Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1531-1546.doi: 10.3864/j.issn.0578-1752.2023.08.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit

WANG Ning1,2,3(), FENG KeYun1(), NAN HongYu1, CONG AnQi2,3, ZHANG TongHui2()   

  1. 1 Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    2 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2022-03-28 Accepted:2022-04-19 Online:2023-04-16 Published:2023-04-23

Abstract:

【Objective】The aim of this study was to explore the effects of combined application of organic manure and chemical fertilizer on water and nitrogen use efficiency and yield of cotton under different water conditions, so as to provide a theoretical basis for the rational use of organic fertilizer in the cotton area of Hexi corridor.【Method】Field experiments were carried out from 2020 to 2021. The experiment was designed by split block, the main plot treatment consisted of full irrigation (W1) and deficit irrigation(W2), and the split-plot treatment was composed of five fertilizer treatments: no fertilizer (CK), single application of chemical fertilizer (CF), 25% organic manure with 75% chemical fertilizer (OF1), 50% organic manure with 50% chemical fertilizer (OF2) and 75% organic manure with 25% chemical fertilizer (OF3), while the nutrient content of each fertilization treatment was equal. The effects of fertilization under different water conditions on soil water content, periodical evapotranspiration, dry matter accumulation, nitrogen accumulation, transport and distribution, water and nitrogen use efficiency, seed cotton yield and economic benefits were analyzed. 【Result】The seed cotton yield, water and nitrogen utilization characteristics of cotton were significantly affected by different water and fertilizer treatments and interactions. Soil water content, total evapotranspiration, dry matter accumulation, total nitrogen uptake and seed cotton yield decreased significantly, while water use efficiency increased significantly under deficit irrigation. The suitable combined application of organic manure and chemical fertilizer treatment could increase the soil water content of 0-40 cm soil layer, and reduce the evapotranspiration at seedling stage and budding stage, while increase the evapotranspiration at flower-boll stage, increase dry matter and nitrogen accumulation, and promote distribution to reproductive organs. Under the condition of full irrigation, the yield of the OF1 treatment was the highest in all fertilization treatments, with an average increase of 10.5% over single application of chemical fertilizer in two years, there was no significant difference between OF2 and CF, while the treatment of OF3 was significantly lower than that under single application of chemical fertilizer. The treatment of OF1 had the highest water and nitrogen use efficiency in each fertilization treatment, in which water use efficiency, nitrogen use efficiency and nitrogen agronomic use efficiency were 8.9%, 14.3% and 28.9% higher than CF, respectively. Under the condition of deficit irrigation, the seed cotton yield of the combined application of organic manure and chemical fertilizer treatments were higher than that of CF among which OF2 was the highest, and the average seed cotton yield of two years was 12.9% higher than that of CF, meanwhile, the treatment of OF2 also had the highest water and nitrogen use efficiency, in which the water use efficiency, nitrogen use efficiency and nitrogen agronomic use efficiency were 6.3%, 35.5% and 31.6% higher than that of CF, respectively.【Conclusion】The appropriate proportion of combined application of organic manure and chemical fertilizer could coordinate the supply and demand relationship of soil and crop for water and nutrients, and improve the seed cotton yield and the water and nitrogen use efficiency. Considering yield, water and nitrogen use efficiency and economic benefits, the treatment of 25% organic manure was the suitable mode of organic fertilizer application in Hexi corridor.

Key words: cotton, organic manure, chemical fertilizer, ratio, seed cotton yield, water and nitrogen use efficiency

Table 1

Basic chemical properties of the 0-20 cm soil layer of the experimental field before sowing"

年份
Year
土层
Soil layer
(cm)
pH 有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
碱解氮
Alkaline-hydrolytic N (mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
2020 0—20 7.21 12.79 0.67 59.74 27.65 152.38
20—40 7.28 10.13 0.58 48.92 22.38 116.42
40—60 7.33 7.65 0.47 41.25 18.64 98.21
2021 0—20 7.24 13.14 0.71 57.38 29.35 176.43
20—40 7.30 11.25 0.63 51.27 25.32 121.85
40—60 7.31 8.62 0.46 42.38 19.54 103.76

Fig. 1

Daily rainfall and mean temperature in growth period of cotton in 2020-2021"

Fig. 2

Vertical changes of soil water content at 0-120 cm soil layer of each treatment at different growing stages"

Fig. 3

Effects of different water and fertilization treatments on periodical evapotranspiration at different growth stages of cotton Different small letters of the same growth period indicate significantly different between fertilization treatments at P<0.05. The same as below"

Fig. 4

Dry matter accumulation dynamics of cotton under different water and fertilization treatments"

Fig. 5

Dry matter distribution of cotton in boll opening stage under different water and fertilization treatments"

Fig. 6

Effects of different water and fertilization treatments on aboveground nitrogen accumulation and distribution of cotton organs"

Table 2

Effects of different water and fertilization treatments on nitrogen distribution and transfer rate of cotton organs"

年份
Year
水分
Water
施肥
Fertilizer
花铃期分配率
Distribution rate in flower-boll stage (%)
吐絮期分配率
<BOLD>D</BOLD>istribution rate in boll opening (%)
转运率
Transfer rate (%)

Stem

Leaf
花铃
Flower boll

Stem

Leaf

Boll

Stem

Leaf
2020 W1 CK 17.9c 25.7c 56.4a 12.9c 16.2c 70.9a 15.4a 25.6d
CF 25.9a 38.9a 35.2d 20.3a 23.3a 56.3c 12.7b 32.9c
OF1 20.6b 36.7a 42.7c 16.6b 19.8b 63.5b 16.2a 43.6a
OF2 23.8a 34.1b 42.1c 18.7b 19.9b 61.3b 15.9a 37.5b
OF3 21.2b 32.8b 46.0b 18.1b 21.2ab 60.7b 12.8b 34.1bc
W2 CK 16.2b 22.5b 61.3a 12.5b 15.6b 71.9b 14.2a 22.8c
CF 23.1a 32.7a 44.2b 18.9a 21.4a 59.7a 11.8b 29.7b
OF1 21.9a 30.8a 45.3b 17.6a 19.5a 62.9a 13.7a 32.3b
OF2 22.4a 32.6a 45.0b 18.2a 20.1a 61.7a 15.1a 35.8a
OF3 21.5a 32.3a 46.2b 17.7a 20.6a 61.7a 13.4a 32.5b
2021 W1 CK 18.4c 24.9c 56.7a 14.0b 16.2c 69.8a 17.2a 23.9d
CF 24.6a 35.7a 39.7d 20.9a 23.9a 55.2c 13.6b 31.7c
OF1 21.7b 36.2a 42.1c 17.8a 21.0b 61.2b 18.1a 40.3a
OF2 21.9b 32.5b 45.6b 18.8a 21.9ab 59.3b 16.7a 35.8b
OF3 21.4b 31.7b 46.9b 19.1a 23.7a 57.2c 14.3b 32.1c
W2 CK 15.4b 28.3b 56.3a 11.6b 14.6b 73.8a 15.7a 21.2c
CF 20.8a 37.2a 42.0b 19.1a 23.0a 57.9b 10.6b 28.6b
OF1 21.3a 37.4a 41.3b 17.7a 22.2a 60.1b 11.3b 29.1b
OF2 21.7a 35.2a 43.1b 18.5a 21.5a 60.0b 14.1a 33.4a
OF3 22.4a 34.6a 43.0b 18.5a 20.9a 60.6b 10.8b 28.8b

Table 3

Seed cotton yield and efficiency of water and nitrogen of cotton under different treatments"

处理
Treatment
Y (kg·hm-2) NUE (%) NAUE (kg·kg-1) ET (mm) WUE (kg·hm-2·mm-1)
2020 2021 2020 2021 2020 2021 2020 2021 2020 2021
W1 CK 2812.7d 3041.7c 435.3c 422.7c 6.5c 7.2b
CF 4074.6b 4115.2b 16.9b 17.3b 2.8b 2.4b 557.7a 565.9a 7.3b 7.3b
OF1 4515.3a 4628.9a 19.7a 20.2a 3.8a 3.5a 565.4a 578.5a 7.9a 8.0a
OF2 3986.3b 4107.5b 15.9b 16.6b 2.6b 2.4b 527.3b 544.3b 7.6b 7.5b
OF3 3784.1c 4013.2b 12.1c 9.9c 2.2c 2.2b 504.6b 535.9b 7.5b 7.5b
W2 CK 2375.2d 2419.6d 346.2c 371.3c 6.8c 6.5c
CF 3228.6c 3364.1c 16.3c 14.7b 1.9c 2.1c 439.4b 441.5b 7.3b 7.6b
OF1 3521.9b 3615.3b 17.0b 14.9b 2.6b 2.7b 446.5b 445.8b 7.9a 8.1a
OF2 3746.2a 3824.7a 18.2a 15.8a 3.1a 3.1a 472.1a 475.4a 7.9a 8.0a
OF3 3471.8b 3382.5c 14.9d 12.3c 2.4b 2.1c 437.6b 442.3b 7.9a 7.6b
方差分析(F值) ANOVA (F-value)
W 877.8** 863.6** 23.3* 243.0** 108.0** 17.3* 412.5** 186.4** 133.7** 42.5*
F 886.5** 836.8** 248.8** 867.7** 13.3** 19.7** 197.2** 56.8** 52.9** 41.6**
W×F 79.4** 49.7** 97.9** 287.8** 17.3** 11.9** 10.3** 8.6* 5.8* 11.4**

Fig. 7

Correlation heat map of seed cotton yield and efficiency of water and nitrogen DA: Dry matter accumulation; NA: Nitrogen accumulation"

Table 4

Economic benefits of cotton under different treatments"

处理
Treatment
生产资料成本
Production materials cost (yuan/hm2)
田间管理成本
Filed management cost (yuan/hm2)
总收入 Total income (yuan/hm2) 净收益 Net profit (yuan/hm2)
2020 2021 2020 2021
W1 CK 3900 3200 16876d 33459d 9776c 26359d
CF 8100 3200 24448b 45267b 13148a 33967b
OF1 10200 3200 27092a 50918a 13692a 37518a
OF2 12300 3200 23918b 45183b 8418b 29683c
OF3 14400 3200 22705c 44145c 5105d 26545d
W2 CK 3300 3200 14251c 26616d 7751b 20116b
CF 7500 3200 19372b 37005c 8672a 26305a
OF1 9600 3200 21131a 39768b 8331a 26968a
OF2 11700 3200 22477a 42072a 7577b 27172a
OF3 13800 3200 20831b 37208c 3831c 20208b
[1]
喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友. 中国棉花高产育种研究进展. 中国农业科学, 2016, 49(18): 3465-3476. doi: 10.3864/j.issn.0578-1752.2016.18.001.

doi: 10.3864/j.issn.0578-1752.2016.18.001
YU S X, FAN S L, WANG H T, WEI H L, PANG C Y. Progresses in research on cotton high yield breeding in China. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476. doi: 10.3864/j.issn.0578-1752.2016.18.001. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.18.001
[2]
卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望. 中国农业科学, 2018, 51(1): 26-36. doi: 10.3864/j.issn.0578-1752.2018.01.003.

doi: 10.3864/j.issn.0578-1752.2018.01.003
LU X R, JIA X Y, NIU J H. The present situation and prospects of cotton industry development in China. Scientia Agricultura Sinica, 2018, 51(1): 26-36. doi: 10.3864/j.issn.0578-1752.2018.01.003. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.01.003
[3]
张宣, 刘雪莹, 胡迪, 袁向群, 冯克云, 康波, 张军, 罗进仓, 南宏宇, 李怡萍. 河西走廊棉田主要害虫发生动态及植物源杀虫剂防治技术. 植物保护学报, 2021, 48(5): 1125-1138.
ZHANG X, LIU X Y, HU D, YUAN X Q, FENG K Y, KANG B, ZHANG J, LUO J C, NAN H Y, LI Y P. Occurrence dynamics of major pests in cotton areas and the control techniques with botanical pesticides in the Hexi Corridor, China. Journal of Plant Protection, 2021, 48(5): 1125-1138. (in Chinese)
[4]
冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响. 作物学报, 2021, 47(1): 125-137.

doi: 10.3724/SP.J.1006.2021.04077
FENG K Y, WANG N, NAN H Y, GAO J G. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton. Acta Agronomica Sinica, 2021, 47(1): 125-137. (in Chinese)

doi: 10.3724/SP.J.1006.2021.04077
[5]
马忠明, 王平, 陈娟, 包兴国. 适量有机肥与氮肥配施方可提高河西绿洲土壤肥力及作物生产效益. 植物营养与肥料学报, 2016, 22(5): 1298-1309.
MA Z M, WANG P, CHEN J, BAO X G. Combined long-term application of organic materials with nitrogen fertilizer in suitable amount could improve soil fertility and crop production profit in He-xi Oasis of Gansu Province. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1298-1309. (in Chinese)
[6]
闵迪, 王增红, 李援农, 张舵. 不同灌水和施氮水平对河西春玉米水氮利用效率和经济效益的影响. 干旱地区农业研究, 2020, 38(5): 153-160.
MIN D, WANG Z H, LI Y N, ZHANG D. Effects of different irrigation and nitrogen application levels on the yield and water and nitrogen use efficiency of spring maize. Agricultural Research in the Arid Areas, 2020, 38(5): 153-160. (in Chinese)
[7]
石洪亮, 张巨松, 严青青, 李春艳, 李健伟. 氮肥对非充分灌溉下棉花产量及品质的补偿作用. 植物营养与肥料学报, 2018, 24(1): 134-145.
SHI H L, ZHANG J S, YAN Q Q, LI C Y, LI J W. Compensation effects of nitrogen fertilizer on yield and quality of cotton under insufficient irrigation. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 134-145. (in Chinese)
[8]
QUEMADA M, GABRIEL J L. Approaches for increasing nitrogen and water use efficiency simultaneously. Global Food Security, 2016, 9: 29-35.

doi: 10.1016/j.gfs.2016.05.004
[9]
COSSANI C M, SLAFER G A, SAVIN R. Nitrogen and water use efficiencies of wheat and barley under a Mediterranean environment in Catalonia. Field Crops Research, 2012, 128: 109-118.

doi: 10.1016/j.fcr.2012.01.001
[10]
SANDHU S S, MAHAL S S, VASHIST K K, BRAR A S, SINGH M. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India. Agricultural Water Management, 2012, 104: 32-39.

doi: 10.1016/j.agwat.2011.11.012
[11]
张绪成, 于显枫, 王红丽, 侯慧芝, 方彦杰, 马一凡. 半干旱区减氮增钾、有机肥替代对全膜覆盖垄沟种植马铃薯水肥利用和生物量积累的调控. 中国农业科学, 2016, 49(5): 852-864. doi: 10.3864/j.issn.0578-1752.2016.05.005.

doi: 10.3864/j.issn.0578-1752.2016.05.005
ZHANG X C, YU X F, WANG H L, HOU H Z, FANG Y J, MA Y F. Regulations of reduced chemical nitrogen, potassium fertilizer application and organic manure substitution on potato water-fertilizer utilization and biomass assimilation under whole field plastics mulching and ridge-furrow planting system on semi-arid area. Scientia Agricultura Sinica, 2016, 49(5): 852-864. doi: 10.3864/j.issn.0578-1752.2016.05.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.05.005
[12]
LIU J A, SHU A P, SONG W F, SHI W C, LI M C, ZHANG W X, LI Z Z, LIU G R, YUAN F S, ZHANG S X, LIU Z B, GAO Z. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma, 2021, 404: 115287.

doi: 10.1016/j.geoderma.2021.115287
[13]
HAN J Q, DONG Y Y, ZHANG M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Applied Soil Ecology, 2021, 165: 103966.

doi: 10.1016/j.apsoil.2021.103966
[14]
陶瑞, 李锐, 谭亮, 褚贵新. 减少化肥配施有机肥对滴灌棉花N、P吸收和产量的影响. 棉花学报, 2014, 26(4): 342-349.
TAO R, LI R, TAN L, CHU G X. Effects of application of different organic manures with chemical fertilizer on cotton yield, N and P utilization efficiency under drip irrigation. Cotton Science, 2014, 26(4): 342-349. (in Chinese)
[15]
谢军红, 柴强, 李玲玲, 张仁陟, 王林林, 刘畅. 有机氮替代无机氮对旱作全膜双垄沟播玉米产量和水氮利用效率的影响. 应用生态学报, 2019, 30(4): 1199-1206.

doi: 10.13287/j.1001-9332.201904.025
XIE J H, CHAI Q, LI L L, ZHANG R Z, WANG L L, LIU C. Effects of the substitution of inorganic nitrogen by organic nitrogen fertilizer on maize grain yield and water and nitrogen use efficiency under plastic film fully mulched ridge-furrow in semi-arid area. Chinese Journal of Applied Ecology, 2019, 30(4): 1199-1206. (in Chinese)

doi: 10.13287/j.1001-9332.201904.025
[16]
周慧, 史海滨, 徐昭, 郭珈玮, 付小军, 李正中. 有机无机肥配施对盐渍土供氮特性与作物水氮利用的影响. 农业机械学报, 2020, 51(4): 299-307.
ZHOU H, SHI H B, XU Z, GUO J W, FU X J, LI Z Z. Effects of combined application of organic and inorganic fertilizers on nitrogen supply and crop water and nitrogen utilization in salinized soils. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 299-307. (in Chinese)
[17]
程煜, 乔若楠, 丁运韬, 董勤各, 冯浩, 张体彬. 化肥减量和有机替代对重度盐渍土水盐特性及向日葵水氮利用效率的影响. 植物营养与肥料学报, 2021, 27(11): 1981-1992.
CHENG Y, QIAO R N, DING Y T, DONG Q G, FENG H, ZHANG T B. Effects of chemical fertilizer reduction and organic substitution on water and salt characteristics of high salinity soil and water and nitrogen use efficiency of sunflower. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1981-1992. (in Chinese)
[18]
宿顺顺, 冯浩, 吴淑芳, 胡亚瑾, 陈光杰, 陈霁菲. 亏缺灌溉与有机肥结合对夏玉米水分及产量影响. 水土保持学报, 2020, 34(2): 165-172.
SU S S, FENG H, WU S F, HU Y J, CHEN G J, CHEN J F. Effect of deficit irrigation combined with organic fertilizer on water content and yield of summer maize. Journal of Soil and Water Conservation, 2020, 34(2): 165-172. (in Chinese)
[19]
吕凤莲, 侯苗苗, 张弘弢, 强久次仁, 周应田, 路国艳, 赵秉强, 杨学云, 张树兰. 塿土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究. 植物营养与肥料学报, 2018, 24(1): 22-32.
F L, HOU M M, ZHANG H T, QIANG J, ZHOU Y T, LU G Y, ZHAO B Q, YANG X Y, ZHANG S L. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat-summer maize rotation system in Lou soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 22-32. (in Chinese)
[20]
ZHAI L C, WANG Z B, ZHAI Y C, ZHANG L H, ZHENG M J, YAO H P, LV L H, SHEN H P, ZHANG J T, YAO Y R, JIA X L. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil and Tillage Research, 2022, 217: 105287.

doi: 10.1016/j.still.2021.105287
[21]
盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018, 51(12): 2336-2347. doi: 10.3864/j.issn.0578-1752.2018.12.010.

doi: 10.3864/j.issn.0578-1752.2018.12.010
GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. doi: 10.3864/j.issn.0578-1752.2018.12.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.12.010
[22]
CHAI Q, GAN Y T, TURNER N C, ZHANG R Z, YANG C, NIU Y N, SIDDIQUE K H M. Water-saving Innovations in Chinese Agriculture. Advances in Agronomy. Amsterdam: Elsevier, 2014. 149-201.
[23]
张智猛, 戴良香, 慈敦伟, 张冠初, 田家明, 秦斐斐, 徐扬, 丁红. 生育后期干旱胁迫与施氮量对花生产量及氮素吸收利用的影响. 中国油料作物学报, 2019, 41(4): 614-621.
ZHANG Z M, DAI L X, CI D W, ZHANG G C, TIAN J M, QIN F F, XU Y, DING H. Drought effects at late growth stage and nitrogen application rate on yield and N utilization of peanut. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 614-621. (in Chinese)
[24]
祁有玲, 张富仓, 李开峰. 水分亏缺和施氮对冬小麦生长及氮素吸收的影响. 应用生态学报, 2009, 20(10): 2399-2405.
QI Y L, ZHANG F C, LI K F. Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake. Chinese Journal of Applied Ecology, 2009, 20(10): 2399-2405. (in Chinese)
[25]
李永平, 田艳, 史向远, 周静, 张晓晨, 朱教宁, 林琭, 赵丽. 施用畜禽粪肥对土壤呼吸和玉米产量的影响及其增效分析. 华北农学报, 2017, 32(1): 193-200.

doi: 10.7668/hbnxb.2017.01.029
LI Y P, TIAN Y, SHI X Y, ZHOU J, ZHANG X C, ZHU J N, LIN L, ZHAO L. Effects of animal manures on soil respiration and maize yield and economic analysis. Acta Agriculturae Boreali-Sinica, 2017, 32(1): 193-200. (in Chinese)

doi: 10.7668/hbnxb.2017.01.029
[26]
王艳丽, 吴鹏年, 李培富, 王西娜, 朱旭. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响. 作物学报, 2019, 45(8):1230-1237.

doi: 10.3724/SP.J.1006.2019.83080
WANG Y L, WU P N, LI P F, WANG X N, ZHU X. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation. Acta Agronomica Sinica, 2019, 45(8): 1230-1237. (in Chinese)
[27]
张国娟, 濮晓珍, 张鹏鹏, 张旺锋. 干旱区棉花秸秆还田和施肥对土壤氮素有效性及根系生物量的影响. 中国农业科学, 2017, 50(13): 2624-2634. doi: 10.3864/j.issn.0578-1752.2017.13.020.

doi: 10.3864/j.issn.0578-1752.2017.13.020
ZHANG G J, PU X Z, ZHANG P P, ZHANG W F. Effects of stubble returning to soil and fertilization on soil nitrogen availability and root biomass of cotton in arid region. Scientia Agricultura Sinica, 2017, 50(13): 2624-2634. doi: 10.3864/j.issn.0578-1752.2017.13.020. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.13.020
[28]
李玲玲, 李书田. 有机肥氮素矿化及影响因素研究进展. 植物营养与肥料学报, 2012, 18(3): 749-757.
LI L L, LI S T. A review on nitrogen mineralization of organic manure and affecting factors. Plant Nutrition and Fertilizer Science, 2012, 18(3): 749-757. (in Chinese)
[29]
刘恩科, 梅旭荣, 龚道枝, 严昌荣, 庄严. 不同生育时期干旱对冬小麦氮素吸收与利用的影响. 植物生态学报, 2010, 34(5): 555-562.

doi: 10.3773/j.issn.1005-264x.2010.05.009
LIU E K, MEI X R, GONG D Z, YAN C R, ZHUANG Y. Effects of drought on N absorption and utilization in winter wheat at different developmental stages. Chinese Journal of Plant Ecology, 2010, 34(5): 555-562. (in Chinese)
[30]
谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49(20): 3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008.

doi: 10.3864/j.issn.0578-1752.2016.20.008
XIE J, ZHAO Y N, CHEN X J, LI D P, XU C L, WANG K, ZHANG Y Q, SHI X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.20.008
[31]
高洪军, 朱平, 彭畅, 张秀芝, 李强, 张卫建. 等氮条件下长期有机无机配施对春玉米的氮素吸收利用和土壤无机氮的影响. 植物营养与肥料学报, 2015, 21(2): 318-325.
GAO H J, ZHU P, PENG C, ZHANG X Z, LI Q, ZHANG W J. Effects of partially replacement of inorganic N with organic materials on nitrogen efficiency of spring maize and soil inorganic nitrogen content under the same N input. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 318-325. (in Chinese)
[32]
王肖娟, 危常州, 张君, 董鹏, 王娟, 朱齐超, 王金鑫. 灌溉方式和施氮量对棉田氮肥利用率及损失的影响. 应用生态学报, 2012, 23(10): 2751-2758.
WANG X J, WEI C Z, ZHANG J, DONG P, WANG J, ZHU Q C, WANG J X. Effects of irrigation mode and N application rate on cotton field fertilizer N use efficiency and N losses. Chinese Journal of Applied Ecology, 2012, 23(10): 2751-2758. (in Chinese)
[33]
邹芳刚, 郭文琦, 王友华, 赵文青, 周治国. 施氮量对长江流域滨海盐土棉花氮素吸收利用的影响. 植物营养与肥料学报, 2015, 21(5): 1150-1158.
ZOU F G, GUO W Q, WANG Y H, ZHAO W Q, ZHOU Z G. Effects of nitrogen application rate on the nitrogen uptake and utilization of cotton grown in coastal saline fields of Yangtze River Valley. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1150-1158. (in Chinese)
[34]
廖欢, 甘浩天, 刘凯, 殷星, 刘少华, 唐新愿, 侯振安. 机采棉氮素吸收及产量的最佳水氮组合. 植物营养与肥料学报, 2021, 27(12): 2229-2242.
LIAO H, GAN H T, LIU K, YIN X, LIU S H, TANG X Y, HOU Z A. Optimal water scheme and N rate for high N uptake and yield of machine-harvested cotton. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2229-2242. (in Chinese)
[35]
秦宇坤, 李鹏程, 郑苍松, 孙淼, 刘帅, 董合林, 徐文修. 施氮量对低肥力棉田土壤氮素及棉花养分吸收利用影响. 棉花学报, 2019, 31(3):242-253.
QIN Y K, LI P C, ZHENG C S, SUN M, LIU S, DONG H L, XU W X. Effects of nitrogen application rates on soil nitrogen content, nutrient uptake and utilization of cotton in low fertility fields. Cotton Science, 2019, 31(3): 242-253. (in Chinese)
[36]
申长卫, 袁敬平, 李新华, 张帅垒, 任秀娟, 王菲, 刘星, 张影, 欧行奇, 陈锡岭. 有机肥氮替代20%化肥氮提高豫北冬小麦氮肥利用率和土壤肥力. 植物营养与肥料学报, 2020, 26(8): 1395-1406.
SHEN C W, YUAN J P, LI X H, ZHANG S L, REN X J, WANG F, LIU X, ZHANG Y, OU X Q, CHEN X L. Improving winter wheat N utilization efficiency and soil fertility through replacement of chemical N by 20% organic manure. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1395-1406. (in Chinese)
[37]
LI H, FENG W T, HE X H, ZHU P, GAO H J, SUN N, XU M G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Journal of Integrative Agriculture, 2017, 16(4): 937-946.

doi: 10.1016/S2095-3119(16)61559-9
[1] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[4] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[5] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[6] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[7] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[8] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[9] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[10] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[11] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[12] DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa [J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
[13] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[14] CHEN ZhiYong, ZHANG Zhi, LIU Jie, KANG AiGuo, ZHAO SuMei, YIN XiangJie, LI ZhanQing, XIE AiTing, ZHANG YunHui. Spatiotemporal Dynamics and Source of Loxostege sticticalis in Northern China in 2020 [J]. Scientia Agricultura Sinica, 2022, 55(5): 907-919.
[15] WANG YuTai,XU ZhiFan,LIU Jie,ZHONG GuoHua. Preparation and Application of Indoxacarb Degrading Bacteria Immobilized Sodium Alginate Microspheres [J]. Scientia Agricultura Sinica, 2022, 55(5): 920-931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!