: 20395450
[12]
XU F, CHEN Q, HUANG L, LUO M. Advances about the roles of membranes in cotton fiber development. Membranes, 2021, 11(7): 471.

doi: 10.3390/membranes11070471
[13]
ZANG L N, ZHENG T C, CHU Y G, DING C J, ZHANG W X, HUANG Q J, SU X H. Genome-wide analysis of the fasciclin-like Arabinogalactan protein gene family reveals differential expression patterns, localization, and salt stress response in Populus. Frontiers in Plant Science, 2015, 6: 1140.
[14]
GUERRIERO G, MANGEOT-PETER L, LEGAY S, BEHR M, LUTTS S, SIDDIQUI K S, HAUSMAN J F. Identification of fasciclin-like Arabinogalactan proteins in textile hemp (Cannabis sativa L.): In silico analyses and gene expression patterns in different tissues. BMC Genomics, 2017, 18(1): 741.

doi: 10.1186/s12864-017-3970-5
[15]
TAN L, LEYKAM J F, KIELISZEWSKI M J. Glycosylation motifs that direct Arabinogalactan addition to Arabinogalactan-proteins. Plant Physiology, 2003, 132(3): 1362-1369.

pmid: 12857818
[16]
HE J D, ZHAO H, CHENG Z L, KE Y W, LIU J X, MA H L. Evolution analysis of the fasciclin-like Arabinogalactan proteins in plants shows variable fasciclin-AGP domain constitutions. International Journal of Molecular Sciences, 2019, 20(8): 1945.

doi: 10.3390/ijms20081945
[17]
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.

doi: 10.1038/nmeth.3317 pmid: 25751142
[18]
JOHNSON K L, JONES B J, BACIC A, SCHULTZ C J. The fasciclin-like Arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiology, 2003, 133(4): 1911-1925.

doi: 10.1104/pp.103.031237
[19]
MA H L, ZHAO J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61(10): 2647-2668.

doi: 10.1093/jxb/erq104
[20]
FAIK A, ABOUZOUHAIR J, SARHAN F. Putative fasciclin-like Arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Molecular Genetics and Genomics, 2007, 277(1): 97.

doi: 10.1007/s00438-006-0178-9
[21]
SHOWALTER A M, KEPPLER B D, LIU X, LICHTENBERG J, WELCH L R. Bioinformatic identification and analysis of hydroxyproline-rich glycoproteins in Populus trichocarpa. BMC Plant Biology, 2016, 16(1): 229.

doi: 10.1186/s12870-016-0912-3
[22]
MACMILLAN C P, TAYLOR L, BI Y D, SOUTHERTON S G, EVANS R, SPOKEVICIUS A. The fasciclin-like Arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. The New Phytologist, 2015, 206(4): 1314-1327.

doi: 10.1111/nph.2015.206.issue-4
[23]
LI X Q, CHENG M Y, TANG C R, ZHU X X, QI K, ZHANG S L, WU J Y, WANG P. Identification and function analysis of fasciclin-like Arabinogalactan protein family genes in pear (Pyrus bretschneideri). Plant Systematics and Evolution, 2021, 307: 48.

doi: 10.1007/s00606-021-01769-w
[24]
MENG J, HU B, YI G J, LI X Q, CHEN H B, WANG Y Y, YUAN W N, XING Y Q, SHENG Q M, SU Z X, XU C X. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Reports, 2020, 39(6): 693-708.

doi: 10.1007/s00299-020-02524-0
[25]
HOSSAIN M S, AHMED B, ULLAH M W, AKTAR N, HAQUE M S, ISLAM M S. Genome-wide identification of fasciclin-like Arabinogalactan proteins in jute and their expression pattern during fiber formation. Molecular Biology Reports, 2020, 47(10): 7815-7829.

doi: 10.1007/s11033-020-05858-w pmid: 33011893
[26]
LI J, WU X M. Genome-wide identification, classification and expression analysis of genes encoding putative fasciclin-like Arabinogalactan proteins in Chinese cabbage (Brassica rapa L.). Molecular Biology Reports, 2012, 39(12): 10541-10555.

doi: 10.1007/s11033-012-1940-1
[27]
AALLELIGN SHAGRE H, ZALTZMAN D, IDAN-MOLAKANDOV A, ROMANO H, TZFADIA O, HARPAZ-SAAD S. FASCICLIN-LIKE 18 is a new player regulating root elongation in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12: 645286.

doi: 10.3389/fpls.2021.645286
[28]
MACMILLAN C P, MANSFIELD S D, STACHURSKI Z H, EVANS R, SOUTHERTON S G. Fasciclin-like Arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. The Plant Journal, 2010, 62(4): 689-703.

doi: 10.1111/tpj.2010.62.issue-4
[29]
SHI H Z, KIM Y, GUO Y, STEVENSON B, ZHU J K. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. The Plant Cell, 2003, 15(1): 19-32.

doi: 10.1105/tpc.007872
[30]
WANG H H, JIANG C M, WANG C T, YANG Y, YANG L, GAO X Y, ZHANG H X. Antisense expression of the fasciclin-like Arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. Journal of Experimental Botany, 2015, 66(5): 1291-1302.

doi: 10.1093/jxb/eru479
[31]
LIU H W, SHI R F, WANG X F, PAN Y X, LI Z K, YANG X L, ZHANG G Y, MA Z Y. Characterization and expression analysis of a fiber differentially expressed Fasciclin-like Arabinogalactan protein gene in Sea Island cotton fibers. PLoS ONE, 2013, 8(7): e70185.

doi: 10.1371/journal.pone.0070185
[32]
MAJEWSKA-SAWKA A, NOTHNAGEL E A. The multiple roles of Arabinogalactan proteins in plant development. Plant Physiology, 2000, 122(1): 3-10.

doi: 10.1104/pp.122.1.3
[33]
XUE H, VEIT C, ABAS L, TRYFONA T, MARESCH D, RICARDI M M, ESTEVEZ J M, STRASSER R, SEIFERT G J. Arabidopsis thaliana FLA4functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain. The Plant Journal, 2017, 91(4): 613-630.

doi: 10.1111/tpj.2017.91.issue-4
[34]
ZHANG M, WEI H L, LIU J, BIAN Y J, MA Q, MAO G Z, WANG H T, WU A M, ZHANG J J, CHEN P Y, MA L, FU X K, YU S X. Non-functional GoFLA19s are responsible for the male sterility caused by hybrid breakdown in cotton (Gossypium spp.). The Plant Journal, 2021, 107(4): 1198-1212.

doi: 10.1111/tpj.v107.4
[35]
LI J, YU M, GENG L L, ZHAO J. The fasciclin-like Arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. The Plant Journal, 2010, 64(3): 482-497.

doi: 10.1111/tpj.2010.64.issue-3
[36]
ZHANG Z Y, XIN W W, WANG S F, ZHANG X, DAI H F, SUN R R, FRAZIER T, ZHANG B H, WANG Q L. Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development. Functional & Integrative Genomics, 2015, 15(1): 17-26.
[37]
TAKAHASHI D, KAWAMURA Y, UEMURA M. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. Journal of Experimental Botany, 2016, 67(17): 5203-5215.

doi: 10.1093/jxb/erw279
[38]
SEIFERT G J, XUE H, ACET T. The Arabidopsis thaliana fasciclin like Arabinogalactan protein 4 gene acts synergistically with abscisic acid signalling to control root growth. Annals of Botany, 2014, 114(6): 1125-1133.

doi: 10.1093/aob/mcu010
[39]
张素君, 周晓栋, 唐丽媛, 李兴河, 王海涛, 刘存敬, 蔡肖, 张香云, 张建宏. 杂交棉‘冀1518’纤维品质性状的QTL定位及遗传分析. 分子植物育种, 2021, 19(11): 3627-3637.
ZHANG S J, ZHOU X D, TANG L Y, LI X H, WANG H T, LIU C J, CAI X, ZHANG X Y, ZHANG J H. QTL Mapping and genetic analysis of fiber quality traits in hybrid cotton ‘Ji1518’. Molecular Plant Breeding, 2021, 19(11): 3627-3637. (in Chinese)
[40]
HU Y, CHEN J D, FANG L, ZHANG Z Y, MA W, NIU Y C, JU L Z, DENG J Q, ZHAO T, LIAN J M, BARUCH K, FANG D, LIU X, RUAN Y L, RAHMAN M U, HAN J L, WANG K, WANG Q, WU H T, MEI G F, ZANG Y H, HAN Z G, XU C Y, SHEN W J, YANG D F, SI Z F, DAI F, ZOU L F, HUANG F, BAI Y L, ZHANG Y G, BRODT A, BEN-HAMO H, ZHU X F, ZHOU B L, GUAN X Y, ZHU S J, CHEN X Y, ZHANG T Z. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51(4): 739-748.

doi: 10.1038/s41588-019-0371-5
[41]
WANG M J, LI J Y, WANG P C, LIU F, LIU Z P, ZHAO G N, XU Z P, PEI L L, GROVER C E, WENDEL J F, WANG K B, ZHANG X L. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Molecular Biology and Evolution, 2021, 38(9): 3621-3636.

doi: 10.1093/molbev/msab128 pmid: 33973633
[42]
FINN R D. Pfam: Clans, web tools and services. Nucleic Acids Research, 2006, 34(90001): D247-D251.

doi: 10.1093/nar/gkj149
[43]
FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 2011, 39(suppl_2): W29-W37.

doi: 10.1093/nar/gkr367
[44]
LETUNIC I, DOERKS T, BORK P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research, 2012, 40(D1): D302-D305.

doi: 10.1093/nar/gkr931
[45]
LU S N, WANG J Y, CHITSAZ F, DERBYSHIRE M K, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, MARCHLER G H, SONG J S, THANKI N, YAMASHITA R A, YANG M Z, ZHANG D C, ZHENG C J, LANCZYCKI C J, MARCHLER-BAUER A. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 2020, 48(D1): D265-D268.
[46]
GASTEIGER E, HOOGLAND C, GATTIKER A, DUVAUD S, WILKINS M R, APPEL R D, BAIROCH A. Protein Identification and Analysis Tools on the Expasy Server. The Proteomics Protocols Handbook, Humana Press, 2005: 571-607.
[47]
EDDY S R. Profile hidden Markov models. Bioinformatics, 1998, 14(9): 755-763.

doi: 10.1093/bioinformatics/14.9.755 pmid: 9918945
[48]
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.

doi: 10.1093/molbev/msw054 pmid: 27004904
[49]
LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 2021, 49(W1): W293-W296.

doi: 10.1093/nar/gkab301
[50]
WANG Y P, TANG H B, DEBARRY J D, TAN X, LI J P, WANG X Y, LEE T H, JIN H Z, MARLER B, GUO H, KISSINGER J C, PATERSON A H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49,

doi: 10.1093/nar/gkr1293
[51]
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[52]
BAILEY T L, JOHNSON J, GRANT C E, NOBLE W S. The MEME suite. Nucleic Acids Research, 2015, 43(W1): W39-W49.

doi: 10.1093/nar/gkv416
[53]
HU B, JIN J P, GUO A Y, ZHANG H, LUO J C, GAO G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 2015, 31(8): 1296-1297.

doi: 10.1093/bioinformatics/btu817 pmid: 25504850
[54]
SCHULTZ C J, RUMSEWICZ M P, JOHNSON K L, JONES B J, GASPAR Y M, BACIC A. Using genomic resources to guide research directions. the Arabinogalactan protein gene family as a test case. Plant Physiology, 2002, 129(4): 1448-1463.

doi: 10.1104/pp.003459 pmid: 12177459
[55]
GU Z H, HUANG C J, LI F F, ZHOU X P. A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnology Journal, 2014, 12(5): 638-649.

doi: 10.1111/pbi.12169 pmid: 24521483
[56]
TIAN Z L, ZHANG Y Z, ZHU L P, JIANG B, WANG H Q, GAO R X, FRIML J, XIAO G H. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). The Plant Cell, 2022, 34(12): 4816-4839.

doi: 10.1093/plcell/koac270 pmid: 36040191
[57]
LIU G Y, LIU J, PEI W F, LI X H, WANG N H, MA J J, ZANG X S, ZHANG J F, YU S X, WU M, YU J W. Analysis of the MIR160 gene family and the role of MIR160a_A05 in regulating fiber length in cotton. Planta, 2019, 250(6): 2147-2158.

doi: 10.1007/s00425-019-03271-7
[58]
YANG Z E, GAO C X, ZHANG Y H, YAN Q D, HU W, YANG L, WANG Z, LI F G. Recent progression and future perspectives in cotton genomic breeding. Journal of Integrative Plant Biology, 2023, 65(2): 548-569.

doi: 10.1111/jipb.13388
[59]
WU X Y, LAI Y C, LV L Q, JI M F, HAN K L, YAN D K, LU Y W, PENG J J, RAO S F, YAN F, ZHENG H Y, CHEN J P. Fasciclin-like Arabinogalactan gene family in Nicotiana benthamiana: genome-wide identification, classification and expression in response to pathogens. BMC Plant Biology, 2020, 20(1): 305.

doi: 10.1186/s12870-020-02501-5
[60]
WANG C, LV Y D, XU W, ZHANG T Z, GUO W Z. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L.. BMC Genomics, 2014, 15: 94.

doi: 10.1186/1471-2164-15-94
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] WU SiHui, ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie. Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(9): 1760-1774.
[3] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[4] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[5] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[6] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[7] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[8] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[9] WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit [J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
[10] TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558.
[11] DANG YuanYue, MA JianJiang, YANG ShuXian, SONG JiKun, JIA Bing, FENG Pan, CHEN QuanJia, YU JiWen. Genome-Wide Identification and Expression Analysis of β-tubulin Family in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4585-4601.
[12] DONG YanYu, XU BiYu, DONG ZeYu, WANG LuYao, CHEN JinWen, FANG Lei. Genome-Wide Identification and Interspecific Comparative Analysis of the EXO70 Gene Family in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4621-4634.
[13] ZANG XinShan, WANG KangWen, ZHANG XianLiang, WANG XuePing, WANG Jun, LIANG Yu, PEI XiaoYu, REN Xiang, LÜ YuLong, GAO Yu, WANG XingXing, PENG YunLing, MA XiongFeng. Research Advances of Map-Based Cloning Genes in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4635-4647.
[14] ZHANG YaLin, JIANG Yan, ZHAO LiHong, FENG ZiLi, FENG HongJie, WEI Feng, ZHOU JingLong, ZHU HeQin, MA ZhiYing. Effect of Temperature on the Occurrence of Cotton Verticillium Wilt and Host Defense Response [J]. Scientia Agricultura Sinica, 2023, 56(23): 4671-4683.
[15] HAN XiaoWen, HAN Shuo, HU YiFeng, WANG MengRu, CHEN ZhongYi, ZHU YongXing, YIN JunLiang. Genome-Wide Identification of AP2/ERF Gene Family in Alternanthera philoxeroides and Its Expression Patterns Under Herbicide Stresses [J]. Scientia Agricultura Sinica, 2023, 56(20): 4021-4034.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!