Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 4067-4071.doi: 10.3864/j.issn.0578-1752.2023.20.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Conception of Eco-Circular Agriculture of "Rice-Potato-Pig"

FAN ZiYao1(), LI Kui1(), LI JiaYang2(), HUANG SanWen1,3()   

  1. 1 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong
    2 Yazhou Bay National Laboratory, Sanya 527000, Hainan
    3 Chinese Academy of Tropical Agricultural Sciences, Haikou 571101
  • Received:2023-06-26 Accepted:2023-08-30 Online:2023-10-16 Published:2023-10-31
  • Contact: FAN ZiYao, LI Kui, LI JiaYang, HUANG SanWen

Abstract:

Empowered by breakthroughs in hybrid potato breeding technology and the well-established molecular design breeding in rice cultivation, we propose a new eco-circular agricultural model, referred to as "rice-potato-pig (RPP)". This model involves planting rice in spring and summer, growing potatoes in winter, and using potatoes and bran as feed for pigs, while simultaneously utilizing pig manure and urine to fertilize the fields. RPP has the potential to alleviate the pressure of China's feed imports and address issues such as low efficiency, resource wastage, and environmental harm caused by the gap between planting and feeding. In this paper, we analyze the feasibility of the RPP model, which utilizes winter fields for potato cultivation to produce animal protein. We also discuss the operational characteristics and implementation of this model. Based on the design principles of agricultural system engineering, the entire RPP system is divided into four sub-systems, including field planting management, potato storage, pig feeding with potatoes, and manure and urine treatment followed by returning nutrients to the fields. Through stepwise optimization, integration, and modeling of these sub-systems, we explore the practical implementation of the eco-circular agricultural model of RPP according to local conditions and moderate scale in southern China.

Key words: rice, hybrid potato, pig, idle fields in winter, eco-circular agriculture, agricultural system

Fig. 1

The cycle system of “rice-potato-pig”"

[1]
FAO. Crops and livestock products. 2022.
[2]
刘红南, 印遇龙. 以种养结合模式推进养殖氨减排的治理. 中国科学院院刊, 2021, 36(1): 93-96.
LIU H N, YIN Y L. Establish integrated crop-livestock production to promote ammonia reduction in livestock industry. Bulletin of Chinese Academy of Sciences, 2021, 36(1): 93-96. (in Chinese)
[3]
FANG J Y, YU G R, LIU L L, HU S J, CHAPIN F S.Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4015-4020.
[4]
WANG R, BAI Z H, CHANG J F, LI Q S, HRISTOV A N, SMITH P, YIN Y L, TAN Z L, WANG M. China’s low-emission pathways toward climate-neutral livestock production for animal-derived foods. The Innovation, 2022, 3(2): 100220.

doi: 10.1016/j.xinn.2022.100220
[5]
STOKSTAD E. The new potato. Science, 2019, 363(6427): 574-577.

doi: 10.1126/science.363.6427.574 pmid: 30733400
[6]
JIAO Y Q, WANG Y H, XUE D W, WANG J, YAN M X, LIU G F, DONG G J, ZENG D L, LU Z F, ZHU X D, QIAN Q, LI J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42(6): 541-544.

doi: 10.1038/ng.591 pmid: 20495565
[7]
QIAN Q, GUO L B, SMITH S M, LI J Y. Breeding high-yield superior quality hybrid super rice by rational design. National Science Review, 2016, 3(3): 283-294.

doi: 10.1093/nsr/nww006
[8]
LI Y H, QIAN Q, ZHOU Y H, YAN M X, SUN L, ZHANG M, FU Z M, WANG Y H, HAN B, PANG X M, CHEN M S, LI J Y. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. The Plant Cell, 2003, 15(9): 2020-2031.

doi: 10.1105/tpc.011775
[9]
ZHANG C Z, YANG Z M, TANG D, ZHU Y H, WANG P, LI D W, ZHU G T, XIONG X Y, SHANG Y, LI C H, HUANG S W. Genome design of hybrid potato. Cell, 2021, 184(15): 3873-3883.

doi: 10.1016/j.cell.2021.06.006 pmid: 34171306
[10]
WHITTEMORE C T, TAYLOR A G, MOFFAT I W, SCOTT A. Nutritive value of raw potato for pigs. Journal of the Science of Food and Agriculture, 1975, 26(3): 255-260.

pmid: 1134064
[11]
NAZARIAN-FIROUZABADI F, VISSER R G F. Potato starch synthases: functions and relationships. Biochemistry and Biophysics Reports, 2017, 10: 7-16.

doi: 10.1016/j.bbrep.2017.02.004
[12]
HENNESSY R C, JØRGENSEN N O G, SCAVENIUS C, ENGHILD J J, GREVE-POULSEN M, SØRENSEN O B, STOUGAARD P. A screening method for the isolation of bacteria capable of degrading toxic steroidal glycoalkaloids present in potato. Frontiers in Microbiology, 2018, 9: 2648.

doi: 10.3389/fmicb.2018.02648 pmid: 30455676
[13]
TANIOS S, EYLES A, CORKREY R, TEGG R S, THANGAVEL T, WILSON C R. Quantifying risk factors associated with light-induced potato tuber greening in retail stores. PLoS ONE, 2020, 15(9): e0235522.

doi: 10.1371/journal.pone.0235522
[14]
DOAN C H, DAVIDSON P M. Microbiology of potatoes and potato products: a review. Journal of Food Protection, 2000, 63(5): 668-683.

doi: 10.4315/0362-028x-63.5.668 pmid: 10826729
[15]
O’ MEARA F M, GARDINER G E, O’ DOHERTY J V, CLARKE D, CUMMINS W, LAWLOR P G. Effect of wet/dry, fresh liquid, fermented whole diet liquid, and fermented cereal liquid feeding on feed microbial quality and growth in grow-finisher pigs. Journal of Animal Science, 2020, 98(6): skaa166.

doi: 10.1093/jas/skaa166
[16]
WANG Y M, ZHOU J Y, WANG G, CAI S, ZENG X F, QIAO S Y. Advances in low-protein diets for swine. Journal of Animal Science and Biotechnology, 2018, 9: 60.

doi: 10.1186/s40104-018-0276-7 pmid: 30034802
[1] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[2] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[3] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[4] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[5] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[6] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[7] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[8] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[9] CUI DengShuai, XIONG SanYa, ZHENG Hao, LI LongYun, YU NaiBiao, HUANG ZhiYong, XIAO ShiJun, GUO YuanMei. Comparing Methods for Correcting Days to 100 kg of Sows in Licha Black Pig and Its Intercross with Berkshire [J]. Scientia Agricultura Sinica, 2023, 56(6): 1177-1188.
[10] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[11] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[12] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[13] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[14] WANG WeiKang, ZHANG JiaYi, WANG Hui, CAO Qiang, TIAN YongChao, ZHU Yan, CAO WeiXing, LIU XiaoJun. Non-Destructive Monitoring of Rice Growth Key Indicators Based on Fixed-Wing UAV Multispectral Images [J]. Scientia Agricultura Sinica, 2023, 56(21): 4175-4191.
[15] YANG Hao, HUANG YanYan, YI ChunLin, SHI Jun, TAN ChuTian, REN WenRui, WANG WenMing. Development and Application of Specific Molecular Markers for Six Homologous Rice Blast Resistance Genes in Pi9 Locus of Rice [J]. Scientia Agricultura Sinica, 2023, 56(21): 4219-4233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!